JPH01205403A - Rare earth iron resin coupling type magnet - Google Patents

Rare earth iron resin coupling type magnet

Info

Publication number
JPH01205403A
JPH01205403A JP63029151A JP2915188A JPH01205403A JP H01205403 A JPH01205403 A JP H01205403A JP 63029151 A JP63029151 A JP 63029151A JP 2915188 A JP2915188 A JP 2915188A JP H01205403 A JPH01205403 A JP H01205403A
Authority
JP
Japan
Prior art keywords
iron
rare earth
rare
resin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029151A
Other languages
Japanese (ja)
Inventor
Yukihiko Shiobara
幸彦 塩原
Itaru Okonogi
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63029151A priority Critical patent/JPH01205403A/en
Publication of JPH01205403A publication Critical patent/JPH01205403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To contrive accomplishment of both high density and high efficiency by enhancing the liquidity of resin by a method wherein thermosetting resin is added to the magnetic powder consisting of rare earth, iron and boron and formed by using a super-quenching method, and the above-mentioned mixture is heated up when it is compression-molded. CONSTITUTION:Thermosetting resin is added to the magnetic powder, having the basic composition of rare-earth metal, iron and boron, formed by conducting a super- quenching method, the mixture is fluidized by heating and it is compression-molded. The desirable temperature of heating when the compression-molding is conducted is 30-100 deg.C. In the heating of material at the above-mentioned temperature, as the resin can be maintained at a high degree of fluidity before it is hardened, a state of high density can be achieved. The basic composition of the rare-earth magnetic powder, consisting of rare-earth, iron and boron, manufactured by a super-quenching method is 8-18%, 73-88% and 4-9% in atomic ratio respectively, the rare-earth metal is used as a single unit or as a mixture of two or more kinds of elements selected from Y, La, Ce, Pr, Sm, Nd, Eu, Gd, Tb and Dy, and part of iron can be replaced with the transition metal of one or more kinds selected from Al, Co, Nb and so forth.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属、鉄、ボロンからなり
超急冷法でつくられた磁石粉末に熱硬化性樹脂を混合し
て成形する際に加熱することより高密度化された高性能
の希土類、鉄系樹脂結合型磁石に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a magnet powder whose basic composition is rare earth metals, iron, and boron, and which is produced by an ultra-quenching method, and which is mixed with a thermosetting resin and molded. This invention relates to high-performance rare earth and iron-based resin bonded magnets that are made highly dense by heating.

〔従来の技術〕[Conventional technology]

永久磁石は、大きく分けてフェライl−磁石、アルニコ
磁石。希土類磁石の3つに分けられるか、近年のOA機
器、FA機器の小型化、高効率化に伴い、希土類磁石の
需要が大きく伸びてきた。
Permanent magnets are broadly divided into Ferrite L-magnets and Alnico magnets. Rare earth magnets can be divided into three types, and the demand for rare earth magnets has increased significantly in recent years as office automation equipment and FA equipment have become smaller and more efficient.

希土類磁石は、その組成から希土類、コバルト系、と希
土類、鉄系に大別される。希土類、鉄系磁石は、198
3年にゼネラルモータース(GM)社と住友特殊金属が
発表した磁石て共にNd、Fe、Bを主成分としている
が、GM社は、超急冷法を採用したのに対し住友特殊金
属は焼結法を採用している。
Rare earth magnets are broadly classified into rare earth/cobalt based magnets and rare earth/iron based magnets based on their composition. Rare earth and iron magnets are 198
The magnets announced by General Motors (GM) and Sumitomo Special Metals in 2013 both have Nd, Fe, and B as their main components, but GM used an ultra-quenching method, while Sumitomo Special Metals used a sintered method. law is adopted.

