JPS6369205A - Manufacture of alloy powder of rare earth element, iron and boron for resin magnet - Google Patents
Manufacture of alloy powder of rare earth element, iron and boron for resin magnetInfo
- Publication number
- JPS6369205A JPS6369205A JP61212997A JP21299786A JPS6369205A JP S6369205 A JPS6369205 A JP S6369205A JP 61212997 A JP61212997 A JP 61212997A JP 21299786 A JP21299786 A JP 21299786A JP S6369205 A JPS6369205 A JP S6369205A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- boron
- rare earth
- magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229920005989 resin Polymers 0.000 title claims abstract description 27
- 239000011347 resin Substances 0.000 title claims abstract description 27
- 239000000843 powder Substances 0.000 title claims abstract description 25
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910045601 alloy Inorganic materials 0.000 title abstract description 14
- 239000000956 alloy Substances 0.000 title abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 6
- 238000000748 compression moulding Methods 0.000 claims abstract description 4
- 230000032683 aging Effects 0.000 claims abstract description 3
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 229910000521 B alloy Inorganic materials 0.000 claims description 5
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract 2
- 238000000034 method Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は希土類元素・鉄・ボロンを必須の構成元素とす
る樹脂磁石の改良に関するもので、各種産業、民生及び
電子機器の基幹材料として利用される。具体的にはOA
機器用のプリンター、フロッピーディスク向けのステッ
プモーター、更には自動車用のスターターモーター等回
転機器として広範に利用される。又希土類磁石あるいは
フェライト磁石のその他の用途、例えば音響用としての
小型スピーカー、マイクロフォン、コンパクトディスク
用アクチェエータ−等への応用も可能である。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the improvement of resin magnets containing rare earth elements, iron, and boron as essential constituent elements, and can be used as core materials for various industries, consumer products, and electronic devices. be done. Specifically, OA
It is widely used in rotating equipment such as printers for equipment, step motors for floppy disks, and starter motors for automobiles. It is also possible to apply rare earth magnets or ferrite magnets to other uses, such as small acoustic speakers, microphones, actuators for compact discs, etc.
本発明はネオジウム・鉄・ボロンを代表組成とする希土
類・鉄・ボロン系樹脂磁石の原料粉末の改良に関するも
ので、一旦公知の製造方法により永久磁石となる焼結体
を作製した後、適宜粒径に再粉砕し、該粉末を不活性ガ
ス中にて300℃〜700℃の温度範囲で熱処理したこ
とを特徴とする。The present invention relates to the improvement of raw material powder for rare earth/iron/boron resin magnets whose typical composition is neodymium/iron/boron. It is characterized in that it is re-pulverized to a diameter, and the powder is heat-treated in an inert gas at a temperature in the range of 300°C to 700°C.
この様な方法で作製した粉末を用いて作られる樹脂磁石
の最大磁気エネルギー積は(BH)■aX18 MGO
が得られ、従来の超急冷合金粉を使用した樹脂磁石の特
性を凌駕する。The maximum magnetic energy product of a resin magnet made using powder made by this method is (BH) ■aX18 MGO
is obtained, which surpasses the properties of conventional resin magnets using super-quenched alloy powder.
希土類元素・鉄・ボロンを必須の構成元素とする永久磁
石は合金を粉砕1Mi場成形、焼結3時効する工程を経
て製造する焼結タイプと、急冷薄帯製造によって作られ
る粉末を原料とした樹脂磁石タイプに大別される。焼結
法によって得られる磁気特性は実験室レベルでは既に(
B)I)max50 MGOの磁気特性が報告されてい
る。焼結磁石でこの様に高い磁気特性が得られることか
ら、樹脂磁石でも従来の最高特性であった焼結サマリウ
ムコバルト磁石に近い磁気特性が期待できるとして、希
土類・鉄・ボロン系原料を使用した樹脂磁石の開発が活
発に進められている。その代表的な製造方法は超急冷薄
帯法と呼ばれるもので、原料合金を溶解後水冷した銅板
の上、あるいは回転ロール等に溶射して厚み20ミクロ
ン程度の薄帯を作製し、得られた薄帯を適宜粒径に粉砕
したものを樹脂と混練後プレスにより圧縮成形する方法
である。Permanent magnets whose essential constituent elements are rare earth elements, iron, and boron are made from sintered type alloys, which are manufactured through a process of pulverizing, 1Mi field forming, sintering, and 3 aging, and powders made by rapidly cooling ribbon manufacturing. Broadly divided into resin magnet types. The magnetic properties obtained by the sintering method have already been demonstrated at the laboratory level (
B) I) max50 Magnetic properties of MGO have been reported. Since such high magnetic properties can be obtained with sintered magnets, we believe that resin magnets can also be expected to have magnetic properties close to those of sintered samarium cobalt magnets, which had previously achieved the highest properties. Development of resin magnets is actively underway. The typical manufacturing method is called the ultra-quenched ribbon method, in which the raw material alloy is melted and then sprayed onto a water-cooled copper plate, or onto a rotating roll, etc., to produce a ribbon with a thickness of about 20 microns. This is a method in which a ribbon is pulverized to an appropriate particle size, kneaded with a resin, and then compression molded using a press.
