JPH0480903A - Manufacture of forming material for bonded magnet - Google Patents

Manufacture of forming material for bonded magnet

Info

Publication number
JPH0480903A
JPH0480903A JP19385290A JP19385290A JPH0480903A JP H0480903 A JPH0480903 A JP H0480903A JP 19385290 A JP19385290 A JP 19385290A JP 19385290 A JP19385290 A JP 19385290A JP H0480903 A JPH0480903 A JP H0480903A
Authority
JP
Japan
Prior art keywords
magnetic powder
ferrite
alkali
treated
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19385290A
Other languages
Japanese (ja)
Inventor
Koichi Nushishiro
晃一 主代
Masaharu Abe
雅治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19385290A priority Critical patent/JPH0480903A/en
Publication of JPH0480903A publication Critical patent/JPH0480903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve fluidity, and to improve the magnetic characteristics and mechanical strength by a method wherein, when the synthetic resin, as a matrix, and ferrite magnetic powder are mixed and kneaded, the ferrite magnetic powder is alkali-treated in advance, and then it is treated by a coupling agent for surface treatment. CONSTITUTION:When ferrite magnetic powder is surface-treated using gamma- aminopropyltriethoxysilane and the like of 0.5wt.%, for example, as a coupling agent, a remarkably excellent water repellent property can be obtained by performing an alkali-treatment in the magnetic powder in advance. The type of the alkali used for the alkali treatment is not specifically limited, and the aqueous solution such as ammonia, amine and the like may be used in addition to NaOH, KOH, K2CO3 and N2CO.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、0Alll器や複写機などの部品である小型
モーターやマグネットロールの永久磁石部分に用いられ
るボンド磁石用成形素材の製造方法に関するものである
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a molded material for bonded magnets used for permanent magnet parts of small motors and magnet rolls, which are parts of 0All devices and copying machines. It is.

〈従来の技術〉 電気機器等に用いられる永久磁石材料として、従来フェ
ライiff石、積土R磁石等が用いられている。これら
は主に成形後に焼結を行うことにより製造されるが、焼
結時の収縮が大きいため寸法精度を上げるには研削等の
後加工が必要である。
<Prior Art> As permanent magnet materials used in electrical equipment and the like, Ferrite IF stones, earthwork R magnets, and the like have conventionally been used. These are mainly manufactured by sintering after molding, but because of the large shrinkage during sintering, post-processing such as grinding is required to improve dimensional accuracy.

そのためコストが高くなるという欠点があるばかりでな
く焼結物は一般にもろく、また複雑な形状のものが製造
しにくいという欠点もある。
This not only has the drawback of increasing costs, but also has the drawback that sintered products are generally brittle, and it is difficult to manufacture products with complex shapes.

焼結磁石の欠点を補うものとして、近年ボンド磁石が注
目を浴びている。ボンド磁石は焼結!n石と比較して割
れ、欠けが生じにくく、薄肉、複雑形状のものが得られ
、また低比重であるため軽量化が可能である。更に成形
収縮率が小さいため寸法精度のよい成形品が得られ、後
加工が不要であり他の部品との一体成形による工程の省
略化が可能であるなどの長所を持っている。
Bonded magnets have recently been attracting attention as a means of compensating for the drawbacks of sintered magnets. Bonded magnets are sintered! Compared to n-stone, it is less prone to cracking and chipping, and can be made thinner and with more complex shapes, and has a lower specific gravity, making it possible to reduce weight. Further, since the molding shrinkage rate is small, molded products with good dimensional accuracy can be obtained, and there are advantages such as no post-processing is required, and steps can be omitted by integral molding with other parts.

ボンド磁石は通常、強磁性粉と樹脂との混合物から成っ
ている0強磁性粉はRaフェライト、Srフェライト等
のマグネトブランバイト型フェライト磁石材料及びSm
Co合金、NdFeB合金等の希土類合金磁石材料など
の粉末が用いられる。しかしボンド磁石は非磁性の樹脂
を含むためにその体積分だけ焼結磁石より磁力が低い。
Bonded magnets are usually made of a mixture of ferromagnetic powder and resin.
Powders such as rare earth alloy magnet materials such as Co alloy and NdFeB alloy are used. However, since bonded magnets contain non-magnetic resin, their magnetic force is lower than that of sintered magnets due to their volume.