超急冷法の場合、厚み20μm位のリボンが得られ、そ
の一つ一つの中は、単磁区粒子の臨界半径よりも微細な
サブミクロンオーター(01〜0.5μ丁n )の結晶
粒より構成されている。従って177μrn以下のバル
ク状粉末に粉砕しても保磁力が出る状態に保持されてい
るのて樹脂結合型磁石の原料として利用てきる。り上の
原料をf走用して、熱硬化性樹脂を加えた磁石は、圧縮
成形により所望の形状のものが得られていた。
In the case of the ultra-quenching method, ribbons with a thickness of about 20 μm are obtained, each of which is composed of crystal grains of submicron size (01 to 0.5 μm), which are finer than the critical radius of a single magnetic domain particle. has been done. Therefore, it can be used as a raw material for resin-bonded magnets because it maintains a coercive force even if it is crushed into a bulk powder of 177 μrn or less. Magnets made by using the above raw materials and adding thermosetting resin were obtained in desired shapes by compression molding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、磁石粉末と熱硬化性樹脂の混合物を単に
圧縮成形したたげでは、粉末間のすきまが小さくならず
高密度が得られないという問題を有していた。また、少
量の潤滑剤を添加することによって粉末同志がすべり若
干の高密度化が可能であるか3〜5%程度のものであり
、潤滑剤の添加量が多くなると磁石の強度が低下してし
まった。
However, simply compression molding a mixture of magnet powder and thermosetting resin has the problem that the gaps between the powders do not become small and high density cannot be obtained. Also, by adding a small amount of lubricant, the powders will slide together and it is possible to increase the density slightly by about 3 to 5%, and if the amount of lubricant added is large, the strength of the magnet will decrease. Oops.

そこて本発明は、従来のこのような問題点を解決するた
め、圧縮成形時に加熱して樹脂の流動性を高めて高密度
化、高性能化することを目的とする。
Therefore, in order to solve these conventional problems, the present invention aims to increase the fluidity of the resin by heating it during compression molding, thereby increasing the density and performance.

〔課題を解決するだめの手段〕[Failure to solve the problem]

」二記問題を解決するために、本発明の希土類、鉄系樹
脂結合型磁石は、基本組成が、希土類、鉄、ボロンから
なり超急冷法でつくられた磁石粉末に熱硬化性樹脂を加
え圧縮成形する際に加熱して高密度化することを特徴と
する。
In order to solve the second problem, the rare earth/iron resin bonded magnet of the present invention has a basic composition of rare earth, iron, and boron, and a thermosetting resin is added to the magnet powder made by an ultra-quenching method. It is characterized by being heated during compression molding to increase the density.

本発明における、圧縮成形の際の加熱の程度は100%
以下である。30°CJJ上100°C辺下の加熱にお
いては、樹脂か硬化する前の流動性が高い状態に保つこ
とかできるため高密度化が可能であるか100°C以−
1h、の加熱では樹脂硬化が始まっている部分が多くな
り成形金型への付着や十分に高密度しないて硬化してし
まった。また、30℃以下の加熱では、樹脂の流動性か
高くならないので効果が無い。
In the present invention, the degree of heating during compression molding is 100%
It is as follows. When heating at temperatures above 30°C and 100°C, it is possible to maintain high fluidity before the resin hardens, making it possible to increase the density.
When heated for 1 hour, many parts of the resin had begun to harden, resulting in adhesion to the molding die and insufficient density, resulting in hardening. Furthermore, heating at 30° C. or lower does not increase the fluidity of the resin and is therefore ineffective.

なお、基本組成が、希土類、鉄、ボロンからなる超急冷
法により製造した希土類磁石粉末としては、原子比て8
〜18%、73・〜88%、・1−9%てあり、希土類
金属は、Y、La  Ce、、Pr、S rn、N d
、 、 E u 、 G d 、 T b 、 D V
、単体及び2種以上の混合物、そして鉄の一部をA、O
,、C02N b等の1種口上の遷移金属て置換したも
のとするが、本発明は、他の組成においても同様の効果
が得られるものであり特定の組成に限定させるものでは
ない。
In addition, as a rare earth magnet powder manufactured by an ultra-quenching method whose basic composition is rare earth, iron, and boron, the atomic ratio is 8.
-18%, 73-88%, -1-9%, and the rare earth metals are Y, La Ce, Pr, Srn, Nd
, , E u , G d , T b , DV
, a single substance or a mixture of two or more types, and a part of iron as A, O
.

