JPS6334610B2 - - Google Patents

Info

Publication number
JPS6334610B2
JPS6334610B2 JP874283A JP874283A JPS6334610B2 JP S6334610 B2 JPS6334610 B2 JP S6334610B2 JP 874283 A JP874283 A JP 874283A JP 874283 A JP874283 A JP 874283A JP S6334610 B2 JPS6334610 B2 JP S6334610B2
Authority
JP
Japan
Prior art keywords
powder
resin
magnet
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP874283A
Other languages
Japanese (ja)
Other versions
JPS59135705A (en
Inventor
Hisaaki Oseko
Yoshiji Haga
Haruhei Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP874283A priority Critical patent/JPS59135705A/en
Publication of JPS59135705A publication Critical patent/JPS59135705A/en
Publication of JPS6334610B2 publication Critical patent/JPS6334610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気特性に優れ且つ磁気的バラツキの
少ない異方性フエライト樹脂磁石が容易に得られ
る樹脂磁石材料に関するものである。 近年、フエライト粉末、希土類粉末等と合成樹
脂との混合物よりなる、いわゆる樹脂磁石、ゴム
磁石が、複雑な、或いは薄肉の形状であつても後
加工なしで高い寸法精度が得られる等の特長から
磁石市場の一端をになうようになつてきている。
しかし、フエライト粉末を用いたものはせいぜい
磁気特性として最大エネルギー積(BH)max=
1.2〜1.7MG・Oeであり、異方性焼結磁石の
(BH)max=2.5〜4.5MG・Oeに比べて低く、ま
た等方性焼結磁石は(BH)max=0.9〜1.2MG・
Oeであるためその代替が磁気的には可能でるあ
るが、コスト的に等方性焼結磁石は安価なため、
樹脂磁石の市場には限度がある。従つて安価で磁
気特性に優れ且つ磁気的バラツキの少ない樹脂磁
石が容易に得られる樹脂磁石材料が強く望まれて
いる。 磁気特性に優れた樹脂磁石を得る方法について
は、平均粒径2μmまでの単磁区粒子と平均粒径
300〜1000μmの焼結半製品ないしは焼結粉砕品
とを混合して用いることによつて樹脂に対する充
填率を向上させた異方性永久磁石の製造方法(特
開昭56−3693号)がある。しかしこの方法では、
焼結半製品等の粒径が300〜1000μmと大きいた
め、複雑、薄肉な異方性樹脂磁石では粒子が十分
に配向できないため優れた磁気特性が得られず、
表面に多極着磁して使用する回転制御用やステツ
ピングモーター用等の樹脂磁石では各磁極間の表
面磁束密度などのバラツキ(以下、磁気的バラキ
と称す)が大きくなり、安定した製品を得ること
ができない。また射出成形法による複雑、薄肉な
磁石の成形や、ピンゲート金型での成形では、粒
子が詰り易く、安定した成形が困難となる。 本発明者等は、上記の問題点を解決すべく鋭意
検討を重ねた結果、平均粒径0.5〜1.5μmのフエ
ライト微粉末と平均粒径30〜250μmのフエライ
ト粗粉末を混合して用いた場には、フエライト粉
末の充填率は上記(特開昭56−3693号)の方法よ
りも充填率はやや低下するが、複雑、薄肉の樹脂
磁石でも十分に配向し、優れた磁気特性が得られ
ると共に、多極着磁した樹脂磁石では磁気的バラ
ツキが極めて小さくなり、射出成形における粒子
の詰りもなく、容易に優れた異方性樹脂磁石が得
られることを見出し、本発明を完成するに至つ
た。 すなわち本発明は、平均粒径0.5〜1.5μmのフ
エライト微粉末(以下、単に微粉末と称す)と平
均粒径30〜250μmのフエライト粗粉末(以下、
単に粗粉末と称す)を1:0.4〜1:4の重量比
で配合したフエライト粉末88〜96重量%と、合成
樹脂12〜4重量%とを混合してなることを特徴と