また、Baフェライト、Srフェライトの粉末は一般に
酸化鉄と炭酸バリウム又は炭酸ストロンチウムをマグネ
トブランバイト型フェライトを形成する組成比に混合し
、次いで1000〜1300°Cで焼成した後、微粉砕
し、更に熱処理することにより得られるが、充填率があ
まり上がらす配向度が低いという欠点があった。
In addition, powders of Ba ferrite and Sr ferrite are generally prepared by mixing iron oxide and barium carbonate or strontium carbonate in a composition ratio that forms magnetobrambite-type ferrite, then firing at 1000 to 1300°C, finely pulverizing, and then Although it can be obtained by heat treatment, it has the disadvantage that the degree of orientation is low because the filling rate is too high.

そのため、磁性粉の配向性を高めボンド磁石の磁気特性
を向上させるためにいくつかの提案がなされている。
Therefore, several proposals have been made to improve the magnetic properties of bonded magnets by increasing the orientation of magnetic powder.

特開昭59−93741号公報には、フェライト原料を
Tiカップリング剤で表面処理し、磁粉の流動性、配向
性を向上させることが開示されている。また特開昭59
−170130号公報には有89#’J系化合物での表
面処理が、また特開昭59−174636号公報にはシ
ラン系カップリング剤を用いて同様の効果を得ることが
開示されている。
JP-A-59-93741 discloses that a ferrite raw material is surface-treated with a Ti coupling agent to improve the fluidity and orientation of magnetic particles. Also, JP-A-59
JP-A-170130 discloses surface treatment with an 89#'J compound, and JP-A-59-174636 discloses obtaining a similar effect using a silane coupling agent.

しかしながら、カップリング剤を用いた場合でも流動性
の向上はまだ不十分であり、そこで例えば特開昭58−
158903号公報のようにアミノ基を有する有機金属
化合物及びビスアミドを樹脂改質剤として添加し樹脂の
流動性を上げているが、この場合には樹脂の粘度低下に
伴う機械的強度の低下が不可避であった。
However, even when a coupling agent is used, the improvement in fluidity is still insufficient.
As in Publication No. 158903, an organic metal compound having an amino group and a bisamide are added as a resin modifier to increase the fluidity of the resin, but in this case, a decrease in mechanical strength due to a decrease in the viscosity of the resin is unavoidable. Met.

〈発明が解決しようとする課題〉 本発明は、樹脂改質剤を添加せずとも流動性が良好で、
その結果磁気特性及び機械的強度の、優れたボンド磁石
が得られるフェライト磁粉を原料としたボンド磁石用成
形素材を提供することを目的とするものである。
<Problems to be solved by the invention> The present invention has good fluidity without adding a resin modifier,
The object of the present invention is to provide a bonded magnet molding material made from ferrite magnetic powder, from which a bonded magnet with excellent magnetic properties and mechanical strength can be obtained.

〈課題を解決するための手段〉 すなわち、本発明は、マトリックスとしての合成樹脂と
フェライト磁粉を混合混練するに際して、予めフェライ
ト磁粉をアルカリ処理したのち表面処理用カップリング
剤にて処理することを特徴とするボンド磁石用成形素材
の製造方法である。
<Means for Solving the Problem> That is, the present invention is characterized in that, when mixing and kneading the synthetic resin as a matrix and the ferrite magnetic powder, the ferrite magnetic powder is previously treated with an alkali and then treated with a coupling agent for surface treatment. This is a method for manufacturing a molded material for a bonded magnet.

