JPH0878219A - Compound and bonded magnet - Google Patents

Compound and bonded magnet

Info

Publication number
JPH0878219A
JPH0878219A JP6215089A JP21508994A JPH0878219A JP H0878219 A JPH0878219 A JP H0878219A JP 6215089 A JP6215089 A JP 6215089A JP 21508994 A JP21508994 A JP 21508994A JP H0878219 A JPH0878219 A JP H0878219A
Authority
JP
Japan
Prior art keywords
particle size
compound
resin
magnetic
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215089A
Other languages
Japanese (ja)
Inventor
Masataka Kusumoto
雅孝 楠本
Fumio Hashimoto
文男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP6215089A priority Critical patent/JPH0878219A/en
Publication of JPH0878219A publication Critical patent/JPH0878219A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To obtain a bonded magnet which is filled up in high density by a method wherein a compound is granulated by kneading resin into two kinds of magnetic powder having large and small grain diameters. CONSTITUTION: Fine powder of raw material is weighed, sufficiently mixed and calcined (S1 to S3). The calcined material is crushed, screened and the fine powder is molded in the magnetic field (S4 to S6). This molded product is fired and pulverized (S7 and S8). The pulverized material is screened into the particle size A (50μm or smaller) and the particle size B (50 to 100μm) (S9 to S11). Then, after annealing, the magnetic powder of the particle size A and the particle size B of prescribed ratio and resin (thermoplastic resin or thermosetting resin) are throughly kneaded. The kneaded powder is granulated, and after they have been molded, they are cured and a bonded magnet is manufactured (S12 to S16).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2種の粒度の磁粉に樹
脂を混ぜたコンパウンドおよびコンパウンドを成形した
ボンド磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound in which a resin is mixed with magnetic powders of two kinds of particle sizes, and a bonded magnet formed by molding the compound.

【0002】[0002]

【従来の技術】小型モータ用磁石に代表される磁気部品
として多く使われるフェライトのボンド磁石は、コンパ
ウンドを射出成形により形成したり、更に、磁界中で射
出成形したりし一軸異方性、極異方性あるいはラジアル
異方性などの配向を施したりし、ボンド磁石を製造して
いる。
2. Description of the Related Art Ferrite bonded magnets, which are often used as magnetic components such as magnets for small motors, are produced by injection molding a compound or by injection molding in a magnetic field. The bonded magnets are manufactured by providing orientation such as anisotropy or radial anisotropy.

【0003】コンパウンドは、通常、フェライト磁粉と
熱可塑性樹脂を混合して粉砕した粉末である。このコン
パウンドを射出成形することにより、高い寸法精度、薄
肉複雑形状化が可能であり、軽量、精密部品の成形体を
得ることを最大の特徴としている。
The compound is usually a powder obtained by mixing and pulverizing ferrite magnetic powder and a thermoplastic resin. By injection-molding this compound, high dimensional accuracy and thin-walled complex shape are possible, and the main feature is to obtain a molded body of lightweight and precision parts.

【0004】[0004]

【発明が解決しようとする課題】上述したボンド磁石
は、磁粉と樹脂の混合物であることから、他の樹脂を混
ぜない磁石に比べてその磁性粉体の充填密度が低く、本
質的に磁気特性に限界がある。材料の磁気特性は磁粉の
充填度によるが過度の高密度に充填すると成形性や配向
性の低下が生じるという問題があった。詳述すれば、従
来のボンド磁石の高特性化として、 可塑化時の高流動化、樹脂の熱安定化を図るため
に、磁粉に表面改質剤を添加して造粒してコンパウンド
を作成し、若干の改善を行っている。
Since the above-mentioned bonded magnet is a mixture of magnetic powder and resin, the packing density of the magnetic powder is lower than that of a magnet not mixed with other resin, and the magnetic characteristics are essentially Is limited. The magnetic characteristics of the material depend on the filling degree of the magnetic powder, but there is a problem in that if the density is too high, the formability and orientation decrease. More specifically, in order to improve the characteristics of conventional bonded magnets, in order to achieve high fluidity during plasticization and thermal stabilization of resin, a surface modifier is added to the magnetic powder and granulated to form a compound. However, some improvements have been made.