希土類・鉄・ボロン系の代表組成であるネオジウム・鉄
・ボロン合金を原料とした樹脂磁石は理論的には最大磁
気エネルギー積・(BH)max30 MGOを優に越
える。しかしながら実際に得られる特性は超急冷薄帯法
で(BH)■ax8 NGO程度に留まっている。特性
が(BH)sax8 MGOLか得られない理由は、超
急冷薄帯法によって得られる結晶は車軸臨界半径よりも
微細な結晶が完全に等友釣にランダムに並んでいる為、
−軸方向に配向することは不可能である。理論値に比べ
磁気特性が著しく低いのは本質的に等方性磁石であるこ
とに起因するものである。一方通常の溶解法によって作
製する合金インゴットを用いた樹脂磁石の製造方法も研
究されているが、今のところ粉砕時に受ける機械的歪に
より急激な保磁力低下を招き磁石化されてない。A resin magnet made from a neodymium-iron-boron alloy, which is a typical rare earth-iron-boron alloy, theoretically has a maximum magnetic energy product (BH)max of 30 MGO. However, the properties actually obtained by the ultra-quenched ribbon method remain at the level of (BH) ■ ax8 NGO. The reason why the characteristics of (BH)sax8 MGOL cannot be obtained is that the crystals obtained by the ultra-quenched ribbon method have crystals that are finer than the critical radius of the axle and are arranged at random in a completely equisymmetrical manner.
- Axial orientation is not possible. The fact that the magnetic properties are significantly lower than the theoretical values is due to the fact that they are essentially isotropic magnets. On the other hand, research is also being conducted into a method for manufacturing resin magnets using alloy ingots produced by the usual melting method, but so far the magnets have not been made into magnets because of the mechanical strain that occurs during crushing, which causes a sudden drop in coercive force.
しかし、超急冷薄帯法とは異なり、基本的には磁場配向
で異方性化が可能で、超急冷薄帯法に比べて高い磁気特
性が得られる可能性を持つといえる0本発明はこの様な
実状に鑑みなされたものであって、通常の溶解法によっ
て作製した希土類・鉄・ボロン系合金を用いて、従来に
比べ高い磁気特性を有する樹脂磁石用合金粉末を得るこ
とを狙いとするものである。However, unlike the ultra-quenched ribbon method, it is basically possible to create anisotropy by magnetic field orientation, and it can be said that there is a possibility of obtaining higher magnetic properties than the ultra-quenched ribbon method. This project was developed in light of these circumstances, and aims to obtain alloy powder for resin magnets that has higher magnetic properties than conventional ones by using rare earth, iron, and boron alloys produced by ordinary melting methods. It is something to do.
本発明者らは通常の溶解法によって得られる希土類・鉄
・ボロン合金を樹脂磁石用原料として用いることに着目
し、磁気特性を改良すべく鋭意研究を行った。その結果
一旦、公知の製造方法により(BH)may30 MG
O以上が得られる焼結体を作製した後、焼結体を適宜粒
径に再粉砕する。その後3゜O℃〜700℃の温度範囲
で熱処理を施した原料を樹脂と混練し、磁界中で圧縮成
形する方法である。The present inventors focused on using a rare earth-iron-boron alloy obtained by a normal melting method as a raw material for resin magnets, and conducted extensive research to improve its magnetic properties. As a result, (BH) may30 MG was manufactured using a known manufacturing method.