する樹脂磁石材料を提供するものである。 本発明で用いるフエライト粉末としては、微粉
末、粗粉末の区別なく、バリウムフエライト、ス
トロンチユウムフエライト等のハードフエライト
粉末とその混合物が挙げられる。 微粉末としては、通常平均粒径0.5〜1.5μmの
粉末を用いるが、なかでも単磁区粒子が好まし
い。微粉末の平均粒径が0.5μm未満ではかさ密度
が低下して樹脂への充填性が悪くなるため、また
1.5μmを越えると粒子の多磁区化と共に粗粉末と
の粒径比が小さくなることにより充填性が低下す
るため、それぞれ磁気特性に優れた樹脂磁石が得
られず、好ましくない。 粗粉末としては、通常平均粒径30〜250μmの
粉末を用いるが、なかでも平均粒径100〜200μm
の一方向に配向した多磁区粒子が好ましい。尚、
ここで用いる粗粉末は、通常異方性焼結磁石をジ
ヤイトリー、ジヨークラツシヤー、ハンマーミ
ル、ボールミル、ロールミル、振動ミル等の粒砕
機で粒砕した粉末を用いるが、勿論平均粒径30〜
250μmの焼結磁石をそのまま用いてもよい。な
かでも好ましい粗粉末は、残留磁束密度Br=
3800G以上、保磁力bHc=2300Oe以上、固有保磁
力iHc=2500Oe以上、最大エネルギー積(BH)
max=3.8MG・Oe以上の異方性焼結磁石を粉砕
し、焼鈍した粉末である。 粗粉末の平均粒径が30μm未満では、粉末の配
向性は良好であるが充填率の大きな向上が望めな
いために磁気特性に優れた樹脂磁石が得られず、
250μmを越えると、充填率は大きく向上するが
粉末が十分に配向できないために磁気特性に優れ
た樹脂磁石が得にくく、更に得られた樹脂磁石の
磁気的バラツキが大きくなり、好ましくない。 微粉末と粗粉末の混合比は、重量比で通常1:
0.4〜1:4の範囲であるが、なかでも1:0.7〜
1:2の範囲では特に高充填と高配向が望めるの
で好ましい。混合比がこの範囲をはずれる場合に
はフエライト粉末の高充填ができなくなるため好
ましくない。 また、本発明で用いるフエライト粉末(微粉末
および粗粉末)は従来公知のシラン系、チタン系
等の表面処理剤を用いて表面処理してもよい。表
面処理は、微粉末、粗粉末を個々に、あるいは混
合してから行つてもよいし、合成樹脂、その他の
添加剤の存在下で行つてもよい。 尚、前記ハードフエライト粉末の代りに希土類
磁石粉末、ソフトフエライト粉末、磁性鉄粉等を
用いることにより磁気特性の向上を計ることがで
き、その際には平均粒径1〜25μmの微粉末と30
〜250μmの粗粉末を用いるが、微粉末が容易に
酸化される点に留意する必要がある。 本発明で用いる合成樹脂としては、ポリエチレ
ン、ポリプロピレン、ポリスチレン、エチレン酢
酸ビニル共重合体、エチレンエチルアクリレー
ト、6−ナイロン、6,6−ナイロン、6,10−
ナイロン、11−ナイロン、12−ナイロン、ホツト
メルト用ポリアミド、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリフエニレ
ンサルフアイド等の熱可塑性樹脂、ポリエチレン
ワツクス、パラフインワツクス等のワツクス、エ
ポキシ樹脂、フエノール樹脂、ジアリルフタレー
ト樹脂等の熱硬化性樹脂が挙げられるが、射出成
形による量産が可能な点から熱可塑性樹脂が好ま
しく、なかでも成形加工性と機械的強度に優れる
点でエチレン酢酸ビニル共重合体、エチレンエチ
ルアクリレート、ナイロン、ホツトメルト用ポリ
アミド、ポリフエニレンサルフアイドが好まし
く、特にナイロンが好ましい。尚、合成樹脂の形
状はパウダー、ビーズ、ペレツトのいずれでも良
いが、フエライト粉末と均一に混合しやすいパウ
ダーが好ましい。 フエイト粉末と合成樹脂との混合割合は、フエ
ライト粉末88〜96重量%に対して合成樹脂12〜4
重量%(合計100重量%)の範囲である。フエラ
イト粉末が88重量%未満では(合成樹脂が12重量
%を越えると)磁気特性に優れた樹脂磁石が得ら
れず、またフエライト粉末が96重量%を越えると
(合成樹脂が4重量%未満では)成形加工性が劣
り、しかもフエライト粉末が配合しにくくなつて
磁気特性に優れた樹脂磁石が得られないので、そ
れぞれ好ましくない。 本発明の樹脂磁石材料は、通常微粉末と粗粉末
を所定の割合で配合したフエライト粉末88〜96重
量%と、合成樹脂12〜4重量%とをリボンブレン
ダー、タンブラー、ヘンシエルミキサー、ナウタ
ーミキサー等の混合機で混合して得られるが、更
に表面処理剤、滑剤、安定剤等の従来公知の添加
剤を加えることもできる。尚、微粉末、粗粉末、
合成樹脂および添加剤を混合する順序は特に問わ