【0005】 高密度化を得るために、磁粉に混ぜる
樹脂の量を低減する。樹脂量を低減し過ぎると、成形困
難、成形体強度不足が生じてしまい、単純形状品などに
用途が限定されてしまう。
To obtain a higher density, the amount of resin mixed with the magnetic powder is reduced. If the amount of resin is reduced too much, molding will be difficult and the strength of the molded body will be insufficient, and the application will be limited to simple shaped products.

【0006】本発明は、これらの問題を解決するため、
大きいおよび小さい粒径の2種の磁粉に樹脂を混練して
コンパウンドを造粒し、圧縮成形して両者を高密度に充
填した高磁気特性のボンド磁石の製造を実現することを
目的としている。
The present invention solves these problems.
It is an object of the present invention to manufacture a bonded magnet having high magnetic characteristics in which a resin is kneaded into two kinds of magnetic powders having a large particle size and a small particle size to granulate a compound, and compression molding is performed to pack the both at high density.

【0007】[0007]

【課題を解決するための手段】図1を参照して課題を解
決するための手段を説明する。図1において、S6は、
磁場中成形する工程である。
[Means for Solving the Problems] Means for solving the problems will be described with reference to FIG. In FIG. 1, S6 is
This is a step of molding in a magnetic field.

【0008】S8は、粉砕する工程である。S9は、粒
度が50μm以下と、50〜100μmとの粒度にふる
い分けする工程である。
S8 is a step of crushing. S9 is a step of sieving into a particle size of 50 μm or less and a particle size of 50 to 100 μm.

【0009】S14は、粒度50μm以下と、50〜1
00μmとを混ぜて混練物から所定粒径に造粒し、コン
パウンドを作成する工程である。S15は、成形(例え
ば磁場中射出成形)の工程である。
S14 has a particle size of 50 μm or less and 50 to 1
It is a step of mixing with 00 μm and granulating the kneaded product to a predetermined particle size to prepare a compound. S15 is a molding (for example, injection molding in a magnetic field) step.

【0010】S16は、作成されたボンド磁石である。S16 is a bond magnet that has been prepared.

【0011】[0011]

【作用】本発明は、図1に示すように、S6で磁場中成
形し、S8で粉砕し、S9で粒度50μmと50〜10
0μmとの2種の粒径にふるい分けし、S14でこれら
粒度50μmと50〜100μmとの2種の粒径の磁粉
に樹脂5〜20wt%を混ぜた混練物から所定粒径に造
粒し、コンパウンドを作成するようにしている。
According to the present invention, as shown in FIG. 1, in S6, molding is performed in a magnetic field, S8 is crushed, and in S9, the particle size is 50 μm and 50 to 10 μm.
It is sieved into two particle sizes of 0 μm, and in S14, a kneaded mixture of magnetic particles of two particle sizes of 50 μm and 50 to 100 μm mixed with 5 to 20 wt% of resin is granulated to a predetermined particle size, I try to create a compound.

【0012】この際、S6で磁粉を磁場中成形し焼成し
て一軸異方性、極異方性あるいはラジアル異方性の焼結
フェライト磁石を作成し、これを粉砕してふるい分け
し、粒度50μm以下と50〜100μmとの2種の粒
径を得るようにしている。
At this time, in S6, the magnetic powder is molded in a magnetic field and fired to produce a uniaxially anisotropic, polar anisotropic or radial anisotropic sintered ferrite magnet, which is crushed and sieved to obtain a particle size of 50 μm. The following two types of particle diameters, 50 to 100 μm, are obtained.

【0013】また、2種の粒径の磁粉に樹脂として熱可
塑性樹脂あるいは熱硬化性樹脂を5〜20wt%を混ぜ
た混練物から所定粒径に造粒し、コンパウンドを作成す
るようにしている。
Further, a compound is prepared by granulating a magnetic powder of two kinds of particle diameters to a predetermined particle diameter from a kneaded material in which a thermoplastic resin or a thermosetting resin is mixed as a resin in an amount of 5 to 20 wt%. .