After producing a sintered body that can obtain O or more, the sintered body is re-pulverized to an appropriate particle size. The raw material is then heat-treated at a temperature range of 3°C to 700°C, and then kneaded with a resin, followed by compression molding in a magnetic field.
焼結磁石では優れた磁気特性が得られる希土類・鉄・ボ
ロン系合金が一旦微粉末化されると磁気特性が著しく低
下し磁石化されない理由は、粉砕により主相となる金属
間化合物相の結晶粒界が破壊(結晶粒界の状態が保磁力
の発生の基になっている)されると推測されている。Sintered magnets have excellent magnetic properties, but once the rare earth, iron, and boron alloys are pulverized, their magnetic properties drop significantly and they cannot be magnetized. It is assumed that the grain boundaries are destroyed (the state of the grain boundaries is the basis for the generation of coercive force).
しかし、本発明によれば最適条件においては最大磁気エ
ネルギー積は実に(B)I)max18 MGOを得る
ことができ、通常の溶解法によって作製した合金でも、
樹脂磁石用原料として利用できることを立証したのみな
らず、従来の超急冷薄帯法による磁気特性を大幅に上回
るものである。この様に通常の熔解法による合金が微粉
末化しても高い磁気特性が得られる理由は一旦、一連の
焼結磁石の製造を行うことによって、粉砕時に受けると
いわれている主相における結晶粒界の破壊を減じるのに
多大な効果を持たらしたことと、併せて微粉末化後に行
う熱処理が受けた結晶歪を除去することとが相乗的な効
果を持たらしたことによるものである。However, according to the present invention, under optimal conditions, the maximum magnetic energy product is actually (B) I) max 18 MGO, and even alloys made by ordinary melting methods,
Not only has it been proven that it can be used as a raw material for resin magnets, but its magnetic properties greatly exceed those obtained by the conventional ultra-quenched ribbon method. The reason that high magnetic properties are obtained even when the alloy made by the usual melting process is pulverized is that once a series of sintered magnets are manufactured, the grain boundaries in the main phase that are said to occur during pulverization are This is due to the synergistic effect of having a great effect in reducing the destruction of the powder and removing the crystal distortion caused by the heat treatment performed after pulverization.
以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
〔実施例1〕
まず、最終組成が希土類・鉄・ボロン系磁石の代表組成
、Nd+5BsFettとなる様に各原料を調整し、不
活性ガス中で高周波誘導溶解を行い合金インゴットを作
製する0次に得られたインゴットは不活性ガス中で平均
粒径20ミクロンに粉砕した。[Example 1] First, each raw material is adjusted so that the final composition becomes Nd+5BsFett, which is a typical composition of rare earth/iron/boron magnets, and then high-frequency induction melting is performed in an inert gas to produce an alloy ingot. The obtained ingot was ground to an average particle size of 20 microns in an inert gas.
この後従来方法に従って、3れ%のエポキシ樹脂と混練
した。混練された磁性粉は15 k Oeの磁界中で加
圧され、エポキシ樹脂をキュアーして磁石化した。一方
、従来方法と比較する本発明は、20ミクロンに粉砕さ
れた粉末をボールミルにより更に平均粒径3ミクロンに
微粉末化した。この後15koeの磁界中で圧縮成形し
た。圧縮成形体は^rガス中にて1080℃×1時間の
焼結を行い、焼結後保磁力改善の為の時効処理を600
℃×1時間行った。Thereafter, the mixture was kneaded with 3% epoxy resin according to a conventional method. The kneaded magnetic powder was pressurized in a magnetic field of 15 kOe to cure the epoxy resin and magnetize it. On the other hand, in the present invention, which is compared with the conventional method, the powder that has been ground to 20 microns is further pulverized to an average particle size of 3 microns using a ball mill. Thereafter, compression molding was performed in a magnetic field of 15 koe. The compression molded body was sintered in ^r gas at 1080°C for 1 hour, and after sintering was aged at 600°C to improve the coercive force.
℃×1 hour.