〈作 用〉 本発明におけるフェライト磁粉とは、一般にBaフェラ
イト、Srフェライト、pbフェライト等で呼ばれるマ
グネトブランバイト型フェライトのことである0通常の
方法によれば、これらの磁粉にカップリング剤として、
例えばT−アミノプロピルトリエトキシシランなどを0
.5wt%程度表面処理するが、粉の撥水性は十分に得
られず表面処理剤が十分作用しているきは言えない。
<Function> The ferrite magnetic powder in the present invention refers to a magnetobrambite type ferrite generally referred to as Ba ferrite, Sr ferrite, PB ferrite, etc. According to a normal method, these magnetic particles are added as a coupling agent.
For example, T-aminopropyltriethoxysilane etc.
.. Although about 5 wt% of the surface is treated, the water repellency of the powder is not sufficient and it cannot be said whether the surface treatment agent is working sufficiently.

ところが本発明の処理、すなわち予め磁粉にアルカリ処
理を施した場合、前者と比較し格段の撥水性が得られる
。この現象については明白な理由は得られていないが、
カップリング剤の官能基と粉末表面との物理・化学的引
力が増し、磁粉表面でカップリング剤が一様に疎水基を
外に向は配列していると考えられる。
However, when the treatment of the present invention, that is, the magnetic powder is subjected to alkali treatment in advance, much water repellency can be obtained compared to the former method. Although no clear reason has been found for this phenomenon,
It is thought that the physical and chemical attraction between the functional groups of the coupling agent and the powder surface increases, and that the coupling agent uniformly arranges the hydrophobic groups outward on the magnetic powder surface.

本発明でアルカリ処理に用いられるアルカリの種類は特
に限定されるものではな(、NaOH1KOH1KIC
o、、Na1CO3の他アンモニア、アミン等の水溶液
が使用てきる。
The type of alkali used in the alkali treatment in the present invention is not particularly limited (NaOH1KOH1KIC
In addition to Na1CO3, aqueous solutions of ammonia, amines, etc. can be used.

また、本発明において用いられる表面処理用カップリン
グ剤としては、シラン系、チタン系、アルミニウム系、
有機リン系等がある。しかしマトリックスである合成樹
脂の種類によって表面処理の効果は異なるが、通常はシ
ラン系のものが最もよく使用されている。
In addition, the surface treatment coupling agents used in the present invention include silane-based, titanium-based, aluminum-based,
There are organic phosphorus types, etc. However, the effect of surface treatment varies depending on the type of synthetic resin that is the matrix, but silane-based resins are usually most commonly used.

なお本発明のアルカリ処理の程度として、アルカリ処理
後該磁粉を水によって抽出処理(JISK 5101)
 した後の水のpHが10以上で、かつpHが13以下
であることが好ましい、 pHlo未満では処理の効果
が現れず磁気特性が向上しない、またpHが13を上回
る場合、流動性は良くなるもののコンパウンドの強度低
下が生じてしまう。
The degree of alkali treatment in the present invention is as follows: After the alkali treatment, the magnetic powder is extracted with water (JISK 5101).
It is preferable that the pH of the water after treatment is 10 or more and 13 or less. If the pH is less than pH 10, the treatment effect will not appear and the magnetic properties will not improve, and if the pH is higher than 13, the fluidity will be improved. This results in a decrease in the strength of the compound.

〈実施例〉 実施例! 平均粒径1 、41tnのSrフェライト磁粉を使用し
、この磁粉8kgをヘンシェルミキサー中に入れPR拌
しながら8%のNaOH水溶液100gを滴下した。こ
の磁粉を130℃で5時間乾燥し水分を蒸発させたのち
、この磁粉8000 gを再びヘンシェルミキサー中で
攪拌しながら、γ−アミノプロピルトリエトキシシラン
40gと水40gの混合液を滴下し表面処理を行った。
<Example> Example! Sr ferrite magnetic powder with an average particle size of 1.41 tn was used, and 8 kg of the magnetic powder was placed in a Henschel mixer, and 100 g of an 8% NaOH aqueous solution was added dropwise while stirring. After drying this magnetic powder at 130°C for 5 hours to evaporate water, 8000 g of this magnetic powder was again stirred in the Henschel mixer and a mixed solution of 40 g of γ-aminopropyltriethoxysilane and 40 g of water was added dropwise for surface treatment. I did it.