【0014】また、熱可塑性樹脂を混ぜて作成したコン
パウンドを、加熱成形あるいは磁場中加熱成形してボン
ド磁石を作成するようにしている。また、熱硬化性樹脂
を混ぜて作成したコンパウンドを成形した後、キュアー
してボンド磁石を作成するようにしている。
Further, the compound prepared by mixing the thermoplastic resin is heat-molded or heat-molded in a magnetic field to prepare a bond magnet. Further, a compound magnet prepared by mixing a thermosetting resin is molded and then cured to prepare a bonded magnet.

【0015】従って、大きいおよび小さい粒径の2種の
磁粉に樹脂を混練してコンパウンドを造粒し、圧縮成形
して両者を高密度に充填した高磁気特性のボンド磁石を
製造することが可能となった。
Therefore, it is possible to manufacture a bonded magnet having high magnetic properties by kneading a resin into two kinds of magnetic powders having a large particle size and a small particle size to granulate a compound and compression-molding the compound into a high density. Became.

【0016】[0016]

【実施例】次に、図1から図3を用いて本発明の実施例
の構成および動作を順次詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the construction and operation of an embodiment of the present invention will be described in detail with reference to FIGS.

【0017】図1は、本発明の1実施例構成図を示す。
図1において、S1は、原料を秤量する工程である。こ
こでは、BaCO3/SrCO3、Fe23、添加物の秤
量を行う。
FIG. 1 shows a block diagram of an embodiment of the present invention.
In FIG. 1, S1 is a step of weighing raw materials. Here, BaCO 3 / SrCO 3 , Fe 2 O 3 and additives are weighed.

【0018】S2は、混合する。S1で秤量した原料の
微粉末を良く混合する。S3は、仮焼きする。これは、
例えば図示の右側に記載したように、1200〜135
0°Cで仮焼成する。
In S2, mixing is performed. The raw material fine powders weighed in S1 are mixed well. In S3, calcination is performed. this is,
For example, as described on the right side of the drawing, 1200-135
Pre-baking at 0 ° C.

【0019】S4は、粉砕する。これは、S3で仮焼成
した焼成物を粉砕し、右側に記載したように、平均粒子
径1.0〜1.3μmにする。S5は、ふるい分けす
る。
At S4, the material is crushed. This is done by crushing the calcined product that has been preliminarily calcined in S3 to have an average particle size of 1.0 to 1.3 μm as described on the right side. S5 is sieved.

【0020】S6は、磁場中成形する。これは、平均粒
子径1.0〜1.3μmの微粉を、磁場中でプレス成形
し、一軸異方性、極異方性あるいはラジアル異方性のフ
ェライト磁石を作成する。
In step S6, molding is performed in a magnetic field. In this method, fine powder having an average particle size of 1.0 to 1.3 μm is press-molded in a magnetic field to produce a uniaxially anisotropic, polar anisotropically or radially anisotropically ferrite magnet.

【0021】S7は、焼成する。これは、右側に記載し
たように、1200〜1350°Cで焼成する。S8
は、S7で焼成した焼成物を細かく粉砕する。
In step S7, firing is performed. This is fired at 1200-1350 ° C as described on the right. S8
Is finely crushed in S7.

【0022】S9は、S8で粉砕した磁粉をふるい分け
する。ここでは、粒度A(例えば50μm以下)と、粒
度B(例えば50〜100μm)とにふるい分けする。
S10は、S9でふるい分けした粒度A(例えば50μ
m以下)の磁粉である。
In step S9, the magnetic powder crushed in step S8 is sieved. Here, the particle size A (for example, 50 μm or less) and the particle size B (for example, 50 to 100 μm) are used for sieving.
S10 is the particle size A that has been screened in S9 (for example, 50 μ
m or less).

【0023】S11は、S9でふるい分けした粒度B
(例えば50〜100μm)の磁粉である。S12は、
アニールする。これは、S10、S11の粒度A(50
μm以下)および粒度B(50〜100μm)の磁粉を
950〜1050°Cでアニールする。
S11 is the grain size B which is sieved in S9
It is a magnetic powder (for example, 50 to 100 μm). S12 is
Anneal. This is the grain size A of S10 and S11 (50
Annealing is performed at 950 to 1050 ° C. for the magnetic powder having a particle size B (50 to 100 μm).