この様にして作製された焼結磁石の磁気特性は次の通り
であった。The magnetic properties of the sintered magnet thus produced were as follows.
Br : 12,000 (G)、 BHc:
11.000 (Oe)IHc : 15.0
00(Oe)、 (BH)wax: 34.9 (M
GO)次に上記の焼結体を不活性ガス中にて平均粒径2
0ミクロンとなる様粉砕した。その後、従来方法と同様
に3wt%のエポキシ樹脂を混練、圧縮成形。Br: 12,000 (G), BHc:
11.000 (Oe) IHC: 15.0
00 (Oe), (BH) wax: 34.9 (M
GO) Next, the above sintered body was heated to an average particle size of 2 in an inert gas.
It was ground to 0 microns. After that, 3 wt% epoxy resin was kneaded and compression molded as in the conventional method.
キュアーを行い磁石化した。表−1に得られた磁気特性
を示す。It was cured and magnetized. Table 1 shows the magnetic properties obtained.
表−1
表−1に示した様に本発明の効果が顕著であることが判
る。Table 1 As shown in Table 1, it can be seen that the effects of the present invention are remarkable.
〔実施例2〕
実施例1で本発明の効果が顕著であることが確認された
ので、ここでは実施例1で準備された焼結体を用い、粉
末粒径が磁気特性に及ぼす影響を調査する為、焼結体を
それぞれ平均粒径5ミクロン、10ミクロン、30ミク
ロン、50ミクロン、100ミクロン及び150 ミク
ロンとなる様に粉砕した。[Example 2] Since it was confirmed in Example 1 that the effect of the present invention is remarkable, here, the influence of powder particle size on magnetic properties was investigated using the sintered body prepared in Example 1. In order to do this, the sintered bodies were crushed to have average particle sizes of 5 microns, 10 microns, 30 microns, 50 microns, 100 microns and 150 microns, respectively.
得られた粉末は実施例1と同様の方法にて樹脂磁石化し
た。The obtained powder was made into a resin magnet in the same manner as in Example 1.
得られた結果を表2に示す。The results obtained are shown in Table 2.
表−2
表2から粉末粒径が30μの時(BH)wax8.o門
GOが得られ最も高い磁気特性を示す、この値は超急冷
薄帯を原料とした樹脂磁石と同等の磁気特性を示すもの
である。Table 2 From Table 2, when the powder particle size is 30μ (BH) wax8. O-mon GO was obtained and showed the highest magnetic properties, and this value indicates magnetic properties equivalent to that of a resin magnet made from an ultra-quenched ribbon as a raw material.
〔実施例3〕
実施例1で粉砕時における合金主相の粒界破壊を減じる
ことにより磁気特性の向上を見出すことに成功した為、
更に特性向上を図る方法を種々検討した結果、焼結体を
平均粒径30ミクロンに粉砕した後、500℃以上で熱
処理することにより磁気特性が著しく改善されることを
見出した。そこで最適温度を選定すべく焼結体を平均粒
径30ミクロンにした粉末をそれぞれ400℃、500
℃、600℃、700’C,900℃、1100℃の温
度で各1時間熱処理した。[Example 3] In Example 1, we succeeded in finding improvement in magnetic properties by reducing intergranular fracture of the main alloy phase during pulverization.
Further, as a result of investigating various methods for improving the properties, it was found that the magnetic properties were significantly improved by pulverizing the sintered body to an average particle size of 30 microns and then heat-treating it at 500°C or higher. Therefore, in order to select the optimum temperature, powders made of sintered bodies with an average particle size of 30 microns were heated at 400℃ and 500℃, respectively.
℃, 600°C, 700'C, 900°C, and 1100°C for 1 hour each.
熱処理した粉末は実施例1及び2と同様の方法で樹脂磁
石化した。得られた結果を第1図に示す。The heat-treated powder was made into a resin magnet in the same manner as in Examples 1 and 2. The results obtained are shown in FIG.