ない。 次いで、得られた複合磁性材料は、バンバリー
ミキサー、ニーダー、ニーダールーダー、ロー
ル、ヘンシエルミキサー、スーパーミキサー、単
軸および多軸押出機により十分に混練し、更に、
粒径3mm前後にペレツト化することが好ましい。 このようにして得られた本発明の樹脂磁石材料
は、押出成形機、射出成形機、圧縮成形機等を用
いて磁界中で成形することにより最大エネルギー
積(BH)max=1.8MG・Oe以上という磁気特性
に優れ、かつ磁気特性のバラツキが極めて小さい
異方性樹脂磁石が得られる。 以下に実施例を挙げて本発明を更に詳細に説明
する。尚、例中の部はすべて重量部である。 実施例 1 異方性焼結ストロンチユウムフエライト磁石
〔残留磁束密度Br=4200G、保磁力bHc=
2700Oe、固有保磁力iHc=2800Oe、最大エネル
ギー積(BH)max=4.2MG・Oe〕をジヨークラ
ツシヤーおよび振動ミルを用いて粉砕し、次いで
電気炉を用いて950℃で1時間焼鈍して平均粒径
100μmのストロンチユウムフエライト粗粉末を
得た。 得られたストロンチユウムフエライト粗粉末46
部と平均粒径1.2μmのストロンチユウムフエライ
ト微粉末(日本弁柄株式会社製OP−71)46部を
ヘンシエルミキサーで撹拌混合しながら、γ−ア
ミノプロピルトリエトキシシラン0.55部を噴霧し
て添加し、さらに撹拌下120℃に加熱して反応を
完結させると同時に副生エチルアルコールを除去
して、表面処理されたストロンチユウムフエライ
ト粉末を得た後、粉末状の6−ナイロン8部を加
え、更にヘンシエルミキサーで混合して、本発明
の樹脂磁石材料を得た。次いで二軸押出機にて
270℃で混練し、ペレツト化して粒径3mmのペレ
ツト状樹脂磁石材料を得た。 これを12000Oeの磁界中で射出成形(成形温度
280℃)し、直径20mm、厚さ7mmの円柱状異方性
樹脂磁石を得た。得られた磁石は最大エネルギー
積(BH)max=2.05MG・Oeという優れたもの
であつた。 実施例 2 フエライト粉末として平均粒径1.2μmのストロ
ンチユウムフエライト微粉末37部と平均粒径
100μmのストロンチユウムフエライト粗粉末55.5
部を用い、合成樹脂として6−ナイロン7.5部を
用いた以外は実施例1と全く同様にして本発明の
樹脂磁石材料を得、次いで同様にペレツト化、射
出成形して、直径20mm、厚さ7mmの円柱状異方性
樹脂磁石を得た。得られた磁石は最大エネルギー
積(BH)max=2.12MG・Oeという優れたもの
であつた。 実施例 3 平均粒径100μmのストロンチユウムフエライ
ト粗粉末の代りに、該粗粉末と同様に粉砕、焼鈍
して得られた平均粒径200μmのストロンチユウ
ムフエライト粗粉末を用いた以外は実施例1と全
く同様にして本発明の樹脂磁石材料を得、次いで
同様にペレツト化、射出成形して、直径20mm、厚
さ7mmの円柱状異方性樹脂磁石を得た。得られた
磁石は最大エネルギー積(BH)max=
2.00MG・Oeという優れたものであつた。 実施例 4 フエライト粉末として平均粒径1.2μmのストロ
ンチユウムフエライト微粉末37部と実施例3で用
いたものと同様の平均粒径200μmのストロンチ
ユウムフエライト粗粉末55.5部を用い、合成樹脂
として6−ナイロン7.5部を用いた以外は実施例
1と全く同様にして本発明の樹脂磁石材料を得、
次いで同様にペレツト化、射出成形して、直径20
mm、厚さ7mmの円柱状異方性樹脂磁石を得た。得
られた磁石は最大エネルギー積(BH)max=
2.07MG・Oeという優れたものであつた。 実施例 5 平均粒径1.2μmのストロンチユウムフエライト
微粉末38.2部と実施例3で用いたものと同様の平
均粒径200μmのストロンチユウムフエライト粗
粉末57.3部をヘンシエルミキサーで混合した後、
110℃に加熱した二本ロールを用いてパラフイン
ワツクス5.5部と混練し、ペレツト化して粒径3
mmのペレツト状樹脂磁石材料を得た。 これを12000Oeの磁界中で射出成形(成形温度
140℃)し、直径20mm、厚さ7mmの円柱状異方性
樹脂磁石を得た。得られた磁石は最大エネルギー
積(BH)max=2.24MG・Oeという極めて優れ
たものであつた。 実施例 6 平均粒径100μmのストロンチユウムフエライ
トの代りに、異方性焼結バリウムフエライト磁石
〔残留磁束密度Br=4000G、保磁力bHc=
2400Oe、固有保磁力iHc=2500Oe、最大エネル
ギー積(BH)max=3.8MG・Oe〕を実施例1と
同様に粉砕、焼鈍して得られた平均粒径100μm