〔実 施 例〕〔Example〕

(実施例 1) 原子比がN +114F e soB 6である超急冷
法により得られた粉末を177μm以下に粉砕した後、
エポキシ樹脂を加え、いろいろな温度に加熱しながら圧
縮成形した。これをポスl−キュアー処理として150
°Cにおいて1時間保持して熱硬化させ磁石を得た。こ
の磁石の磁気性能及び密度を第1表に示す。磁気性能測
定は22°Cで25KOeの磁場で行った。
(Example 1) After pulverizing the powder obtained by the ultra-quenching method with an atomic ratio of N + 114F e soB 6 to 177 μm or less,
Epoxy resin was added and compression molded while heating at various temperatures. This is done as post l-cure treatment at 150
The magnet was thermally cured by holding it at °C for 1 hour to obtain a magnet. The magnetic performance and density of this magnet are shown in Table 1. Magnetic performance measurements were performed at 22°C in a magnetic field of 25 KOe.

第  1  表 第1表より、比鮫例の22°Cの時に比へ試料1−6の
100°C以下の加熱温度で成形された磁石は高性能、
高密度が得られていることが証明された。また試料7の
120°Cまで加熱した場合は、性能が低くなっている
Table 1 From Table 1, it can be seen that the magnets formed at a heating temperature of 100°C or less for Sample 1-6 have high performance when the heating temperature is 22°C for Sample 1-6.
It was proven that high density was obtained. Furthermore, when sample 7 was heated to 120°C, the performance was low.

(実施例 2) 原子比か、N d 14F e 76COs B 5で
ある超急冷法により得られた粉末を177μm以下に粉
砕した後にエポキシ樹脂を加え、加熱状態で圧縮成形し
た後熱硬化させて磁石を得た。第2表にこの磁石の性能
を示す。
(Example 2) A powder obtained by an ultra-quenching method with an atomic ratio of N d 14 F e 76 COs B 5 was pulverized to 177 μm or less, then epoxy resin was added, compression molded under heating, and then thermoset to form a magnet. I got it. Table 2 shows the performance of this magnet.

第  2  表 第2表より試料N012・〜15の30°C−]00°
Cの範囲て加熱した場合において高性能の磁石が得られ
ていることが証明された。
Table 2 From Table 2, samples N012-15 at 30°C-]00°
It has been proven that a high performance magnet can be obtained when heated in the C range.

〔発明の効果〕〔Effect of the invention〕

以上述へなように、本発明は、希土類樹脂結合型磁石の
成形の際に加熱したため、高密度化、高性能化された磁
石が得られ、モータ、スピーカーセンサ等に使用された
場合においても高性能化の効果を有している。
As described above, in the present invention, since the rare earth resin bonded magnet is heated during molding, a magnet with higher density and higher performance can be obtained, and even when used in motors, speaker sensors, etc. It has the effect of improving performance.

以  上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)基本組成が、希土類金属、鉄、ボロンからなり超
急冷法でつくられた磁石粉末に熱硬化性樹脂を加え圧縮
成形する磁石において、成形時に加熱することを特徴と
する希土類、鉄系樹脂結合型磁石。
(1) A magnet whose basic composition consists of rare earth metals, iron, and boron, and which is made by adding a thermosetting resin to magnet powder made by an ultra-quenching method and compression molding it, and which is characterized by being heated during molding. Resin bonded magnet.
(2)前記鉄の一部を、コバルト等の鉄以外の遷移金属
で置換した第1項記載の希土類、鉄系樹脂結合型磁石。
(2) The rare earth/iron resin bonded magnet according to item 1, wherein a part of the iron is replaced with a transition metal other than iron, such as cobalt.
JP63029151A 1988-02-10 1988-02-10 Rare earth iron resin coupling type magnet Pending JPH01205403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029151A JPH01205403A (en) 1988-02-10 1988-02-10 Rare earth iron resin coupling type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029151A JPH01205403A (en) 1988-02-10 1988-02-10 Rare earth iron resin coupling type magnet