【0024】S13は、混練する。これは、S12でア
ニールした後の粒度A(50μm以下)および粒度B
(50〜100μm)の磁粉を所定割合(例えば等量)
に、樹脂(熱可塑性樹脂あるいは熱硬化性樹脂を5.0
〜20wt%)を良く混練する。
In S13, kneading is performed. This is the grain size A (50 μm or less) and grain size B after annealing in S12.
Predetermined ratio (for example, equal amount) of magnetic powder (50 to 100 μm)
Resin (thermoplastic resin or thermosetting resin 5.0
~ 20 wt%) is well kneaded.

【0025】S14は、造粒する。これは、S13で粒
度A(50μm以下)および粒度B(50〜100μ
m)の磁粉に樹脂を混練した後、所定粒径のコンパウン
ドに造粒する。
In step S14, granulation is performed. This is because the particle size A (50 μm or less) and the particle size B (50 to 100 μm) in S13.
After the resin is kneaded with the magnetic powder of m), it is granulated into a compound having a predetermined particle size.

【0026】S15は、成形する。これは、コンパウン
ドの樹脂が熱可塑性樹脂の場合には、磁場中射出成形に
より、コンパウンド中の磁粉を磁場方向に整列させた状
態で加熱成形し、一軸異方性、極異方性あるいはラジア
ル異方性のボンド磁石を製造する。コンパウンドの樹脂
が熱硬化性樹脂の場合には、成形した後、キュアーして
樹脂を熱硬化させてボンド磁石を製造する。
In step S15, molding is performed. This is because when the resin of the compound is a thermoplastic resin, it is subjected to uniaxial anisotropy, polar anisotropy or radial anisotropy by injection molding in a magnetic field and heat molding with the magnetic particles in the compound aligned in the magnetic field direction. Manufactures anisotropic bonded magnets. When the resin of the compound is a thermosetting resin, it is molded and then cured to thermoset the resin to produce a bonded magnet.

【0027】S16は、S15の成形によって製造され
たボンド磁石である。以上によって、磁場中冷却した一
軸異方性、極異方性あるいはラジアル異方性を持つ、粒
度A(粒径50μm以下)と粒度B(粒径50〜100
μm)を混練して造粒し、コンパウンドを作成する。こ
の作成したコンパウンドを磁場中射出成形して一軸異方
性、極異方性、あるいはラジアル異方性のボンド磁石を
製造する。このように粒度A(粒径50μm以下)と粒
度B(粒径50〜100μm)と異なる2種の磁粉に樹
脂を混ぜてコンパウンドを作成しているため、成形して
ボンド磁石としたときに大きい粒度Bの隙間に小さい粒
度Aの磁粉が入り込み、充填度を高めて高磁気特性のボ
ンド磁石を作成することが可能となった。
S16 is a bond magnet manufactured by the molding of S15. From the above, the particle size A (particle size 50 μm or less) and the particle size B (particle size 50 to 100) having uniaxial anisotropy, polar anisotropy or radial anisotropy cooled in a magnetic field are obtained.
μm) is kneaded and granulated to form a compound. The produced compound is injection-molded in a magnetic field to manufacture a uniaxially anisotropic, polar anisotropically or radially anisotropically bonded magnet. As described above, the resin is mixed with two kinds of magnetic powders having different particle sizes A (particle size 50 μm or less) and particle size B (particle size 50 to 100 μm) to form a compound, which is large when formed into a bonded magnet. It became possible to create a bonded magnet with high magnetic characteristics by increasing the filling degree by inserting the magnetic powder of the small particle size A into the gap of the particle size B.