水分除去のため130℃で5時間乾燥を行い、この磁粉
7240 gに対しナイロン樹脂粉末760gを加えヘ
ンシェルミキサーで混合した。この混合物を2軸押出機
により240’C程度で混練を行いコンパウンドとし、
2〜5IiI11の長さにペレット化した。
After drying at 130° C. for 5 hours to remove moisture, 760 g of nylon resin powder was added to 7240 g of the magnetic powder and mixed in a Henschel mixer. This mixture is kneaded at about 240'C using a twin-screw extruder to form a compound.
It was pelleted to a length of 2-5IiI11.

コンパウンドの流動性の評価はASTM D 1238
  により行い、メルトインデックス(M、I。
ASTM D 1238 is used to evaluate the fluidity of compounds.
Melt index (M, I.

)は48g/10mであった。またコンパウンドのベレ
ットを射出成形機に装入し280℃程度で射出成形を行
った。得られた成形体は外径20闘、厚さ5閣の円板状
磁石であり、配向磁界は円板の中心軸方向に15kOe
印加している。磁気特性の測定はBHトレーサーで行い
、その結果(BH)願は2.OOMGOeであった。ま
たASTM D 630に従い成形体を得て曲げ強度を
測定したところ980kg/(jの強度であった0以上
の結果を第1表に示す。
) was 48g/10m. Further, the pellet of the compound was charged into an injection molding machine and injection molding was performed at about 280°C. The obtained compact is a disc-shaped magnet with an outer diameter of 20 mm and a thickness of 5 cm, and the orientation magnetic field is 15 kOe in the direction of the central axis of the disc.
is being applied. The magnetic properties were measured using a BH tracer, and the results (BH) are shown in 2. It was OOMGOe. In addition, a molded product was obtained according to ASTM D 630, and the bending strength was measured. Table 1 shows the results of 0 or more, which was a strength of 980 kg/(j).

実施例2 NaOHにかわりに0!1を用いた以外は実施例1と同
様であり、M、1.は39g/10幽、(Bll)願は
1.98MGOe、曲げ強度は910kg/cdであっ
た。
Example 2 Same as Example 1 except that 0!1 was used instead of NaOH, and M, 1. was 39g/10g/cd, (Bll) application was 1.98MGOe, and the bending strength was 910kg/cd.

実施例3 NaOHにかわり8%のアンモニア水100gを滴下し
た以外は実施例りと同様であり、M、1.は35g/1
0mIn、(Bll)mは1.97MC;Oe、曲げ強
度は990kg/c+flであった。
Example 3 The procedure was the same as in Example except that 100 g of 8% ammonia water was added dropwise instead of NaOH, and M, 1. is 35g/1
0 mIn, (Bll)m was 1.97 MC; Oe, and the bending strength was 990 kg/c+fl.

実施例4 Srフェライトにかえ、平均粒径L4amのBaフェラ
イトを用いた以外は実施例1と同様であり1、M■、は
46g/loom、((Ill)mは2.OOMGOe
、曲げ強度は960kg/cdであった。
Example 4 The same as Example 1 except that Ba ferrite with an average grain size L4am was used instead of Sr ferrite.
The bending strength was 960 kg/cd.

実施例5 Srフェライトにかえ、平均粒径1 、4 pWlのp
bフェライトを用いた以外は実施例1と同様であり、M
Example 5 Instead of Sr ferrite, p with an average grain size of 1 and 4 pWl
Same as Example 1 except that B ferrite was used, and M
.

■、は45g/10mm、(Bll)mは2.OOMG
Oe、曲げ強度は960kg/ciaであった。
■, is 45g/10mm, (Bll)m is 2. OOMG
Oe and bending strength were 960 kg/cia.

実施例6 平均粒径1.4p+wのSrフェライト磁粉を使用し、
この磁粉8kgを0.08%のNa0II水溶液10k
gに漫しよ<FM拌しスラリー状にした後、乾燥機に入
れ水分を取り除いた。その後この磁粉8kgをヘンシェ
ルミキサー中で撹拌しながら、γ−アミノプロピルトリ
エトキソシラン40gと水40gの混合液を滴下し表面
処理を行った。以降は実施例1と同様であり、M、1.
  は53g/10mn、(Btl)saxは2.02
MGOe、曲げ強度は920kg/c−であった。
Example 6 Using Sr ferrite magnetic powder with an average particle size of 1.4p+w,
8 kg of this magnetic powder was mixed with 10 kg of 0.08% Na0II aqueous solution.
After stirring with FM to make a slurry, it was placed in a dryer to remove moisture. Thereafter, while stirring 8 kg of this magnetic powder in a Henschel mixer, a mixed solution of 40 g of γ-aminopropyltriethoxosilane and 40 g of water was added dropwise to perform surface treatment. The subsequent steps are the same as in Example 1, with M, 1.
is 53g/10mn, (Btl)sax is 2.02
The bending strength of MGOe was 920 kg/c-.

比較例1 N a OII水溶液を滴下しないこと以外は実施例1
と同様であり、得られた結果はM、1.は9g/1O−
1(BH) w;aは1.82MIC0e、曲げ強度は
980kg/dであり、実施例に比べ流動性と磁気特性
が劣る。
Comparative Example 1 Example 1 except that the N a OII aqueous solution was not added dropwise.
The results obtained are as follows: M, 1. is 9g/1O-
1(BH) w;a is 1.82 MIC0e, bending strength is 980 kg/d, and fluidity and magnetic properties are inferior to Examples.

比較例2 NaOH水溶液を滴下しないこと以外は実施例4と同様
であり、得られた結果はM、1.は8g/1O−1(B
H) wは1.78MGOe、曲げ強度はg50kg/
C−であり、実施例に比べ流動性と磁気特性が劣る。
Comparative Example 2 Same as Example 4 except that the NaOH aqueous solution was not added dropwise, and the obtained results were as follows: M, 1. is 8g/1O-1(B
H) w is 1.78MGOe, bending strength is g50kg/
C-, and the fluidity and magnetic properties are inferior to those of the examples.

比較例3 NaO)I水溶液を滴下しないこと以外は実施例5と同
様であり、得られた結果はM、1.は7g/10廟、(
旧1)mは1.80MGOe、曲げ強度は960kg/
cdであり、実施例に比べ流動性と磁気特性が劣る。
Comparative Example 3 Same as Example 5 except that the NaO)I aqueous solution was not added dropwise, and the obtained results were as follows: M, 1. is 7g/10 temples, (
Old 1) m is 1.80MGOe, bending strength is 960kg/
cd, and its fluidity and magnetic properties are inferior to those of the examples.

比較例4 Srフェライト磁粉8000 gに対し、NaOH水溶
液を滴下せずヘンシェルミキサー中で攪拌しなからT−
アミノプロピルトリエトキシシラン40gと水40gの
混合液を滴下し、表面処理を行い乾燥後、この磁粉72
40 gに対しナイロンに樹脂粉末510g、樹脂改質
剤としてエチレンビスステアリン酸アミド250 gを
加え、ヘンシェルミキサーで混合した以外は実施例1と
同様であり、このときM、l。
Comparative Example 4 To 8000 g of Sr ferrite magnetic powder, T-
A mixture of 40 g of aminopropyltriethoxysilane and 40 g of water was added dropwise, and after surface treatment and drying, the magnetic powder 72
The procedure was the same as in Example 1 except that 510 g of resin powder and 250 g of ethylene bisstearamide as a resin modifier were added to 40 g of nylon and mixed in a Henschel mixer.

は26g/10m、(BH) waは1.95MGOe
、曲げ強度は700kg/cdであり、実施例に比べ流
動性がやや劣り、曲げ強度が劣る。
is 26g/10m, (BH) wa is 1.95MGOe
The bending strength was 700 kg/cd, and the fluidity was slightly inferior to that of the example, and the bending strength was inferior.

〈発明の効果〉 本発明により得られた磁粉は表面処理用力・ノブリング
剤が有効に作用し、樹脂改質剤を添加せずとも流動性、
磁気特性に優れ、さらに機械的強度の低下もないボンド
磁石を得ることができる。
<Effects of the Invention> In the magnetic powder obtained by the present invention, the surface treatment force and the knobling agent effectively act, and the fluidity and flowability are improved even without adding a resin modifier.
A bonded magnet with excellent magnetic properties and no decrease in mechanical strength can be obtained.