即ち、Nd+sB*Fetvの組成をもつ合金により、
一旦、公知の製造方法にて(BH)wax34.9 N
GOの焼結体を作製し、次いで平均粒径30ミクロンに
再度粉砕した後、400℃〜1100℃の範囲で熱処理
した粉末を用いて樹脂磁石を作製した時の加熱温度と(
BH)waxの関係を第1図は示している。That is, with an alloy having the composition of Nd+sB*Fetv,
Once, (BH) wax 34.9 N using a known manufacturing method
The heating temperature when a resin magnet was made using the powder that was produced by producing a sintered body of GO, then re-pulverized to an average particle size of 30 microns, and then heat-treated in the range of 400°C to 1100°C.
FIG. 1 shows the relationship between BH) wax.
図で明らかの様に粉砕後熱処理することによって磁気特
性が著しく改善されることが顕著である。As is clear from the figure, it is remarkable that the magnetic properties are significantly improved by heat treatment after crushing.
この様に磁気特性が改善された理由は粉砕により受ける
応力歪が除去された為と、一度破壊された主相の結晶粒
径が熱処理することによって回復することができたこと
によるものである。The reason why the magnetic properties were improved in this way is that stress and strain caused by crushing were removed, and that the crystal grain size of the main phase, once destroyed, was able to be recovered by heat treatment.
以上、本発明を実施例に基づき説明したが、実施例及び
記載の態様は本発明をこれらに限定するものではない、
即ち実施例ではNd+5BsFetv合金を用いた樹脂
磁石、及びその製法についてのみ説明したが、他の希土
類・鉄・ボロンを必須とする樹脂磁石においても同様の
効果を持たらすものである。The present invention has been described above based on Examples, but the Examples and described aspects are not intended to limit the present invention to these.
That is, in the embodiment, only a resin magnet using Nd+5BsFetv alloy and a manufacturing method thereof have been described, but the same effect can be obtained in resin magnets that require other rare earth elements, iron, and boron.
本発明は以上説明した様に、希土類・鉄・ボロンを必須
の原料とする樹脂磁石の磁気特性の改良に関するもので
、一旦、焼結磁石の製造方法にて(B)l)max30
以上の高い磁気特性が得られる焼結体を作製した後、再
び適宜粒径に粉末化し、更に500℃以上の温度で熱処
理することによって樹脂磁石用に適した原料粉末を得る
もので、これまでに得られている(BH)max8 M
GOをはるかに凌ぐ(BH)max18の達成を可能と
した。これまで樹脂磁石は複雑形状が可能である等種々
なメリットがあり、その需要は増加する傾向にあるが、
焼結磁石に比べ特性が低過ぎるという大きな欠点を有し
ていたが、前述した様に焼結サマリウムコバルト磁石並
み(SmCos系)の特性が得られ、その工業的価値は
極めて大きい。As explained above, the present invention relates to improving the magnetic properties of a resin magnet that uses rare earth elements, iron, and boron as essential raw materials.
After producing a sintered body that has the above-mentioned high magnetic properties, it is powdered again to an appropriate particle size and further heat-treated at a temperature of 500°C or higher to obtain a raw material powder suitable for resin magnets. (BH) max 8 M
It made it possible to achieve (BH) max 18, which far exceeds GO. Until now, resin magnets have had various advantages such as being able to be made into complex shapes, and the demand for them has been on the rise.
Although it had a major drawback in that its characteristics were too low compared to sintered magnets, as mentioned above, it can obtain characteristics comparable to sintered samarium cobalt magnets (SmCos type), and its industrial value is extremely large.