のバリウムフエライト粗粉末を用いる以外は実施
例1と全く同様にして本発明の樹脂磁石材料を
得、次いで同様にペレツト化、射出成形して、直
径20mm、厚さ7mmの円柱状異方性樹脂磁石を得
た。得られた磁石は、バリウムフエライト粉末を
用いた磁石としては最大エネルギー積(BH)
max=1.87MG・Oeという優れたものであつた。 比較例 1 フエライト粉末として平均粒径1.2μmのストロ
ンチユウムフエライト微粉末88部を用い、合成樹
脂として6−ナイロン12部を用いた以外は実施例
1と全く同様にして樹脂磁石材料を得、次いで同
様にペレツト化、射出成形して、直径20mm、厚さ
7mmの円柱状異方性樹脂磁石を得た。得られた磁
石は角型比Br/4πIs=0.963という高配向の磁石
であつたが、充填率が低く、最大エネルギー積
(BH)max=1.63MG・Oeという磁気特性に劣る
ものであつた。 比較例 2 フエライト粉末として平均粒径1.2μmのストロ
ンチユウムフエライト微粉末46.3部と実施例1と
同様に異方性焼結ストロンチユウムフエライト磁
石を粉砕、焼鈍した平均粒径500μmのストロン
チユウムフエライト粗粉末46.3部を用い、合成樹
脂として6−ナイロン7.4部を用いた以外は実施
例1と全く同様にして樹脂磁石材料を得、次いで
ペレツト化、射出成形して、直径20mm、厚さ7mm
の円柱状異方性樹脂磁石を得た。得られた磁石は
角型比Br/4πIs=0.918というやや低配向の磁石
であり、最大エネルギー積(BH)max=
1.83MG・Oeという磁気特性に劣るものであつ
た。 比較例 3 フエライト粉末として平均粒径1.2μmのストロ
ンチユウムフエライト微粉末37.2部と比較例2で
用いたものと同様の平均粒径500μmのストロン
チユウムフエライト粗粉末55.8部を用い、合成樹
脂として6−ナイロン7部を用いた以外は実施例
1と同様にして樹脂磁石材料を得、次いで同様に
ペレツト化、射出成形して、直径20mm、厚さ7mm
の円柱状異方性樹脂磁石を得た。得られた磁石は
角型比Br/4πIs=0.902という低配向の磁石であ
り、最大エネルギー積(BH)max=1.86MG・
Oeという磁気特性に劣るものであつた。 上記実施例1〜6および比較例1〜3で得られ
た異方性樹脂磁石の磁気特性(残留磁束密度、保
磁力、固有保磁力、最大エネルギー積)と配向の
程度を示す角型比の値を第1表に示す。 また、実施例2、実施施例4および比較例3で
得られた樹脂磁石を脱磁後、切削して外径20mm、
内径10mm、厚さ2mmのリング状とし、これに厚さ
方向に16極着磁して多極着磁磁石を得、その表面
磁束密度をガウスメーターで測定して得た表面磁
束密度のバラツキ(磁気的バラツキ)を第2表に
示す。
The present invention relates to a resin magnet material from which an anisotropic ferrite resin magnet with excellent magnetic properties and little magnetic variation can be easily obtained. In recent years, so-called resin magnets and rubber magnets, which are made of mixtures of ferrite powder, rare earth powder, etc. and synthetic resin, have become popular due to their advantages such as the ability to obtain high dimensional accuracy without post-processing even in complex or thin shapes. It has come to occupy a corner of the magnet market.
However, for those using ferrite powder, the maximum energy product (BH) max =
1.2 to 1.7 MG・Oe, which is lower than (BH)max=2.5 to 4.5MG・Oe for anisotropic sintered magnets, and (BH)max=0.9 to 1.2MG・Oe for isotropic sintered magnets.
Since it is Oe, it is possible to replace it magnetically, but isotropic sintered magnets are inexpensive, so
There are limits to the market for resin magnets. Therefore, there is a strong demand for resin magnet materials that are inexpensive, have excellent magnetic properties, and can easily produce resin magnets with little magnetic variation. Regarding the method of obtaining resin magnets with excellent magnetic properties, we recommend using single-domain particles with an average particle size of up to 2 μm and
There is a method for manufacturing anisotropic permanent magnets (Japanese Patent Laid-Open No. 56-3693) that improves the filling rate of resin by mixing sintered semi-finished products or sintered pulverized products with a diameter of 300 to 1000 μm. . However, with this method,
Because the particle size of sintered semi-finished products is large, ranging from 300 to 1000 μm, complex, thin-walled anisotropic resin magnets cannot sufficiently orient the particles, making it difficult to obtain excellent magnetic properties.
In resin magnets for rotation control and stepping motors, which are used with multi-pole magnetization on the surface, variations in surface magnetic flux density between each magnetic pole (hereinafter referred to as magnetic variations) become large, making it difficult to produce stable products. can't get it. Furthermore, when molding complex, thin-walled magnets by injection molding or molding using a pin gate mold, particles tend to clog, making stable molding difficult. As a result of intensive studies to solve the above problems, the inventors of the present invention discovered that a mixture of fine ferrite powder with an average particle size of 0.5 to 1.5 μm and coarse ferrite powder with an average particle size of 30 to 250 μm was used. Although the filling rate of ferrite powder is slightly lower than the method described above (Japanese Patent Application Laid-open No. 56-3693), even complex and thin resin magnets can be sufficiently oriented and excellent magnetic properties can be obtained. At the same time, the inventors discovered that multi-pole magnetized resin magnets have extremely small magnetic variations, and that excellent anisotropic resin magnets can be easily obtained without particle clogging during injection molding, leading to the completion of the present invention. Ivy. That is, the present invention provides a fine ferrite powder with an average particle size of 0.5 to 1.5 μm (hereinafter simply referred to as fine powder) and a coarse ferrite powder with an average particle size of 30 to 250 μm (hereinafter referred to as fine powder).
A resin magnet material characterized by being made by mixing 88 to 96% by weight of ferrite powder (simply referred to as coarse powder) in a weight ratio of 1:0.4 to 1:4 and 12 to 4% by weight of a synthetic resin. It provides: The ferrite powder used in the present invention includes hard ferrite powders such as barium ferrite and strontium ferrite, and mixtures thereof, regardless of fine powder or coarse powder. As the fine powder, powder having an average particle size of 0.5 to 1.5 μm is usually used, and single-domain particles are particularly preferred. If the average particle size of the fine powder is less than 0.5 μm, the bulk density will decrease and the filling properties into the resin will deteriorate.
If it exceeds 1.5 μm, the particles become multi-domain and the particle size ratio with the coarse powder decreases, resulting in a decrease in filling properties, making it impossible to obtain a resin magnet with excellent magnetic properties, which is not preferable. As the coarse powder, powder with an average particle size of 30 to 250 μm is usually used, but in particular, powder with an average particle size of 100 to 200 μm is used.
Multi-domain particles oriented in one direction are preferred. still,
The coarse powder used here is usually a powder obtained by pulverizing an anisotropic sintered magnet using a granulator such as a JYTRY, JY Crusher, hammer mill, ball mill, roll mill, or vibration mill, but of course the average particle size is 30~
A 250 μm sintered magnet may be used as is. Among them, the preferable coarse powder has a residual magnetic flux density Br=
3800G or more, coercive force bHc = 2300Oe or more, intrinsic coercive force iHc = 2500Oe or more, maximum energy product (BH)
It is a powder obtained by crushing and annealing an anisotropic sintered magnet with a max of 3.8 MG・Oe or more. If the average particle size of the coarse powder is less than 30 μm, the orientation of the powder is good, but a large improvement in the filling rate cannot be expected, so a resin magnet with excellent magnetic properties cannot be obtained.
If it exceeds 250 μm, the filling rate will be greatly improved, but the powder cannot be oriented sufficiently, making it difficult to obtain a resin magnet with excellent magnetic properties, and furthermore, the magnetic dispersion of the obtained resin magnet will become large, which is not preferable. The mixing ratio of fine powder and coarse powder is usually 1: by weight.
The range is 0.4 to 1:4, but especially 1:0.7 to
A ratio of 1:2 is preferable because particularly high filling and high orientation can be expected. If the mixing ratio is out of this range, it is not preferable because high filling of ferrite powder will not be possible. Further, the ferrite powder (fine powder and coarse powder) used in the present invention may be surface-treated using a conventionally known silane-based, titanium-based, etc. surface treatment agent. The surface treatment may be performed on the fine powder and coarse powder individually or after mixing them, or may be performed in the presence of a synthetic resin or other additives. Incidentally, the magnetic properties can be improved by using rare earth magnet powder, soft ferrite powder, magnetic iron powder, etc. instead of the hard ferrite powder.
Coarse powder of ~250 μm is used, but it must be noted that fine powder is easily oxidized. The synthetic resins used in the present invention include polyethylene, polypropylene, polystyrene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate, 6-nylon, 6,6-nylon, 6,10-
Nylon, 11-nylon, 12-nylon, polyamide for hot melt, thermoplastic resins such as polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, waxes such as polyethylene wax, paraffin wax, epoxy resin, phenolic resin, diallyl Examples include thermosetting resins such as phthalate resins, but thermoplastic resins are preferred because they can be mass-produced by injection molding, and ethylene-vinyl acetate copolymers and ethylene ethyl copolymers are particularly preferred because they have excellent moldability and mechanical strength. Acrylate, nylon, hot melt polyamide, and polyphenylene sulfide are preferred, and nylon is particularly preferred. The synthetic resin may be in the form of a powder, beads, or pellets, but a powder that can be easily mixed uniformly with the ferrite powder is preferred. The mixing ratio of ferrite powder and synthetic resin is 88 to 96% by weight of ferrite powder to 12 to 4% by weight of synthetic resin.
% by weight (total 100% by weight). If the ferrite powder is less than 88% by weight (if the synthetic resin is more than 12% by weight), a resin magnet with excellent magnetic properties cannot be obtained, and if the ferrite powder is more than 96% by weight (if the synthetic resin is less than 4% by weight) ) Each of these methods is undesirable because the molding processability is poor and it becomes difficult to incorporate ferrite powder, making it impossible to obtain a resin magnet with excellent magnetic properties. The resin magnet material of the present invention is made by mixing 88 to 96% by weight of ferrite powder, which is usually a mixture of fine powder and coarse powder in a predetermined ratio, and 12 to 4% by weight of synthetic resin in a ribbon blender, tumbler, Henschel mixer, or Nauta. It is obtained by mixing in a mixer such as a mixer, but conventionally known additives such as surface treatment agents, lubricants, stabilizers, etc. can also be added. In addition, fine powder, coarse powder,
The order in which the synthetic resin and additives are mixed is not particularly limited. Next, the obtained composite magnetic material is thoroughly kneaded using a Banbury mixer, kneader, kneader-ruder, roll, Henschel mixer, super mixer, single-screw and multi-screw extruder, and further,
It is preferable to pelletize the particles with a particle size of about 3 mm. The thus obtained resin magnet material of the present invention can be molded in a magnetic field using an extrusion molding machine, an injection molding machine, a compression molding machine, etc. to obtain a maximum energy product (BH) max of 1.8 MG・Oe or more. An anisotropic resin magnet with excellent magnetic properties and extremely small variations in magnetic properties can be obtained. The present invention will be explained in more detail with reference to Examples below. Note that all parts in the examples are parts by weight. Example 1 Anisotropic sintered strontium ferrite magnet [residual magnetic flux density Br=4200G, coercive force bHc=
2700Oe, specific coercive force iHc = 2800Oe, maximum energy product (BH) max = 4.2MG・Oe] was crushed using a geocrusher and a vibration mill, and then annealed at 950℃ for 1 hour using an electric furnace. Average particle size
A coarse powder of strontium ferrite with a diameter of 100 μm was obtained. Obtained strontium ferrite coarse powder 46
While stirring and mixing 46 parts of strontium ferrite fine powder (OP-71, manufactured by Nippon Bengara Co., Ltd.) with an average particle size of 1.2 μm in a Henschel mixer, 0.55 parts of γ-aminopropyltriethoxysilane was sprayed. The reaction was completed by heating to 120°C with stirring, and at the same time the by-product ethyl alcohol was removed to obtain a surface-treated strontium ferrite powder, and then 8 parts of 6-nylon powder was added. In addition, the resin magnet material of the present invention was obtained by further mixing using a Henschel mixer. Then in a twin screw extruder
The mixture was kneaded at 270°C and pelletized to obtain a pellet-like resin magnet material with a particle size of 3 mm. This is injection molded in a magnetic field of 12000Oe (molding temperature
280°C) to obtain a cylindrical anisotropic resin magnet with a diameter of 20 mm and a thickness of 7 mm. The obtained magnet had an excellent maximum energy product (BH)max=2.05MG・Oe. Example 2 37 parts of strontium ferrite fine powder with an average particle size of 1.2 μm as ferrite powder and the average particle size
100μm strontium ferrite coarse powder 55.5
The resin magnet material of the present invention was obtained in exactly the same manner as in Example 1 except that 7.5 parts of 6-nylon was used as the synthetic resin, and then pelletized and injection molded in the same manner to obtain a material with a diameter of 20 mm and a thickness of 20 mm. A 7 mm cylindrical anisotropic resin magnet was obtained. The obtained magnet had an excellent maximum energy product (BH)max=2.12MG・Oe. Example 3 Example except that instead of the strontium ferrite coarse powder with an average particle size of 100 μm, strontium ferrite coarse powder with an average particle size of 200 μm obtained by crushing and annealing in the same manner as the coarse powder was used. A resin magnet material of the present invention was obtained in exactly the same manner as in 1, and then pelletized and injection molded in the same manner to obtain a cylindrical anisotropic resin magnet with a diameter of 20 mm and a thickness of 7 mm. The obtained magnet has a maximum energy product (BH)max=
It was an excellent 2.00MG・Oe. Example 4 As ferrite powder, 37 parts of fine strontium ferrite powder with an average particle size of 1.2 μm and 55.5 parts of coarse strontium ferrite powder with an average particle size of 200 μm similar to that used in Example 3 were used as a synthetic resin. A resin magnet material of the present invention was obtained in exactly the same manner as in Example 1 except that 7.5 parts of 6-nylon was used.