Claims (1)

【特許請求の範囲】[Claims]  マトリックスとしての合成樹脂とフェライト磁粉を混
合混練するに際して、予めフェライト磁粉をアルカリ処
理したのち表面処理用カップリング剤にて処理すること
を特徴とするボンド磁石用成形素材の製造方法。
A method for producing a molded material for a bonded magnet, which comprises, when mixing and kneading a synthetic resin as a matrix and ferrite magnetic powder, the ferrite magnetic powder is previously treated with an alkali and then treated with a coupling agent for surface treatment.
JP19385290A 1990-07-24 1990-07-24 Manufacture of forming material for bonded magnet Pending JPH0480903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19385290A JPH0480903A (en) 1990-07-24 1990-07-24 Manufacture of forming material for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19385290A JPH0480903A (en) 1990-07-24 1990-07-24 Manufacture of forming material for bonded magnet

Publications (1)

Publication Number Publication Date
JPH0480903A true JPH0480903A (en) 1992-03-13

Family

ID=16314827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19385290A Pending JPH0480903A (en) 1990-07-24 1990-07-24 Manufacture of forming material for bonded magnet

Country Status (1)

Country Link
JP (1) JPH0480903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176960A (en) * 2008-01-24 2009-08-06 Toda Kogyo Corp Magnetoplumbite type ferrite particle powder for bond magnet, method of manufacturing same, and resin composition, bond magnet, and magnet roll using magnetoplumbite type ferrite particle powder
JP2010504208A (en) * 2007-01-12 2010-02-12 コスロブ,アレクサンダー Process and apparatus for separating materials heavier than plastic, preferably metals, by floating in a water bath when separating plastic materials based on specific gravity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504208A (en) * 2007-01-12 2010-02-12 コスロブ,アレクサンダー Process and apparatus for separating materials heavier than plastic, preferably metals, by floating in a water bath when separating plastic materials based on specific gravity
US9375724B2 (en) 2007-01-12 2016-06-28 Alexander Koslow Method of and apparatus for separating out materials heavier than plastic, in particular metals, by flotation in a water bath, in a separation of plastics of different densities
JP2009176960A (en) * 2008-01-24 2009-08-06 Toda Kogyo Corp Magnetoplumbite type ferrite particle powder for bond magnet, method of manufacturing same, and resin composition, bond magnet, and magnet roll using magnetoplumbite type ferrite particle powder

Similar Documents

Publication Publication Date Title
JP2004327669A (en) Bonded magnet, and ferrite magnetic powder therefor
EP2983178B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
KR102269998B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded article using ferrite particle powder and resin composition
JPH0480903A (en) Manufacture of forming material for bonded magnet
CN111363228B (en) EEA filling modified magnetic particle material for injection molding and preparation method thereof
JPH0493002A (en) Manufacture of bond magnet molding material
JPS62282418A (en) Manufacture of composite magnet
JPS59135705A (en) Resin magnet material
JPH0541314A (en) Manufacture of bond magnet molding raw material
JP2767244B2 (en) Method for producing composite magnet composition
JPH07153616A (en) Resin composite ferrite, manufacture thereof and material for electronic component
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JP2719792B2 (en) Manufacturing method of composite magnet
JP2756860B2 (en) Materials for polyamide plastic magnets
JP2002231548A (en) Magnet composition and manufacturing method thereof
JPH06112029A (en) Manufacture of ferrite magnet
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JP2002080725A (en) Magnetic body particle-containing molding
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JPH03160707A (en) Manufacture of ferrite magnetic powder for anisotropic bonded magnet
JPH01165103A (en) Plastic magnet material superior in mechanical strength and magnetic characteristics
CN110655784A (en) Magnetic plastic composition and preparation method thereof
JPH01111305A (en) Plastic magnet composition
JPH02116104A (en) Manufacture of resin-bonded permanent magnet
JPH07135104A (en) Manufacture of polymer-rare earth composite magnet