JPS59135705A - Resin magnet material - Google Patents

Resin magnet material

Info

Publication number
JPS59135705A
JPS59135705A JP874283A JP874283A JPS59135705A JP S59135705 A JPS59135705 A JP S59135705A JP 874283 A JP874283 A JP 874283A JP 874283 A JP874283 A JP 874283A JP S59135705 A JPS59135705 A JP S59135705A
Authority
JP
Japan
Prior art keywords
powder
ferrite
average particle
magnet
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP874283A
Other languages
Japanese (ja)
Other versions
JPS6334610B2 (en
Inventor
Hisaaki Oseko
久秋 小瀬古
Yoshiji Haga
芳賀 美次
Haruhei Ono
小野 晴平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP874283A priority Critical patent/JPS59135705A/en
Publication of JPS59135705A publication Critical patent/JPS59135705A/en
Publication of JPS6334610B2 publication Critical patent/JPS6334610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an anisotropic resin magnet with excellent magnetic characteristics by mixing ferrite powder composed of a mixture of ferrite fine powder of average particle diameter 0.5-1.5mum and ferrite coarse powder of average particle diameter 30-250mum and synthetic resin. CONSTITUTION:Hard ferrite powder, such as barium ferrite and strontium ferrite, and their mixture are used as ferrite powder. Powder of average particle diameter 0.5-1.5mum is usually used as fine powder and especially a single magnetic domain particle is preferable. Powder of average particle diameter 30- 250mum is usually used as coarse powder and especially a multiple magnetic domain particle, whose average diameter is 100-200mum and which is oriented to one direction, is preferable. The mixing ratio of the fine powder and the coarse powder is usually in the range of 1:0.4-1:4 by weight ratio but especially the range of 1:0.7-1:1.2 is preferable. 88-96wt% of the ferrite and 12-4wt% of resin are mixed and pellet whose diameter is around 3mm. is obtained.

Description

【発明の詳細な説明】 本発明は磁気時411に優れ11つ磁気的バラツキの少
ない異方スz1〕Sライト(81脂磁石が容易に得られ
る樹脂磁石材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin magnet material from which an anisotropic z1] S light (81 fat magnet) which is excellent in magnetic properties and has little magnetic variation is easily obtained.

近年、)Tライト粉末、希土類粉末等と合成樹脂との混
合物よりなる、いわゆる樹脂磁石、ゴム磁石が、複雑な
、或いは薄肉の形状であっても後加工なしで高い」法精
度が得られる等の特長から磁石市場の一端をになうよう
になっCきている。しかし、フェライト粉末を用いたも
のはせいぜい磁気特性として最大エネルギー積([11
1) max = 1.2〜1、7 MG ・Oeであ
り、異方性焼結磁石の(BH) may = 2.5〜
4、5 MG・Oeに比べて低く、また等方性焼結磁石
は(BH) max−= 0.9〜1.2 MG・Oe
であるためその代替が磁気的には可能でるあるが2.コ
スト的に等方性焼結磁石は安価なため、それより高くつ
く樹MFI磁石、ゴム磁石の市場は限度があるといわざ
るを得ないのが現状であり、安価で磁気特性に優れた樹
脂磁石が容易に得られる樹脂磁石材料が強く望yFれて
いる。
In recent years, so-called resin magnets and rubber magnets, which are made of mixtures of T-light powder, rare earth powder, etc. and synthetic resin, have become highly accurate even in complex or thin shapes without post-processing. Due to its characteristics, it has come to dominate the magnet market. However, the maximum energy product ([11
1) max = 1.2~1,7 MG ・Oe, and (BH) of the anisotropic sintered magnet may = 2.5~
4,5 It is lower than MG・Oe, and isotropic sintered magnet has (BH) max-=0.9~1.2 MG・Oe
Therefore, it is possible to replace it magnetically, but 2. Since isotropic sintered magnets are inexpensive, the market for more expensive wood MFI magnets and rubber magnets is currently limited. Resin magnet materials from which magnets can be easily obtained are strongly desired.