Then, it was pelletized and injection molded in the same way to make a diameter of 20 mm.
A cylindrical anisotropic resin magnet with a diameter of 7 mm and a thickness of 7 mm was obtained. The obtained magnet has a maximum energy product (BH)max=
It was an excellent 2.07MG Oe. Example 5 After mixing 38.2 parts of fine strontium ferrite powder with an average particle size of 1.2 μm and 57.3 parts of coarse strontium ferrite powder with an average particle size of 200 μm similar to that used in Example 3 using a Henschel mixer,
Using two rolls heated to 110°C, knead with 5.5 parts of paraffin wax and pelletize to a particle size of 3.
mm pellet-like resin magnet material was obtained. This is injection molded in a magnetic field of 12000Oe (molding temperature
140°C) to obtain a cylindrical anisotropic resin magnet with a diameter of 20 mm and a thickness of 7 mm. The obtained magnet was extremely excellent with a maximum energy product (BH)max=2.24MG・Oe. Example 6 Anisotropic sintered barium ferrite magnet [residual flux density Br=4000G, coercive force bHc=
2400 Oe, intrinsic coercive force iHc = 2500 Oe, maximum energy product (BH) max = 3.8 MG・Oe] was crushed and annealed in the same manner as in Example 1, with an average particle diameter of 100 μm.
The resin magnet material of the present invention was obtained in exactly the same manner as in Example 1 except that barium ferrite coarse powder of I got a magnet. The obtained magnet has the highest energy product (BH) as a magnet using barium ferrite powder.
It had an excellent max of 1.87MG・Oe. Comparative Example 1 A resin magnet material was obtained in exactly the same manner as in Example 1, except that 88 parts of strontium ferrite fine powder with an average particle size of 1.2 μm was used as the ferrite powder, and 12 parts of 6-nylon was used as the synthetic resin. Then, the mixture was pelletized and injection molded in the same manner to obtain a cylindrical anisotropic resin magnet with a diameter of 20 mm and a thickness of 7 mm. The obtained magnet was a highly oriented magnet with a squareness ratio of Br/4πIs=0.963, but had a low filling factor and poor magnetic properties with a maximum energy product (BH) max=1.63 MG·Oe. Comparative Example 2 46.3 parts of strontium ferrite fine powder with an average particle size of 1.2 μm as ferrite powder and strontium with an average particle size of 500 μm obtained by crushing and annealing an anisotropic sintered strontium ferrite magnet in the same manner as in Example 1. A resin magnet material was obtained in exactly the same manner as in Example 1 except that 46.3 parts of coarse ferrite powder and 7.4 parts of 6-nylon were used as the synthetic resin, and then pelletized and injection molded to obtain a material with a diameter of 20 mm and a thickness of 7 mm.
A cylindrical anisotropic resin magnet was obtained. The obtained magnet has a slightly low orientation with a squareness ratio Br/4πIs=0.918, and the maximum energy product (BH) max=
It had inferior magnetic properties of 1.83MG・Oe. Comparative Example 3 As ferrite powder, 37.2 parts of fine strontium ferrite powder with an average particle size of 1.2 μm and 55.8 parts of coarse strontium ferrite powder with an average particle size of 500 μm similar to those used in Comparative Example 2 were used as a synthetic resin. A resin magnet material was obtained in the same manner as in Example 1 except that 7 parts of 6-nylon was used, and then pelletized and injection molded in the same manner to obtain a material with a diameter of 20 mm and a thickness of 7 mm.