【0028】図2は、本発明の概念説明図を示す。図2
の(a)は、配向方向を示す。ここで、小さい粒子が図
1のS10の粒度A(50μm以下)であって、大きい
粒子が図1のS11の粒度B(50〜100μm)であ
る。このように、大きい粒子と小さい粒子を混合してい
るため、成形してボンド磁石にすると、大きい粒子の間
に小さい粒子が納まり、全体として充填率が高くなり、
磁気特性が向上する(図3の(c)参照)。
FIG. 2 is a conceptual explanatory view of the present invention. Figure 2
(A) indicates the orientation direction. Here, the small particles are the particle size A of S10 in FIG. 1 (50 μm or less), and the large particles are the particle size B of S11 in FIG. 1 (50 to 100 μm). In this way, since large particles and small particles are mixed, when molded into a bonded magnet, small particles are housed between large particles, and the filling rate as a whole increases,
The magnetic characteristics are improved (see (c) of FIG. 3).

【0029】図2の(b)は異方性焼結磁石の場合を示
し、図2の(c)は等方性焼結磁石の場合を示し、これ
ら両者は図2の(a)の1つの大きい粒子および小さい
粒子を拡大してその内部の微細な磁粉の磁化の配向方向
を示したものである。
FIG. 2 (b) shows the case of an anisotropic sintered magnet, FIG. 2 (c) shows the case of an isotropic sintered magnet, both of which are indicated by 1 in FIG. FIG. 3 is an enlarged view of two large particles and a small particle, and shows the orientation direction of the magnetization of the fine magnetic particles therein.

【0030】図2の(b)の異方性焼結磁石の磁化の方
向は、図示のように全て上方向を向いている。この一定
の上方向に磁化が向いたいわゆる一軸異方性を持つもの
である。この異方性焼結磁石の50μm以下の粒子と、
50〜100μmの粒子とを例えば等量に、熱可塑性樹
脂を5〜20wt%混ぜて造粒したものが本発明のコン
パウンドである。このコンパウンドを磁場中射出成形し
てボンド磁石を作成すると、図2の(a)のように一軸
異方性磁石の磁化の方向が全て整列し、例えば上方向に
整列してこの方向に極めて着磁し易くなり、高磁気特性
の永久磁石を得ることができる。
The magnetization directions of the anisotropic sintered magnet shown in FIG. 2B are all upward as shown in the figure. It has a so-called uniaxial anisotropy in which the magnetization is oriented in this fixed upward direction. Particles of 50 μm or less of this anisotropic sintered magnet,
The compound of the present invention is obtained by mixing 50 to 100 μm particles in the same amount and granulating the thermoplastic resin in an amount of 5 to 20 wt%. When this compound is injection-molded in a magnetic field to produce a bonded magnet, all the magnetization directions of the uniaxial anisotropic magnet are aligned as shown in FIG. It becomes easy to magnetize, and a permanent magnet with high magnetic characteristics can be obtained.

【0031】一方、図2の(c)の等方性焼結磁石の磁
化の方向は、図示のように全ての方向を向いている。磁
化するときはその方向に向けるだけの大きさの磁界が必
要となる。
On the other hand, the direction of magnetization of the isotropic sintered magnet shown in FIG. 2C is in all directions as shown in the figure. When magnetized, a magnetic field of a magnitude sufficient to orient in that direction is required.

【0032】図3は、実験例を示す。図3の(a)は従
来の実験例を示す。試料#1は、フェライト磁粉が9
1.5wt%、熱可塑性樹脂が8.5wt%であり、汎
用のものであり、樹脂が少し多いものである。
FIG. 3 shows an experimental example. FIG. 3A shows a conventional experimental example. Sample # 1 contains 9 ferrite powders
Since it is 1.5 wt% and the thermoplastic resin is 8.5 wt%, it is a general-purpose resin and a little resin is contained.

【0033】試料#2は、フェライト磁粉が93.0w
t%、熱可塑性樹脂が7.0wt%であり、高特性のも
のであり、樹脂を少なくし、高充填率にしたものであ
る。従来の高特性の試料#2は、汎用の試料#1に比
し、樹脂を少なくして磁粉の充填率を高めたため、磁気
特性Br、BHが大きくなっているが、曲げ強度が小さ
くなっている。このため、試料#2は、複雑形状を成形
したボンド磁石の作成が困難となっている。
Sample # 2 contained 93.0 w of ferrite magnetic powder.
t% and 7.0 wt% of the thermoplastic resin have high characteristics, and the amount of the resin is small and the filling rate is high. Compared to the general-purpose sample # 1, the conventional high-characteristic sample # 2 has less resin and has a higher packing rate of magnetic powder, so that the magnetic characteristics Br and BH are larger, but the bending strength is smaller. There is. Therefore, in sample # 2, it is difficult to form a bonded magnet having a complicated shape.