磁気特性に優れた樹脂磁石を得る方法については、平均
粒径2μmまでの単磁区粒子と平均粒径300〜100
0μmの焼結半製品ないしは焼結粉砕品とを混合して用
いることによって樹脂に対する充填率を向上さゼた異方
性永久磁石の製造方法(特開昭56−3693号)があ
る。し、かしこの方法では、焼結半製品等の粒径が30
0〜1000μmと大きいため、複雑、薄肉な異方性樹
脂磁石ではi′11子が十分に配向できないので優れた
磁気特性が得られず、表面に多極着磁して使用する回転
制御用やステッピングモーター用等の樹脂磁石では各磁
極間の表面磁束密度などのバラツキ(以下、磁気的バラ
ツキと称す)が大きくなり、安定した製品を得ることが
できない。また射出成形法による複雑、薄肉な磁石の成
形や、ビンケート金型での成形では、粒子が詰り易く、
安定した成形を続、けにくい。
Regarding the method of obtaining resin magnets with excellent magnetic properties, single magnetic domain particles with an average particle size of up to 2 μm and particles with an average particle size of 300 to 100 μm are used.
There is a method for manufacturing an anisotropic permanent magnet (JP-A-56-3693) in which the filling rate for resin is improved by mixing a sintered semi-finished product or a sintered pulverized product with a diameter of 0 μm. However, in this method, the particle size of the sintered semi-finished product is 30
Since the magnets are large (0 to 1000 μm), complex, thin-walled anisotropic resin magnets cannot sufficiently orient the i′11 molecules, making it difficult to obtain excellent magnetic properties. In resin magnets for stepping motors and the like, variations in surface magnetic flux density and the like between magnetic poles (hereinafter referred to as magnetic variations) become large, making it impossible to obtain stable products. In addition, when molding complex, thin-walled magnets using injection molding methods or molding with bincate molds, particles tend to get clogged.
Continues stable molding and is difficult to peel.

本発明者等は、」−記の問題点を解決ずべく鋭意検討4
市ねた結果、平均粒径0.5〜1.5μmのフェライ]
・微粉末、と平均粒径30〜250μmのフェライト粗
粉末を混合して用いた場合には、フ1ライトわ)末の充
填率は上記(特開昭56−3693冒>の方法よりも充
填率はやや低下するが、複雑、芯内の樹脂磁石でも1゛
分に配向し、優れた磁気特性が得られる七共に、多枠、
?F磁した樹脂磁石では磁気的ノマラツキが極めて小さ
くなり、射出成形における粒子の詰りもなく、容枯に優
れた異方性樹BF1磁石が得られることを見出し、本発
明を完成するに至−3た。
The inventors of the present invention have made extensive studies in order to solve the problems described in 4.
As a result of market analysis, ferrite with an average particle size of 0.5 to 1.5 μm]
・When using a mixture of fine powder and coarse ferrite powder with an average particle size of 30 to 250 μm, the filling rate of the ferrite powder is higher than that of the above method (Japanese Patent Application Laid-Open No. 56-3693). Although the rate is slightly lower, even the resin magnet in the core is complex and oriented at 1°, and excellent magnetic properties can be obtained.
? It was discovered that an F-magnetized resin magnet has extremely small magnetic fluctuations, no clogging of particles during injection molding, and anisotropic tree BF1 magnets with excellent durability were obtained, leading to the completion of the present invention.

すなわち本発明は、平均粒径0.5〜]、 577 m
のフェライト微粉末(以下、単に微粉末と称す)と平均
粒径30〜250μmのフェライト相粉末(以下、単に
粗粉末と称す)を10.4〜1;4のiI重量比配合し
たフェライト粉末88〜96重寸%と、合成樹脂12〜
4重量%とを混合してなることを特徴とする4M411
M 磁石材料を提供するものである。
That is, in the present invention, the average particle size is 0.5~], 577 m
Ferrite powder 88 is a mixture of ferrite fine powder (hereinafter simply referred to as fine powder) and ferrite phase powder (hereinafter simply referred to as coarse powder) with an average particle size of 30 to 250 μm in an iI weight ratio of 10.4 to 1:4. ~96% weight and synthetic resin 12~
4M411 characterized by being formed by mixing 4% by weight with
M provides magnetic materials.

本発明で用いる゛7エライト粉末としては、微粉末、粗
粉末の区別なく、バリウムフェライト、ストロンチュウ
ムフェライト等のハードフェンイト粉末とその混合物が
挙げられる。
Examples of the 7-elite powder used in the present invention include hard ferite powders such as barium ferrite and strontium ferrite, and mixtures thereof, regardless of fine powder or coarse powder.

微粉末としては、通常平均粒径0.5〜1.5メ1mの
粉末を用いるが、なかでも単Tit E粒子が好ましい
As the fine powder, powder having an average particle size of 0.5 to 1.5 m is usually used, and single Tit E particles are particularly preferred.

粗粉末としては、通常平均粒径30〜250μmの粉末
を用いるが、なかでも平均粒径100〜200μmの一
方向に配合した多磁区粒子が好ましい。尚、ここで用い
る粗粉末は、通常異方性焼結磁石をジャイ1−リー、ジ
9−クシソシャー、ハンマーミル、ボールミル、ロール
ミル、振動ミル等の粉砕機で粉砕した粉末を用いるが、
勿論平均粒径30〜250μmの焼結磁石をそのまま用
いてもよい。なかでも好ましい粗粉末は、残留磁束密度
11r= 3800 G以上、保磁力bllc、−23
000e以上、固有保磁力 1llc= 25000e
以上、最大エネルギーM (BH) max = 3.
8 MG・Oe以」−の異方性焼結磁石を粉砕し、焼鈍
した粉末である。
As the coarse powder, a powder having an average particle size of 30 to 250 μm is usually used, and among them, multi-domain particles blended in one direction and having an average particle size of 100 to 200 μm are preferable. Incidentally, the coarse powder used here is usually a powder obtained by pulverizing an anisotropic sintered magnet with a pulverizer such as a J1-Lee, a J9-Kushi Sosha, a hammer mill, a ball mill, a roll mill, a vibration mill, etc.
Of course, sintered magnets with an average particle size of 30 to 250 μm may be used as they are. Among these, preferable coarse powder has a residual magnetic flux density of 11r=3800 G or more and a coercive force bllc of -23
000e or more, intrinsic coercive force 1llc = 25000e
Above, maximum energy M (BH) max = 3.
This is a powder obtained by crushing and annealing an anisotropic sintered magnet of 8 MG Oe or higher.

粗粉末の平均粒径が30μm未満では、粉末の配向性は
良好であるが充填率の大きな向上が望めないために磁気
特性に優れた樹脂磁石が得られず、250μmを趣える
と、充填率は大きく向上するが粉末が十分に配向できな
いために磁気特性に優れた樹脂磁石が得にくく、更に得
られた樹Jll?磁石の磁気的バラツキが大きくなり、
好ましくない。
If the average particle size of the coarse powder is less than 30 μm, the orientation of the powder is good, but a significant improvement in the filling rate cannot be expected, so a resin magnet with excellent magnetic properties cannot be obtained. However, since the powder cannot be oriented sufficiently, it is difficult to obtain a resin magnet with excellent magnetic properties, and the obtained tree Jll? The magnetic variation of the magnet increases,
Undesirable.

ll&粉末と粗粉末の混合比は、重量比で通常] : 
(1,4〜・1:4の範囲であるが、なかでもt二o、
7〜]:2の範囲では特に高充填と高配向が望めるので
好”Jニジい。
The mixing ratio of powder and coarse powder is usually the weight ratio]:
(The range is from 1,4 to 1:4, but especially t2o,
7~]: In the range of 2, particularly high filling and high orientation can be expected, so it is preferable.

また、本発明で用いるフェライト粉末(微粉末および粗
粉末)は従来公知のシラン糸、チタン系等の表面処理剤
線用いて表面処理してもよい。表面処理は、微粉末、粗
粉末を個々に、あるいは混合してから行ってもよいし、
合成樹脂、その他の添加剤の存在下で行ってもよい。
Further, the ferrite powder (fine powder and coarse powder) used in the present invention may be surface-treated using a conventionally known silane thread, titanium-based surface treatment agent wire, or the like. Surface treatment may be performed on fine powders and coarse powders individually or after mixing them.
It may be carried out in the presence of a synthetic resin or other additives.

尚、nII記ハードフヱライト粉末の代りに希土類磁石
粉末、ソフトツボライト粉末、磁性鉄粉等を用いること
により磁気特性の向1−を計ることができ、その際には
平均粒径1〜25μmの微粉末と30〜250μmの粗
粉末を用いるが、微粉末が容易に酸化される点に留意す
る必要がある。
In addition, the direction of magnetic properties can be measured by using rare earth magnet powder, soft tubolite powder, magnetic iron powder, etc. instead of the hard fluorite powder described in nII. Powder and coarse powder of 30 to 250 μm are used, but it must be noted that fine powder is easily oxidized.

本発明で用いる合成樹脂とし°Cは、ポリエチレン、ポ
リプロピレン、ポリスチレン、エチレン酢酸ビニル共重
合体、エヂレンエグ・ルアクリレート、6〜ナイロン、
6,6−ナイロン、6.1(+−ナイロン、11−ナイ
ロン、12−ナイロン、ホットメルト用ポリアミド、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリフェニレンサルファイド等の熱可塑性樹脂、ポ
リエヂレンワソクス、パラフィンワックス等のワックス
、エポキシ樹M11 、フェノール樹脂、ジアリルフタ
レート4M脂等の熱硬化性樹脂が挙げられるが、射出成
形による敞産が可能な点から熱可塑性樹脂が好ましく、
なかでも成形加工性と機械的強度に優れる点でエチレン
酢酸ビニル共重合体、エチレンエチルアクリレート、ナ
イロン、ボットメルト用ポリアミド、ポリフェニレンサ
ルファイドが好ましく、特に6−ナイロンが好ましい。
The synthetic resin used in the present invention °C is polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, ethylene glycol acrylate, 6-nylon,
Thermoplastic resins such as 6,6-nylon, 6.1 (+-nylon, 11-nylon, 12-nylon, polyamide for hot melt, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide), polyethylene wax, paraffin wax wax, epoxy resin M11, phenol resin, diallyl phthalate 4M resin, and other thermosetting resins, but thermoplastic resins are preferred because they can be produced by injection molding.
Among them, ethylene-vinyl acetate copolymer, ethylene ethyl acrylate, nylon, polyamide for bot-melt, and polyphenylene sulfide are preferred from the viewpoint of excellent moldability and mechanical strength, and 6-nylon is particularly preferred.

尚、合成樹脂の形状はパウダー、ビーズ、ベレットのい
ずれでも良いが、フェライト粉末と均一に混合しやすい
パウダーが好ましい。
The synthetic resin may be in the form of powder, beads, or pellets, but powder that can be easily mixed uniformly with ferrite powder is preferred.

本発明の樹脂磁石材料は、通常微粉末と粗粉末を所定の
割合で配合したフェライト粉末88〜96i11a%と
、合成樹脂12〜4重量%とをリボンフレンダー、タン
ブラ−、ヘンシェルミキサー、ナウターミキサ−等の混
合機で混合して得られるが、更に表面処理剤、滑剤、安
定剤等の従来公知の添加剤を加えることもできる。尚、
微粉末、In粉末、合成樹脂および添加剤を混合する順
序は特に問わない。
The resin magnet material of the present invention is prepared by combining 88 to 96 11a% ferrite powder, which is usually a mixture of fine powder and coarse powder in a predetermined ratio, and 12 to 4% by weight of synthetic resin in a ribbon flender, tumbler, Henschel mixer, Nauta mixer, etc. It is obtained by mixing in a mixer, but conventionally known additives such as surface treatment agents, lubricants, stabilizers, etc. can also be added. still,
The order in which the fine powder, In powder, synthetic resin, and additives are mixed is not particularly limited.

次いで、得られた複合磁性材料は、バンバリーミキサ−
、ニーター、ニーダ−ルーグー、ロール、ヘンシェルミ
キサー、スーパーミキサー、単軸および多軸押110幾
により4分に混練し、更に、粒径31前後にベレット化
するミとが好ましい。
Next, the obtained composite magnetic material is passed through a Banbury mixer.
It is preferable to knead the mixture for 4 minutes using a kneader, a kneader-rouge, a roll, a Henschel mixer, a super mixer, a single-screw or multi-screw press, and then pelletize it to a particle size of about 31 mm.

このようにして得られた本発明の樹JI!′?磁石材料
は、押出成形機、射出成形機、圧縮成形機等を用いて磁
界中で成形することにより最大エネルギー積(Bll)
 max−1゜8MG・0(シ以上という磁気特性に優
れ、かつ磁気特性のバラツキが極めて小さい異方性樹脂
磁石が得られる。
The tree JI of the present invention thus obtained! ′? The maximum energy product (Bll) of the magnetic material is obtained by molding it in a magnetic field using an extrusion molding machine, injection molding machine, compression molding machine, etc.
An anisotropic resin magnet can be obtained which has excellent magnetic properties of max-1°8MG·0 (X or higher) and has extremely small variations in magnetic properties.

以下に実施例を挙げて本発明を史に詳細に説明する。、
尚、例中の部はずべて重量部である。
The present invention will be explained in detail below with reference to Examples. ,
Note that all parts in the examples are parts by weight.

実施例1 異方性焼結ストロンヂュウムフyライト磁石〔残留磁束
密度Br” 4200 G、保磁力btlc= 270
00e、固有保磁力 111c= 28000e、最大
エネルギーm (Bll) max = 4.2MG−
Oe)をジ搾−クラノシャーおよび振動ミルを用いて粉
砕し、次いで電気炉を用いて950°Cで1時間焼鈍し
て平均粒径100/Jmのストロンチ:j、ウムフエラ
イト粗粉末を得た。
Example 1 Anisotropic sintered strondium fluorite magnet [residual magnetic flux density Br'' 4200 G, coercive force BTLC = 270
00e, intrinsic coercive force 111c = 28000e, maximum energy m (Bll) max = 4.2MG-
Oe) was pulverized using a press-cranosher and a vibration mill, and then annealed at 950°C for 1 hour using an electric furnace to obtain stronch:j, umferite coarse powder with an average particle size of 100/Jm.

得られたストロンチプウムフヱライト粗粉末46部と平
均粒径]、 2 p mのストロンチJ、ウムフェライ
ト微粉末(日本ブr柄株式会n製○P−11)46部を
ヘンシェルミキづ−で攪拌混合しながら、γ−アミノプ
ロピルトリエトキシシラン0.55部を噴霧して添加し
、さらに撹拌下120℃に加熱して反応を完結さ・υる
と同時に副生エチルアルコールを除去して、表面処理さ
れたストロンチヱウムフェライト粉末を得た後、粉末状
の〔5=ナイロン8部を加え、更にヘンシェルミキサー
で混合り、て、本発明の樹脂磁石材料を得た。次いで二
軸押出機にて270℃で混練し、ペレット化して粒径3
IIIのベレット状樹脂磁石材料を得た。
46 parts of the obtained strontium ferrite coarse powder and 2 pm of strontium ferrite coarse powder (average particle size), 46 parts of strontium ferrite fine powder (○P-11 manufactured by Nippon Braka Co., Ltd.) were placed in a Henschel mixer. 0.55 part of γ-aminopropyltriethoxysilane was sprayed and added while stirring and mixing at -, and the reaction was completed by heating to 120°C with further stirring. At the same time, the by-product ethyl alcohol was removed. After obtaining surface-treated strontium ferrite powder, 8 parts of powdered [5=nylon] was added and further mixed in a Henschel mixer to obtain a resin magnet material of the present invention. Next, it was kneaded at 270°C in a twin-screw extruder and pelletized to a particle size of 3.
A pellet-shaped resin magnet material III was obtained.

これを120000eの磁界中で射出成形(成形温度2
80℃)し、直径20朋、1″′lさ7頷の円柱状買方
性樹脂磁石吃得た。得られた磁石は最大エネルギー積(
Bit) m、′Ix =2.05MG−Oeという優
れたものであった。
This was injection molded in a magnetic field of 120,000e (molding temperature 2
A cylindrical resin magnet with a diameter of 20 mm and a length of 1''l and 7 mm was obtained.The obtained magnet had a maximum energy product (
Bit) m,'Ix =2.05MG-Oe, which was excellent.

実施例2 フェライト粉末として平均te径1.2μmのストロン
チュウムフェライト微粉末37部と平均粒径100μT
nのストロンヂュウムフ工ライト粗粉末55゜5部を用
い、合成樹脂として6−ナイロン7.5部を用いた以外
は実施例1と全く同様にして本発明のI4脂磁石材料を
得、次いで同様にペレット化、射出成形して、直径20
 mm、厚さ7龍の円柱状買方性樹脂磁石を得た。得ら
れた磁石は最大エネルギー積(rlll) max =
 2.12 MG−Oeとい・)優れたものであった。
Example 2 37 parts of strontium ferrite fine powder with an average te diameter of 1.2 μm and an average particle diameter of 100 μT as ferrite powder
An I4 fat magnet material of the present invention was obtained in exactly the same manner as in Example 1 except that 55.5 parts of strondium fluorite coarse powder of n was used and 7.5 parts of 6-nylon was used as the synthetic resin. Then, it was pelletized and injection molded in the same way to make pellets with a diameter of 20 mm.
A cylindrical resin magnet with a thickness of 7 mm and a thickness of 7 mm was obtained. The obtained magnet has a maximum energy product (rllll) max =
2.12 MG-Oe) was excellent.

実施例3 平均粒径1 (1(l lt mのストロン丁−ユウム
フ工ライI・tll 粉末の代りに、該粗粉末と同様に
粉砕、焼鈍して得られた平均粒径200μmのスl−ロ
ンヂュウムフェライト粗粉末を用いた以り1は実施例1
と全く同様に(7゛c本発明の樹脂磁石材料を得、次い
で同様にペレット化、射出成形して、直径201、厚さ
7 anの円柱状異方(1↓樹JI)l磁石をtミ+た
。得らゎた磁石は最大エネルギーf* (旧1) ma
x −2,00MG−Oeという優れたものであった。
Example 3 In place of the stron powder with an average particle size of 1 (l lt m), sl- powder with an average particle size of 200 μm obtained by crushing and annealing in the same manner as the coarse powder was used. Example 1 using rhodium ferrite coarse powder
In exactly the same manner as (7゛c), the resin magnet material of the present invention was obtained, and then pelletized and injection molded in the same manner to produce a cylindrical anisotropic (1↓JI) l magnet with a diameter of 201 mm and a thickness of 7 mm. The obtained magnet has the maximum energy f* (old 1) ma
The result was an excellent value of -2,00 MG-Oe.

実施例4 フェライト粉末として平均161’A 1.2 // 
mのスト14ンーf・・ラムフェライト微粉末37部と
実施例3で用いたものと同様の平均粒径200μmのス
トロンヂフウノ・フェライト着粉末55.5部を」い、
合成樹脂として6−ナイしlン7.5部を用いた以外は
実施例1と全く同様にして本発明の樹IIIV磁石材料
を得、次いで同様にベレ・ノド化、射出成形して、直径
20+n、j¥さ7鵬の円柱状異方性樹脂磁石を得た。
Example 4 Average 161'A 1.2 as ferrite powder
37 parts of ram ferrite fine powder and 55.5 parts of strong ferrite adhesion powder having an average particle size of 200 μm similar to that used in Example 3 were added.
A tree III magnet material of the present invention was obtained in exactly the same manner as in Example 1 except that 7.5 parts of 6-nylon was used as the synthetic resin, and then it was similarly rounded and injection molded to obtain a diameter. A cylindrical anisotropic resin magnet with a diameter of 20+n, j¥sa7peng was obtained.

得られた磁石は最大エネルギー積(Bll) max 
= 2.07 MG・Oeという優れたものであった。
The obtained magnet has a maximum energy product (Bll) max
= 2.07 MG・Oe, which was excellent.

実施例5 平均粒径1.2μn1のストロンチj、ウムフエライト
微粉末38.2部と実施例3で用いたものと同様の平均
粒径200μmのストロンチプ、ラムフェライト粗粉末
57.3部をヘンシェルミキサーで混合した後、110
℃に加熱した二本ロールを用いてパラフィンワックス5
.5部と混練し、ベレ・ノド化して粒径311mのベレ
・ノド状樹脂磁石材料を得た。
Example 5 38.2 parts of strontj and rum ferrite fine powder with an average particle size of 1.2 μn1 and 57.3 parts of strontip and rum ferrite coarse powder with an average particle size of 200 μm similar to those used in Example 3 were placed in a Henschel mixer. After mixing at 110
Paraffin wax using two rolls heated to 5°C
.. The mixture was kneaded with 5 parts and made into a beveled and throated resin magnet material having a grain size of 311 m.

これを120000eの磁界中で射出成形(成形温度1
40℃)し、直径20m++、I¥さ7 mmの円柱状
異方性樹脂磁石を得た。得られた磁石は最大エネルギー
ME (Till) max =2.24MG・Oeと
いう極めて優れたものであった。
This was injection molded in a magnetic field of 120,000e (molding temperature 1
40° C.) to obtain a cylindrical anisotropic resin magnet with a diameter of 20 m++ and an I height of 7 mm. The obtained magnet had an extremely excellent maximum energy ME (Till) max =2.24 MG·Oe.

実施例6 平均粒径100 /7 mのストロンチュウムフエライ
トの代りに、異方性焼結バリウムフェライト磁石〔残留
磁束密度Br=4(100G、保磁力bllc−240
00e、固有保磁力111c = 25000e、、最
大エネルギー積(BH) tnax = 3.8 MG
・Oe)を実施例1と同様に粉砕、焼鈍して得られた平
均粒径100μmのバリウムフェライト粗粉末を用いる
以外は実施例1と全く同様にして本発明の樹脂磁石材料
を得、次いで同様にペレット化、射出成形して、直径’
l (l tAn、厚さ7邪の円柱状異方性樹脂磁石を
得た。得られた磁石は、バリウムフェライト粉末を用い
た磁石としては最大エネルギー積(旧1) max =
L87MG・Oeという優れたものであった。
Example 6 Anisotropic sintered barium ferrite magnet [residual flux density Br=4 (100G, coercive force BLLC-240
00e, intrinsic coercive force 111c = 25000e, maximum energy product (BH) tnax = 3.8 MG
The resin magnet material of the present invention was obtained in exactly the same manner as in Example 1, except that barium ferrite coarse powder with an average particle size of 100 μm obtained by crushing and annealing Oe) was used in the same manner as in Example 1, and then in the same manner as in Example 1. Pelletized and injection molded into 'diameter'
A cylindrical anisotropic resin magnet with a thickness of 7 mm was obtained. The obtained magnet had the maximum energy product (formerly 1) max =
It was an excellent L87MG Oe.

比較例1 フェライト粉末として平均粒径1.2μmのストロンチ
コウームフェライト微粉末88部を用い、合成樹脂とし
て6ナイロン12部を用いた以り1は実施例1と全く同
様にして樹脂磁石材料を得、次いで同様にペレット化、
射出成形して、直径20鮪、厚さ7m11の円柱状室、
方性4も(ntt vit石を得た。
Comparative Example 1 In Example 1, a resin magnet material was prepared in exactly the same manner as in Example 1, except that 88 parts of strontico-wool ferrite fine powder with an average particle size of 1.2 μm was used as the ferrite powder, and 12 parts of nylon 6 was used as the synthetic resin. obtained, then similarly pelletized,
Injection molded cylindrical chamber with a diameter of 20 tuna and a thickness of 7 m11,
Orientation 4 also obtained (ntt vit stone).

得られた磁石は角型比Br/4πTs= 0.96 、
’3とい・)高配向の磁石であったが、充填率が低く、
最大エネルギー積(lii)max=1.63MG・O
eという磁気特性に劣るものであった。
The obtained magnet has a squareness ratio Br/4πTs=0.96,
'3) It was a highly oriented magnet, but the filling rate was low,
Maximum energy product (lii) max=1.63MG・O
The magnetic properties were inferior to e.

比較例2 フェライト粉末として平均粒径1.2μ汀1のストロン
チコウムフェライト微粉末46.3部と実施例1と同様
にW方+!1焼結ストロンヂュウムフェライト磁石を粉
砕、焼鈍したili均粒径500μmのストロンヂュウ
ノ・ソ瓜う・イl□ 111粉末46.3部を用い、合
成樹脂とし゛C6−ナイロン7.4部を用いた以外は実
施例1と全く同様にして樹11N磁石材料を得、次いで
ペレ・21・化、射出成形して、直径201、厚さ7鶴
の円柱状W方性樹脂α1石を得た。得られた磁石は角型
比Br/4πIs= (1,918とい・)やや低配向
の磁石であり、最大エネルギーML (BID max
 ・= 1.83 NG・Oeという磁気品性に劣るも
のであった。
Comparative Example 2 As ferrite powder, 46.3 parts of strontium ferrite fine powder with an average particle size of 1.2 μm and 46.3 parts of fine strontium ferrite powder were used in the same manner as in Example 1. 1. 46.3 parts of 111 powder with an average particle diameter of 500 μm obtained by crushing and annealing a sintered strondium ferrite magnet was used, and 7.4 parts of C6-nylon was used as a synthetic resin. Except for this, a 11N magnet material was obtained in exactly the same manner as in Example 1, and then subjected to pelletizing and injection molding to obtain a cylindrical W-tropic resin α1 stone with a diameter of 201 mm and a thickness of 7 mm. The obtained magnet has a squareness ratio Br/4πIs=(1,918) and has a slightly low orientation, with a maximum energy ML (BID max
・=1.83 NG・Oe, which was poor in magnetic properties.

比較例3 フェライト粉末とL2て平均粒径1.2μmのストロン
ヂュウムフェライト微粉末37.2部とtt: 較例2
で用いたものと同様の平均粒径500 p mのストロ
ンチュウムフェライト粗粉末55.8部を用い、合成樹
脂として6−す・イロン7部の円柱状異方性樹Il)?
磁石を得た。得られた磁石は角型比Br/4πl5−0
.902という低配向の磁石であり、最大エネルギーf
ff (Bit) max = 1.86 MG・Oe
という磁気特性に劣るものであった。
Comparative Example 3 Ferrite powder and L2: 37.2 parts of strondium ferrite fine powder with an average particle size of 1.2 μm and tt: Comparative Example 2
Using 55.8 parts of strontium ferrite coarse powder with an average particle size of 500 pm similar to that used in 1), a cylindrical anisotropic resin containing 7 parts of 6-S.Iron was used as the synthetic resin.
I got a magnet. The obtained magnet has a squareness ratio Br/4πl5-0
.. 902, a low orientation magnet, and the maximum energy f
ff (Bit) max = 1.86 MG・Oe
It had inferior magnetic properties.

」二記実施例1〜6および比較例1〜3で得られた異方
性樹脂磁石の磁気特性(残留磁束密度、保磁力、固有保
磁力、最大エネルギー猜)と配向の程度を示す角型比の
値を第1表に示す。
Square shape showing the magnetic properties (residual flux density, coercive force, intrinsic coercive force, maximum energy) and degree of orientation of the anisotropic resin magnets obtained in Examples 1 to 6 and Comparative Examples 1 to 3 The ratio values are shown in Table 1.

また、実施例2、実施例4および比I!12例3で得ら
れた樹脂磁石を脱Mi l&、切削して外径20+u、
内径10mm、厚さ21111のリング状とし、これに
Yさ方1(1に16極着磁し2て多極着磁磁石を得、そ
の表面磁束密度をガウスメーターで測定し2て得た表面
磁束密度のバラツキ(磁気的バラツキ)を第2表に示す
Also, Example 2, Example 4 and Ratio I! 12 The resin magnet obtained in Example 3 was removed and cut to an outer diameter of 20+u,
It was made into a ring shape with an inner diameter of 10 mm and a thickness of 2111 mm, and this was made into a Y-square 1 (1 was magnetized with 16 poles to obtain a multi-polar magnetized magnet, and the surface magnetic flux density was measured with a Gauss meter. Table 2 shows the variations in magnetic flux density (magnetic variations).

ン /hmm /

Claims (1)

【特許請求の範囲】[Claims] W均粒′4¥(1,5〜1.5μmのフェライト微粉末
と平均粒径30〜250 it mフェライト粉末を1
:(1,4〜l二4の重p比で配合11.たソエライ1
−粉末88〜96重量%と、合成樹脂12〜4屯甲%と
を混合してなることを特徴とする樹脂磁石材料。
W uniform grain '4 yen (1.5 to 1.5 μm ferrite fine powder and average particle size 30 to 250 it m ferrite powder 1
:(Soelai 1 blended with a weight/p ratio of 1,4 to 124)
- A resin magnet material comprising a mixture of 88-96% by weight of powder and 12-4% by weight of synthetic resin.
JP874283A 1983-01-24 1983-01-24 Resin magnet material Granted JPS59135705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP874283A JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP874283A JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Publications (2)

Publication Number Publication Date
JPS59135705A true JPS59135705A (en) 1984-08-04
JPS6334610B2 JPS6334610B2 (en) 1988-07-11

Family

ID=11701391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP874283A Granted JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Country Status (1)

Country Link
JP (1) JPS59135705A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278204A (en) * 1988-09-14 1990-03-19 Tokin Corp High-polymer composite-type rare-earth magnet and its manufacture
JP2000348958A (en) * 1999-06-03 2000-12-15 Masaaki Suzuki Manufacture of resin-bonded magnet
EP1475352A2 (en) 2003-04-24 2004-11-10 Dowa Mining Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
JP2008281681A (en) * 2007-05-09 2008-11-20 Canon Chemicals Inc Magnet roller and developing device using the same
WO2009041606A1 (en) * 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
CN105469919A (en) * 2014-09-23 2016-04-06 三星电机株式会社 Magnetic material and manufacturing method thereof
CN110828091A (en) * 2019-11-21 2020-02-21 广东华南半导体光电研究院有限公司 Preparation method of environment-friendly magnet
CN115312283A (en) * 2022-09-22 2022-11-08 浙江安特磁材股份有限公司 High-compaction-density injection magnetic powder and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278204A (en) * 1988-09-14 1990-03-19 Tokin Corp High-polymer composite-type rare-earth magnet and its manufacture
JP2000348958A (en) * 1999-06-03 2000-12-15 Masaaki Suzuki Manufacture of resin-bonded magnet
EP1475352A2 (en) 2003-04-24 2004-11-10 Dowa Mining Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
EP1475352A3 (en) * 2003-04-24 2010-07-28 DOWA Electronics Materials Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
JP2008281681A (en) * 2007-05-09 2008-11-20 Canon Chemicals Inc Magnet roller and developing device using the same
JP4538020B2 (en) * 2007-05-09 2010-09-08 キヤノン化成株式会社 Magnet roller and developing device using the magnet roller
WO2009041606A1 (en) * 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
JP2009099969A (en) * 2007-09-28 2009-05-07 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and method for manufacturing the magnet, and bond magnet using the method
US8337714B2 (en) 2007-09-28 2012-12-25 Dowa Electronics Materials Co., Ltd. Ferrite powders for bonded magnet, process for the production of the powders, and bonded magnet made by using the same
CN105469919A (en) * 2014-09-23 2016-04-06 三星电机株式会社 Magnetic material and manufacturing method thereof
CN110828091A (en) * 2019-11-21 2020-02-21 广东华南半导体光电研究院有限公司 Preparation method of environment-friendly magnet
CN115312283A (en) * 2022-09-22 2022-11-08 浙江安特磁材股份有限公司 High-compaction-density injection magnetic powder and preparation method thereof

Also Published As

Publication number Publication date
JPS6334610B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US9607741B2 (en) Ferrite particles for bonded magnet, resin composition for bonded magnet and molded products using the same
KR102231072B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JPS59135705A (en) Resin magnet material
JPS62282418A (en) Manufacture of composite magnet
JPS5923445B2 (en) permanent magnet
JPH03218606A (en) Composition for synthetic resin magnet
JP2001015319A (en) Manufacture of resin magnet composition
JPS60216524A (en) Manufacture of permanent magnet
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JP3380870B2 (en) Rare earth magnet manufacturing method
JPS58158903A (en) Combined magnetic material
JPS5910202A (en) Composite magnetic material
JPH01111305A (en) Plastic magnet composition
JPS63185005A (en) Permanent magnet
JPH01165103A (en) Plastic magnet material superior in mechanical strength and magnetic characteristics
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet
JPH04302101A (en) Ferrite magnetic powder for bonded magnet
JPH06188137A (en) Manufacture of bonded magnet
JP2756860B2 (en) Materials for polyamide plastic magnets
JPH01194305A (en) Polar anisotropic bond magnet and manufacture thereof
JPH0480903A (en) Manufacture of forming material for bonded magnet
JPS63192204A (en) Plastic magnet material
JPS6010279A (en) Manufacture of anisotropic permanent magnet
JPH02254701A (en) Rare-earth magnet and manufacture thereof