第1図は加熱温度と(BH)+waxの関係を示した図
である。
以上FIG. 1 is a diagram showing the relationship between heating temperature and (BH)+wax. that's all
Claims (1)
属間化合物を適宜粒径に粉末化し、この粉末を圧縮成形
、焼結及び時効処理を施し、得られた焼結体を再度、適
宜粉末粒径にした後、500℃以上で熱処理したことを
特徴とする樹脂磁石用希土類・鉄・ボロン合金粉末の製
造方法。An intermetallic compound containing rare earth elements, iron, and boron as essential constituent elements is powdered to an appropriate particle size, and this powder is subjected to compression molding, sintering, and aging treatment, and the obtained sintered body is again made into powder particles as appropriate. A method for producing rare earth/iron/boron alloy powder for resin magnets, which is characterized in that the powder is made into a diameter and then heat-treated at 500°C or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61212997A JPS6369205A (en) | 1986-09-10 | 1986-09-10 | Manufacture of alloy powder of rare earth element, iron and boron for resin magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61212997A JPS6369205A (en) | 1986-09-10 | 1986-09-10 | Manufacture of alloy powder of rare earth element, iron and boron for resin magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6369205A true JPS6369205A (en) | 1988-03-29 |
Family
ID=16631762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61212997A Pending JPS6369205A (en) | 1986-09-10 | 1986-09-10 | Manufacture of alloy powder of rare earth element, iron and boron for resin magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6369205A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01290205A (en) * | 1988-05-18 | 1989-11-22 | Tokin Corp | Manufacture of high-polymer composite type rare-earth magnet |
JPH0278204A (en) * | 1988-09-14 | 1990-03-19 | Tokin Corp | High-polymer composite-type rare-earth magnet and its manufacture |
JPH02111001A (en) * | 1988-10-20 | 1990-04-24 | Tokin Corp | Manufacture of alloy powder for polymer composite-type rare-earth magnet |
FR2692184A1 (en) * | 1992-06-12 | 1993-12-17 | Renault | Powdered metallic aluminium@ alloy prepn. - formed by grinding powder constituents together, heat treating to form intermetallic compound followed by second grinding stage |
JPH07230907A (en) * | 1988-04-20 | 1995-08-29 | Tokin Corp | Manufacture of polymer compound type rare earth magnet material |
-
1986
- 1986-09-10 JP JP61212997A patent/JPS6369205A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07230907A (en) * | 1988-04-20 | 1995-08-29 | Tokin Corp | Manufacture of polymer compound type rare earth magnet material |
JPH01290205A (en) * | 1988-05-18 | 1989-11-22 | Tokin Corp | Manufacture of high-polymer composite type rare-earth magnet |
JPH0278204A (en) * | 1988-09-14 | 1990-03-19 | Tokin Corp | High-polymer composite-type rare-earth magnet and its manufacture |
JPH02111001A (en) * | 1988-10-20 | 1990-04-24 | Tokin Corp | Manufacture of alloy powder for polymer composite-type rare-earth magnet |
FR2692184A1 (en) * | 1992-06-12 | 1993-12-17 | Renault | Powdered metallic aluminium@ alloy prepn. - formed by grinding powder constituents together, heat treating to form intermetallic compound followed by second grinding stage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63232301A (en) | Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof | |
JPS6369205A (en) | Manufacture of alloy powder of rare earth element, iron and boron for resin magnet | |
JPS63317643A (en) | Production of rare earth-iron permanent magnetic material | |
JPS62177101A (en) | Production of permanent magnet material | |
KR900006533B1 (en) | Anisotropic magnetic materials and magnets made with it and making method for it | |
JPH0552647B2 (en) | ||
JPS6233402A (en) | Manufacture of rare-earth magnet | |
JPH10270224A (en) | Manufacture of anisotropic magnet powder and anisotropic bonded magnet | |
JPS6329908A (en) | Manufacture of r-fe-b rare earth magnet | |
JPS62169403A (en) | Manufacture of polymer composite type rare earth magnet | |
JPH07211570A (en) | Manufacture of rare-earth permanent magnet | |
JPS6353202A (en) | Production of rare earth element-iron type plastic magnetic material | |
JPH04143221A (en) | Production of permanent magnet | |
JPH07110965B2 (en) | Method for producing alloy powder for resin-bonded permanent magnet | |
JPH08288113A (en) | Manufacture of rare-earth magnetic material powder and rare-earth magnet | |
JPS63211705A (en) | Anisotropic permanent magnet and manufacture thereof | |
JPH01171219A (en) | Manufacture of permanent magnet integral with york | |
JPS63285909A (en) | Permanent magnet and manufacture thereof | |
JPH02252222A (en) | Manufacture of permanent magnet | |
JPH01179305A (en) | Manufacture of anisotropic permanent magnet | |
JPS62167842A (en) | Production of rare earth magnet | |
JPH027403A (en) | Magnetic-anisotropy magnet and its manufacture | |
JPH04176805A (en) | Production of rare earth element-cobalt bonded magnet powder | |
JPS63140063A (en) | Manufacture of permanent magnet | |
JPH06224018A (en) | Manufacture of r-fe-b-based sintered magnet |