Publications (1)

Publication Number Publication Date
JPH01205403A true JPH01205403A (en) 1989-08-17

Family

ID=12268255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029151A Pending JPH01205403A (en) 1988-02-10 1988-02-10 Rare earth iron resin coupling type magnet

Country Status (1)

Country Link
JP (1) JPH01205403A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116104A (en) * 1988-10-26 1990-04-27 Toshiba Corp Manufacture of resin-bonded permanent magnet
US6007757A (en) * 1996-01-22 1999-12-28 Aichi Steel Works, Ltd. Method of producing an anisotropic bonded magnet
EP1158544A2 (en) * 2000-05-22 2001-11-28 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
EP1160803A3 (en) * 2000-05-31 2002-08-28 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6896745B2 (en) 2000-06-06 2005-05-24 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
US6951625B2 (en) 2000-01-07 2005-10-04 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN104313513A (en) * 2014-10-08 2015-01-28 中国科学院宁波材料技术与工程研究所 Iron-based amorphous alloy having magnetothermal effect as well as application of iron-based amorphous alloy and method for regulating and controlling magnetic transition temperature of iron-based amorphous alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116104A (en) * 1988-10-26 1990-04-27 Toshiba Corp Manufacture of resin-bonded permanent magnet
US6007757A (en) * 1996-01-22 1999-12-28 Aichi Steel Works, Ltd. Method of producing an anisotropic bonded magnet
DE19605264C2 (en) * 1996-01-22 2001-07-12 Aichi Steel Works Ltd Process for the production of anisotropically connected magnets
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6951625B2 (en) 2000-01-07 2005-10-04 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6627102B2 (en) 2000-05-22 2003-09-30 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
EP1158544A3 (en) * 2000-05-22 2002-08-28 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
EP1158544A2 (en) * 2000-05-22 2001-11-28 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
EP1160803A3 (en) * 2000-05-31 2002-08-28 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
US6979374B2 (en) 2000-05-31 2005-12-27 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
US6896745B2 (en) 2000-06-06 2005-05-24 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets
CN104313513A (en) * 2014-10-08 2015-01-28 中国科学院宁波材料技术与工程研究所 Iron-based amorphous alloy having magnetothermal effect as well as application of iron-based amorphous alloy and method for regulating and controlling magnetic transition temperature of iron-based amorphous alloy

Similar Documents

Publication Publication Date Title
Ma et al. Recent development in bonded NdFeB magnets
US4902361A (en) Bonded rare earth-iron magnets
KR870009410A (en) Magnetic anisotropic bond magnets, magnetic powders used in the same, and methods for producing the same
JPS59211549A (en) Adhered rare earth element-iron magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
CN108899150B (en) Nd-Fe-B/Sm-Co composite bonded magnet and preparation method thereof
JPS63211706A (en) Manufacture of magnetic powder for bond magnet
JPH01171209A (en) Manufacture of permanent magnet
BAI et al. Progress of research on bonded Nd-Fe-B magnets
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JPH0559572B2 (en)
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
Aryani et al. THE EFFECT OF BAKELITE BINDERS ON MAGNETIC PROPERTIES AND HARDNESS VALUES OF MQP-TYPE BONDED NdFeB MAGNETS
JPH0715124B2 (en) Method for producing magnetic composite material having excellent magnetic properties
JPS63146414A (en) Manufacture of bonded magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH01245502A (en) Rare-earth-iron based resin-bonded magnet
JP2726991B2 (en) Rare earth composite magnet material
JPS63244705A (en) Resin-bonded rare earth/iron magnet
JPH0450725B2 (en)
JPS63308904A (en) Manufacture of bond magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS60230959A (en) Permanent magnet and its manufacture
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH0247808A (en) Rare earth and iron resin bonded type magnet