【0034】図3の(b)は本発明の実験例を示す。こ
れは、既述したように、50μm以下の磁粉と、50〜
100μmの磁粉とを等量混ぜて93.5wt%、ナイ
ロン12(熱可塑性樹脂)6.5wt%を混ぜて造粒し
たコンパウンドを用い、磁場中射出成形してボンド磁石
を作成したときの実験例である。この実験例によれば、
従来の図3の(a)の試料#2よりも磁粉を93.5w
t%と多くしても、その曲げ強度が950kg/cm2
あって、従来の試料#1の汎用品よりも高く、高特性の
ボンド磁石ができ、複雑形状の射出成形が可能となっ
た。
FIG. 3B shows an experimental example of the present invention. As described above, this is because the magnetic powder of 50 μm or less,
An experiment example in which a bond magnet was prepared by injection molding in a magnetic field using a compound in which 93.5 wt% of 100 μm magnetic powder and 93.5 wt% of nylon 12 (thermoplastic resin) were mixed and granulated. Is. According to this experimental example,
93.5w more magnetic powder than the conventional sample # 2 of FIG.
Even if it is increased to t%, the bending strength is 950 kg / cm 2
Therefore, a bond magnet having higher characteristics and higher characteristics than the conventional general-purpose product of Sample # 1 can be formed, and injection molding of a complicated shape is possible.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
大きいおよび小さい粒径の2種の磁粉に樹脂を混練して
コンパウンドを造粒し、圧縮成形する構成を採用してい
るため、磁粉を高密度に充填した高磁気特性のボンド磁
石を製造するコンパウンドおよびボンド磁石ができた。
この際、磁粉として磁場中冷却して一軸異方性、極異方
性あるいはラジアル異方性の50μm以下の磁粉および
50〜100μmの磁粉の両者を混ぜて造粒してコンパ
ウンドを作成しているため、磁粉を高充填かつ高磁気特
性のボンド磁石を成形するコンパウンドを作成できた。
また、このコンパウンドから成形したボンド磁石は高密
度かつ高磁気特性かつ高曲げ強度を得ることができ、複
雑形状のボンド磁石を製造できる。
As described above, according to the present invention,
A compound that manufactures a bond magnet with high magnetic properties in which magnetic powder is densely packed, because a composition is used in which two types of magnetic powder of large and small particle sizes are kneaded with resin to granulate the compound and then compression molded. And a bond magnet was made.
At this time, the magnetic powder is cooled in a magnetic field and mixed with both uniaxial anisotropy, polar anisotropy or radial anisotropy of 50 μm or less and 50-100 μm of magnetic powder to form a compound. Therefore, it was possible to create a compound that was highly filled with magnetic powder and molded a bonded magnet with high magnetic properties.
In addition, the bond magnet molded from this compound can obtain high density, high magnetic characteristics and high bending strength, and can manufacture a bond magnet having a complicated shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の概念説明図である。FIG. 2 is a conceptual explanatory diagram of the present invention.

【図3】実験例である。FIG. 3 is an experimental example.

【符号の説明】[Explanation of symbols]