A cylindrical anisotropic resin magnet was obtained. The obtained magnet has a low orientation with a squareness ratio Br/4πIs = 0.902, and a maximum energy product (BH) max = 1.86MG・
It had inferior magnetic properties of Oe. The magnetic properties (residual flux density, coercive force, intrinsic coercive force, maximum energy product) of the anisotropic resin magnets obtained in Examples 1 to 6 and Comparative Examples 1 to 3 above and the squareness ratio indicating the degree of orientation. The values are shown in Table 1. In addition, after demagnetizing the resin magnets obtained in Example 2, Example 4, and Comparative Example 3, the resin magnets were cut to have an outer diameter of 20 mm.
A ring shape with an inner diameter of 10 mm and a thickness of 2 mm is magnetized with 16 poles in the thickness direction to obtain a multi-pole magnetized magnet, and the surface magnetic flux density is measured using a Gauss meter. Table 2 shows the magnetic variation.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径0.5〜1.5μmのフエライト微粉末と
平均粒径30〜250μmのフエライト粗粉末を1:
0.4〜1:4の重量比で配合したフエライト粉末
88〜96重量%と、合成樹脂12〜4重量%とを混合
してなることを特徴とする樹脂磁石材料。
1 Fine ferrite powder with an average particle size of 0.5 to 1.5 μm and coarse ferrite powder with an average particle size of 30 to 250 μm are mixed into 1 part
Ferrite powder blended at a weight ratio of 0.4 to 1:4
A resin magnet material comprising a mixture of 88 to 96% by weight and 12 to 4% by weight of a synthetic resin.
JP874283A 1983-01-24 1983-01-24 Resin magnet material Granted JPS59135705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP874283A JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP874283A JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Publications (2)

Publication Number Publication Date
JPS59135705A JPS59135705A (en) 1984-08-04
JPS6334610B2 true JPS6334610B2 (en) 1988-07-11

Family

ID=11701391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP874283A Granted JPS59135705A (en) 1983-01-24 1983-01-24 Resin magnet material

Country Status (1)

Country Link
JP (1) JPS59135705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041606A1 (en) 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278204A (en) * 1988-09-14 1990-03-19 Tokin Corp High-polymer composite-type rare-earth magnet and its manufacture
JP2000348958A (en) * 1999-06-03 2000-12-15 Masaaki Suzuki Manufacture of resin-bonded magnet
JP2004327669A (en) 2003-04-24 2004-11-18 Dowa Mining Co Ltd Bonded magnet, and ferrite magnetic powder therefor
JP4538020B2 (en) * 2007-05-09 2010-09-08 キヤノン化成株式会社 Magnet roller and developing device using the magnet roller
KR102093158B1 (en) * 2014-09-23 2020-03-25 삼성전기주식회사 Magnetic material for high-frequency electronic component and their manufacturing method
CN110828091A (en) * 2019-11-21 2020-02-21 广东华南半导体光电研究院有限公司 Preparation method of environment-friendly magnet
CN115312283B (en) * 2022-09-22 2023-04-14 浙江安特磁材股份有限公司 High-compaction-density injection magnetic powder and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041606A1 (en) 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same

Also Published As

Publication number Publication date
JPS59135705A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US9607741B2 (en) Ferrite particles for bonded magnet, resin composition for bonded magnet and molded products using the same
US11823823B2 (en) Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
EP2983178B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
AU617620B2 (en) Composition for producing bonded magnet
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JPS6334610B2 (en)
US9691528B2 (en) Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
JP2020072245A (en) Method of producing bonded magnet and compound for bonded magnet
JPS5923445B2 (en) permanent magnet
JPH03218606A (en) Composition for synthetic resin magnet
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JPH0411702A (en) Manufacture of resin magnet
JPS60216524A (en) Manufacture of permanent magnet
JPH04302101A (en) Ferrite magnetic powder for bonded magnet
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet
JP2000340442A (en) Manufacture of rare earth bond magnet and injection molded object
JPH0226765B2 (en)
JPH0878219A (en) Compound and bonded magnet
JPH01194305A (en) Polar anisotropic bond magnet and manufacture thereof
JPS63233504A (en) Resin magnet molding material
JPH01165103A (en) Plastic magnet material superior in mechanical strength and magnetic characteristics
JPS6012708A (en) High energy product ionomer magnet
JPS6010279A (en) Manufacture of anisotropic permanent magnet
JPH06188137A (en) Manufacture of bonded magnet
JPS63110603A (en) Manufacture of resin-bonded type magnetic material