S2:混合 S6:磁場中成形 S7:焼成 S8:粉砕 S9:ふるい S10:粒度A(50μm以下) S11:粒度B(50〜100μm) S13:混練 S14:造粒 S15:成形(磁場中射出成形) S16:ボンド磁石 S2: Mixing S6: Molding in magnetic field S7: Firing S8: Grinding S9: Sieve S10: Particle size A (50 μm or less) S11: Particle size B (50 to 100 μm) S13: Kneading S14: Granulation S15: Molding (injection molding in magnetic field) S16: Bonded magnet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】焼結フェライト磁石を粉砕し選別した粒度
50μm以下の磁粉と50〜100μmの磁粉、および
樹脂5〜20wt%を混ぜて造粒したコンパウンド。
1. A compound obtained by mixing and granulating a magnetic powder having a particle size of 50 μm or less, a magnetic powder having a particle size of 50 to 100 μm, and a resin of 5 to 20 wt% obtained by crushing and selecting a sintered ferrite magnet.
【請求項2】上記焼結フェライト磁石として、磁粉を磁
場中成形し焼成して一軸異方性、極異方性あるいはラジ
アル異方性の焼結フェライト磁石としたことを特徴とす
る請求項1に記載のコンパウンド。
2. The sintered ferrite magnet, wherein magnetic powder is molded in a magnetic field and fired to obtain a uniaxially anisotropic, polar anisotropically or radially anisotropically sintered sintered ferrite magnet. Compound described in.
【請求項3】上記樹脂を熱可塑性樹脂あるいは熱硬化性
樹脂としたことを特徴とする請求項1に記載のコンパウ
ド。
3. The compound according to claim 1, wherein the resin is a thermoplastic resin or a thermosetting resin.
【請求項4】上記熱可塑性樹脂を混ぜて造粒した上記コ
ンパウンドを、加熱成形あるいは磁場中加熱成形して作
成したボンド磁石。
4. A bond magnet produced by heat molding or heat molding in a magnetic field of the compound obtained by mixing and granulating the thermoplastic resin.
【請求項5】上記熱硬化性樹脂を混ぜて造粒した上記コ
ンパウンドを成形した後、キュアーして作成したボンド
磁石。
5. A bond magnet produced by molding the compound obtained by mixing the thermosetting resin and granulating the compound and then curing the compound.
JP6215089A 1994-09-08 1994-09-08 Compound and bonded magnet Pending JPH0878219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215089A JPH0878219A (en) 1994-09-08 1994-09-08 Compound and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215089A JPH0878219A (en) 1994-09-08 1994-09-08 Compound and bonded magnet

Publications (1)

Publication Number Publication Date
JPH0878219A true JPH0878219A (en) 1996-03-22

Family

ID=16666575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215089A Pending JPH0878219A (en) 1994-09-08 1994-09-08 Compound and bonded magnet

Country Status (1)

Country Link
JP (1) JPH0878219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179617A (en) * 2004-12-21 2006-07-06 Yaskawa Electric Corp Permanent magnet and manufacturing method thereof
JP2007019419A (en) * 2005-07-11 2007-01-25 Neomax Co Ltd Method for manufacturing rare earth bond magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179617A (en) * 2004-12-21 2006-07-06 Yaskawa Electric Corp Permanent magnet and manufacturing method thereof
JP4518935B2 (en) * 2004-12-21 2010-08-04 株式会社安川電機 Permanent magnet and method for manufacturing the same
JP2007019419A (en) * 2005-07-11 2007-01-25 Neomax Co Ltd Method for manufacturing rare earth bond magnet

Similar Documents

Publication Publication Date Title
Croat Current status and future outlook for bonded neodymium permanent magnets
JP6947490B2 (en) Ferrite powder for bonded magnets, their manufacturing methods, and ferrite-based bonded magnets
US20240033979A1 (en) Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
JPS60221549A (en) Rare earth permanent magnet
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP6797735B2 (en) Ferrite powder for bonded magnets and its manufacturing method
US6063322A (en) Method for manufacturing shaped bodies from hard ferrites
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JPH0878219A (en) Compound and bonded magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
JP2020072245A (en) Method of producing bonded magnet and compound for bonded magnet
JPS6334610B2 (en)
JP3275055B2 (en) Rare earth bonded magnet
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH07111208A (en) Resin-bonded magnet
JPH0411702A (en) Manufacture of resin magnet
JP2709068B2 (en) Dust core
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH03151612A (en) Manufacture of resin-bonded type permanent magnet molded object
JP2001093714A (en) Composite anisotropic bonded magnet
JP2000260614A (en) Composite anisotropic bonded magnet
JPH0628213B2 (en) Bonded magnet manufacturing method
JPS63308904A (en) Manufacture of bond magnet
JPS6351613A (en) Manufacture of plastic magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees