JPS62270746A - Manufacture of rare earth-type permanent magnet - Google Patents

Manufacture of rare earth-type permanent magnet

Info

Publication number
JPS62270746A
JPS62270746A JP11182786A JP11182786A JPS62270746A JP S62270746 A JPS62270746 A JP S62270746A JP 11182786 A JP11182786 A JP 11182786A JP 11182786 A JP11182786 A JP 11182786A JP S62270746 A JPS62270746 A JP S62270746A
Authority
JP
Japan
Prior art keywords
magnetic
phase
rare earth
powder
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11182786A
Other languages
Japanese (ja)
Other versions
JP2779794B2 (en
Inventor
Tsutomu Otsuka
努 大塚
Etsuo Otsuki
悦夫 大槻
Kinya Sasaki
佐々木 欣也
Teruhiko Fujiwara
照彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61111827A priority Critical patent/JP2779794B2/en
Publication of JPS62270746A publication Critical patent/JPS62270746A/en
Application granted granted Critical
Publication of JP2779794B2 publication Critical patent/JP2779794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet improved in temperature characteristics, by mixing specific amounts of powders of nonmagnetic elements with a powder of rare earth-Fe-B-Co alloy having a specific composition and by subjecting the resulting powder mixture to compacting and then to hot compaction. CONSTITUTION:The powders of nonmagnetic elements such as Zn, Al, S, In, Ga, etc., are mixed by <=10%, by volume ratio, with the powder of a magnetic alloy consisting of, by atom, 10-20% R (rare earth elements including Y), 5-15% B, <=50% Co, and the balance Fe. The resulting powder mixture is compacted in a magnetic field, etc., and the green compact is then subjected to hot compaction at about 300-1,100 deg.C in vacuum or in an inert atmosphere, etc. In this way, rare earth-type permanent magnets excellent in temperature characteristics and having high magnetic properties can be obtained and, moreover, the green compact can be made dense by means of low-temp. sintering and improvement in the accuracy of product dimension can be attained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、Yを含む希土類元素(以下Rと略記する)と
、 Fe、Bより成る金属間化合物及び非磁性元素Mよ
りなるR2Fe、4B−M系磁石材料を用いて。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a rare earth element containing Y (hereinafter abbreviated as R), an intermetallic compound consisting of Fe and B, and a non-magnetic Using R2Fe, 4B-M magnet material consisting of element M.

温度特性が改良されたR2T14B−M系磁石とその製
造方法に関するものである。
The present invention relates to an R2T14B-M magnet with improved temperature characteristics and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

R−Fe−B系永久磁石の文献として特開昭59−46
008号公報や日本応用磁気学会第35回研究会資料(
昭59年5月)がある。またその温度特性改良材の文献
として特開昭59−64733号公報が挙げられる。
JP-A-59-46 as a document on R-Fe-B permanent magnets
Publication No. 008 and materials from the 35th research meeting of the Japanese Society of Applied Magnetics (
May 1980). In addition, Japanese Patent Application Laid-Open No. 1987-64733 can be mentioned as a document regarding the temperature characteristic improving material.

これらの文献に開示されているものは、いずれもR2T
、4B相を主相とするR−T−B系合金粉末を普通の常
圧焼結法により得る方法であり、それらにおいては、所
定の組成から成る合金を溶解して粉砕し、それを磁場中
で成形した後、900〜1200℃粋−の温度で焼結す
るものである。更に詳しく説明すると、常圧焼結法によ
りR−T−B系永久磁石全製造する場合、その緻密化は
高Nd相(液相)の出現に伴う液相焼結によって成され
る。即ち、焼結体中には、磁性相であシ主相とするR2
T14B相、この他は非磁性相であるB−rich相、
酸化物相の他に。
What is disclosed in these documents are all R2T
This is a method of obtaining R-T-B alloy powder with 4B phase as the main phase by a normal pressureless sintering method. After being molded inside, it is sintered at a temperature of 900 to 1200°C. To explain in more detail, when all RTB permanent magnets are manufactured by pressureless sintering, densification is achieved by liquid phase sintering accompanied by the appearance of a high Nd phase (liquid phase). That is, in the sintered body, R2, which is a magnetic phase and a main phase, is present.
T14B phase, B-rich phase which is a non-magnetic phase,
Besides the oxide phase.

液相成分相であるNd−rich相が存在する。一般に
本系磁石合金では、°これら各相の存在比に対応して、
磁石特性(特にBr、(BH)max )は大きく変化
する・現状のグロセスによシ得られる焼結体中には。
There is a Nd-rich phase which is a liquid phase component phase. In general, in this magnetic alloy, depending on the abundance ratio of each of these phases,
Magnetic properties (particularly Br, (BH)max) vary greatly in sintered bodies obtained by current processes.

これら非磁性相の体積構成比は約10%以上である。The volume composition ratio of these non-magnetic phases is about 10% or more.

その他の製法としては、メルトスピニング法による超急
冷物質の焼鈍法(特開昭60−100402号)、ある
いは射出成形やプント磁石法(特開昭59−21990
4号)などがある。
Other manufacturing methods include annealing of super-quenched materials by melt spinning (Japanese Patent Application Laid-Open No. 60-100402), injection molding and Punt magnet method (Japanese Patent Application Laid-Open No. 59-21990).
No. 4).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

常圧焼結方法の場合には製品に充分な緻密化を得るため
には、液相成分を体積構成比で5%以上必要とするため
、常圧焼結によシ得られる磁石特性には、限界がある。
In the case of the pressureless sintering method, in order to obtain sufficient densification of the product, a liquid phase component of 5% or more by volume is required, so the magnetic properties obtained by pressureless sintering are ,There is a limit.

さらにR−T−B系磁石の常圧焼結は900〜1200
℃という高温で行なわれるため、高温による変形などが
原因となシ9寸法精。
Furthermore, pressureless sintering of RTB magnets is 900 to 1200
Since the process is carried out at a high temperature of ℃, there is no possibility of deformation due to the high temperature.

度の点で歩留シにも限界がある。There is also a limit to the yield in terms of efficiency.

また、超急冷物質の焼鈍法による方法にょシ作製したR
−Fe−B薄帯は磁気的に等方性を有するため。
In addition, R
-Fe-B ribbon has magnetic isotropy.

焼結磁石に比べ磁石特性が格段に低く、またこの−薄帯
を用いて塑性変形による異方性化をしても。
The magnetic properties are much lower than that of sintered magnets, and even if this ribbon is used to make it anisotropic through plastic deformation.

薄帯中の結晶組織が本質的に等方的であるため焼結磁石
と同等の特性は望めない。
Since the crystal structure in the ribbon is essentially isotropic, properties equivalent to those of sintered magnets cannot be expected.

また、射出成形法及びプント磁石法の場合、磁性粉末間
の空隙を埋める非磁性バインダーの量が体積構成比で少
なくとも20%以上を必要とするため、特性は他法に比
べ極めて低い。
Furthermore, in the case of the injection molding method and the Punt magnet method, the amount of non-magnetic binder filling the gaps between the magnetic powders needs to be at least 20% by volume, so the properties are extremely poor compared to other methods.

本発明はこのような問題点を解決し、さらに温度特性を
向上させるもので、その目的は。
The purpose of the present invention is to solve these problems and further improve temperature characteristics.

(1)非磁性金属結合相量の低減による特性向上(2)
製品寸法精度向上による歩留シ改善(3)R2Fe、4
B相中のFeの一部″f!:coで置換することによる
温度特性の向上 を達成するための製造方法を提供するにある。
(1) Improved properties by reducing the amount of non-magnetic metal binding phase (2)
Yield improvement by improving product dimensional accuracy (3) R2Fe, 4
The object of the present invention is to provide a manufacturing method for achieving improvement in temperature characteristics by replacing a portion of Fe in phase B with "f!:co."

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため1本発明は、 R−T−B基磁
性粉末と体積構成比O〜10%(0は含ます)の非磁性
金属の混合粉末、及び成形体を熱間加圧成形することを
特徴とする。ここで非磁性金属は。
In order to achieve the above object, 1 the present invention hot-presses a mixed powder of an R-T-B based magnetic powder and a non-magnetic metal with a volume composition ratio of 0 to 10% (0 is included), and a compact. It is characterized by Here, non-magnetic metals.

R−T−B系非磁性化合物を含む低融点金属で、粉末あ
るいは磁性粉末への物理的及び化学的表面被覆層のいず
れでもよい。また熱間加圧成形はいわゆるホントプレス
、熱間静水圧プレス、押し出しのいずれでも可、−能で
あるが、製品寸法精度の点からホントプレス、及び熱間
押し出し成型が適している。
It is a low melting point metal containing an R-T-B type non-magnetic compound, and may be a powder or a physical or chemical surface coating layer on a magnetic powder. Further, the hot press forming can be performed by any of the so-called real press, hot isostatic press, and extrusion, but real press and hot extrusion are suitable from the viewpoint of product dimensional accuracy.

すなわち1本発明では。In other words, in the present invention.

(1)非磁性金属を用いて、加圧成形することによる緻
密化の促進 (2)磁性粒子を滑らかな界面で包み込むことによる磁
石の「高保磁力化」 (3)熱間加圧成形を用諭ることにょシ、非磁性相の流
動及び磁性相の塑性変形を利用した非磁性相の減少、及
び短時間の緻密化による非磁性金属と磁性相との反応の
抑制の両者に起因するBrの向上 (4)R2F014B相中のFeの一部をCoで置換す
ることによる温度特性の向上 が得られる。
(1) Using non-magnetic metal to promote densification by pressure forming (2) Increasing the coercive force of the magnet by wrapping magnetic particles in a smooth interface (3) Using hot pressure forming In other words, the reduction of Br due to both the reduction of the non-magnetic phase using the flow of the non-magnetic phase and the plastic deformation of the magnetic phase, and the suppression of the reaction between the non-magnetic metal and the magnetic phase due to short-term densification. Improvement (4) Temperature characteristics can be improved by substituting a part of Fe in the R2F014B phase with Co.

本発明に適用される永久磁石材料は、一般式%式% で表わされるが、ここで式中のRはYf:含む希土類元
素のうち一種又は二種以上が用いられる。また式中のM
はZn、At*S、In、FetGa、Sn、Te、G
e、Cu、PJの一種又は二種以上、あるいはこれらの
元素と希土類元素、Bとの合金が用いられる。また(1
)式において 0.65≦x+y≦0.85 0<y≦0.5 0.0
5≦2≦0.15である。FexCoyの量が多すぎる
とBrは向上するもののHeは極端に低下し、少なすぎ
るとBrの低下により (BH)mは減少するため、0
.65≦x+y≦0.85とした。またFeの一部をC
oで置換することにより1本系磁石のキュリ一点(Tc
)は上昇するがHcはCoの置換量と共に下がる傾向が
ある。また0、 5以上の置換ではそのHeの劣化が著
しく、永久磁石材料の特性として、好ましくないためO
<y≦0.5とする必要がある。
The permanent magnet material applied to the present invention is represented by the general formula %, where R in the formula is Yf: one or more rare earth elements are used. Also, M in the formula
is Zn, At*S, In, FetGa, Sn, Te, G
One or more of e, Cu, and PJ, or an alloy of these elements with a rare earth element or B is used. Also (1
) formula, 0.65≦x+y≦0.85 0<y≦0.5 0.0
5≦2≦0.15. If the amount of FexCoy is too large, Br will improve but He will be extremely reduced, and if it is too small, (BH)m will decrease due to the decrease in Br, so 0
.. 65≦x+y≦0.85. Also, a part of Fe is C
By replacing with o, one Curie point (Tc
) increases, but Hc tends to decrease with the amount of Co substitution. In addition, if the substitution is 0 or 5 or more, the deterioration of the He will be significant, which is not desirable due to the characteristics of the permanent magnet material, so O
It is necessary to satisfy <y≦0.5.

Bは磁石特性の向上に著しい効果をもたらすが0.15
を越えると特性の劣化をもたらすため。
B has a remarkable effect on improving magnetic properties, but 0.15
Exceeding this will result in deterioration of characteristics.

0.05≦2≦0.15とした。It was set as 0.05≦2≦0.15.

また、非磁性金属Mは、量が多すぎるとBrの低下が著
しく本発明の目的に合わないため0(t≦10とする。
Further, the non-magnetic metal M is set to 0 (t≦10) because if the amount is too large, the Br decreases significantly and is not suitable for the purpose of the present invention.

(1)式で示される磁石材料はR4−8−y−zFeX
coyBzなる組成を有する粉末と、非磁性金属元素及
び合金Mの混合粉末、又は、混合粉末成形体を300〜
1100℃の温度範囲にて真空中又は不活性雰囲気中で
熱間加圧成形することにより製造される。
The magnet material represented by formula (1) is R4-8-y-zFeX
A mixed powder of a powder having a composition of coyBz, a non-magnetic metal element and alloy M, or a mixed powder compact is
It is produced by hot pressing in a vacuum or inert atmosphere at a temperature range of 1100°C.

ここで、熱間加圧成形時の温度を300〜11001:
としたのは300℃未満では成形体の充分な緻密化が得
られず、1100℃以上ではR−Fe−Co−B磁性微
粒子の粒成長及び磁性相と非磁性元素もしくは合金との
反応が顕著となり良好な磁石特性が得られないためであ
る。
Here, the temperature during hot pressing is 300 to 11001:
The reason for this is that at temperatures below 300°C, sufficient densification of the compact cannot be obtained, and at temperatures above 1100°C, grain growth of R-Fe-Co-B magnetic fine particles and reaction between the magnetic phase and the non-magnetic element or alloy are significant. This is because good magnetic properties cannot be obtained.

〈実施例1〉 純度95チ以上のNd 、Fe 、Co 、B″f:用
いて、アルゴン雰囲気中で、高周波加熱によ’) Nd
 1sFe bsCO、b B 6の組成を有するNd
2(FeCo)14B相を主相とする9ゴツトを得た。
<Example 1> By high-frequency heating in an argon atmosphere using Nd, Fe, Co, B'' with a purity of 95 or higher
1sFe bsCO, Nd with a composition of b B 6
Nine gots having the main phase of 2(FeCo)14B were obtained.

次にこのインゴットを相粉砕した後、ゴールミルを用い
て平均粒径約4μmに湿式粉砕した。次に得られた微粉
末f、95vo1%とし、残部5 vo1%は純度99
.9%以上の非磁性元素Zn、AltS + In 、
Ga 、Ge 、Te 、Cu 、 Pb粉末のうちの
一種類とし。
Next, this ingot was subjected to phase pulverization, and then wet pulverized using a goal mill to an average particle size of about 4 μm. Next, the obtained fine powder f is 95 vol 1%, and the remaining 5 vol 1% has a purity of 99
.. 9% or more of non-magnetic elements Zn, AltS + In,
One type of powder among Ga, Ge, Te, Cu, and Pb powder.

体積比で95:5の割合で混合しこれら混合粉末をボー
ルミルにて均一分散混合して第1表に試料屋1〜10と
して示すような10種類のNd13Fe65Co、6B
6と非磁性粉末の混合粉末を得た。これら。
The mixed powders were mixed at a volume ratio of 95:5 and uniformly dispersed in a ball mill to produce 10 types of Nd13Fe65Co, 6B as shown in Table 1 as samples 1 to 10.
A mixed powder of No. 6 and non-magnetic powder was obtained. these.

粉末を20 K11e磁界中にて1. Ot/m2の圧
力で成形した。最後にこれら成形体を真空中、600℃
の温度下で、1.Ot/6n2の圧力を加え15分間ホ
ットプレスした。このようにして得られた磁石の特性を
及びV、S、MによシTeを測定した結果を第−表に示
す。試料A11は比較例1として第1表に記載されたも
ので、非磁性元素が混合されていないものであって、磁
石特性は極めて小さく実用的にはほとんど使用できない
値である。これに対し試料&1〜10は非磁性元素が混
入されていて、しがもホットプレスのために、 Nd2
(FeCO)、4B相の粒成長を極力抑えつつ、焼結を
促進させている。これはiHcを太きく L 、 Br
も改善させていることにょシ、ひいては(BH)max
を40(MGMe)以上とし、非磁性元素をAtとした
ものについては48(MGMe)にもなシ、これまでの
永久磁石では最高級の特性と言える。
The powder was heated in a 20K11e magnetic field for 1. Molding was carried out at a pressure of Ot/m2. Finally, these molded bodies were heated to 600°C in a vacuum.
At a temperature of 1. A pressure of Ot/6n2 was applied and hot pressing was carried out for 15 minutes. Table 1 shows the characteristics of the magnet thus obtained and the results of measuring V, S, M and Te. Sample A11 is listed in Table 1 as Comparative Example 1, and does not contain any non-magnetic elements, and its magnetic properties are so small that they can hardly be used practically. On the other hand, samples &1 to 10 contain non-magnetic elements, and due to hot pressing, Nd2
(FeCO), sintering is promoted while suppressing grain growth of the 4B phase as much as possible. This makes iHc thicker L, Br
We are also improving (BH) max.
40 (MGMe) or more, and the non-magnetic element is At, it is even better than 48 (MGMe), which can be said to be the highest quality of permanent magnets to date.

また参考例としてNd 1sF e 62CO16B 
7の組成を有する焼結体の磁気特性及びTcを試料屋1
2で第1表に記載した。
Also, as a reference example, Nd 1sF e 62CO16B
The magnetic properties and Tc of the sintered body having the composition of
2 is listed in Table 1.

以下余日 これは、非磁性元素Mが磁性相Nd2(FeCo)、4
B相に対し低い融点であるために、低温で液相となり、
磁性相の表面を薄く被って、しかも加圧高温下であるた
めに、磁性相と混合した非磁性のM元素との反応だけに
極力抑えられて、普通焼結法による磁性相と、 R−r
ich相あるいはB−rich相あるいは酸化物相の反
応が存在しないか、極力抑えられるためと考えられる。
In the following, the non-magnetic element M is magnetic phase Nd2 (FeCo), 4
Because it has a lower melting point than phase B, it becomes a liquid phase at low temperatures,
Because the surface of the magnetic phase is thinly coated, and the pressure and high temperature are applied, the reaction with the non-magnetic M element mixed with the magnetic phase is suppressed as much as possible, and the magnetic phase produced by the normal sintering method and R- r
This is considered to be because reactions in the ich phase, B-rich phase, or oxide phase do not exist or are suppressed as much as possible.

尚、参考例として、試料&12に普通焼結法での組成と
データを記しているが、前述したように普通焼結法では
Nd−Jich相、B−rich相の存在をも考慮して
設定しているために、試料1〜10に比剪して希土類R
を多めにする必要があるが9本願発明による試料1〜1
0では、磁性相としては化学量線的組成に近いもので良
いと言える。
As a reference example, the composition and data for the normal sintering method are shown for sample &12, but as mentioned above, the composition and data for the normal sintering method are set taking into account the presence of the Nd-Jich phase and the B-rich phase. Therefore, samples 1 to 10 were pruned and rare earth R
It is necessary to increase the number of samples 1 to 1 according to the present invention.
0, it can be said that the magnetic phase should have a composition close to the stoichiometric composition.

〈実施例2〉 実施例1で得られたNd 1□、6Fe 63.o” 
、s、6Bs、a I n 3(鵬煮3)の−組成を有
する成形体全Ar中で200〜1200℃の温度下で1
.Ot/crnの圧力を加え、155分間ホットブレス
た。この時の磁石特性を第1図に示従来の焼結磁石よシ
も高い磁石特性を示している。
<Example 2> Nd 1□, 6Fe 63. obtained in Example 1. o”
, s, 6Bs, a I n 3 (Penni 3) at a temperature of 200 to 1200°C in whole Ar.
.. A pressure of Ot/crn was applied and hot-breathed for 155 minutes. The magnetic characteristics at this time are shown in FIG. 1, and show higher magnetic characteristics than conventional sintered magnets.

第1図に示されるよってホットプレスの温度が400℃
までは、焼結密度dの向上に伴って残留磁束密度Brも
向上し、400℃以上ではdはほぼ7、6 (gr/c
c)と一定となp 、 Brは900℃までほぼ一定値
をとる。
As shown in Figure 1, the temperature of the hot press is 400℃.
Until now, as the sintering density d increased, the residual magnetic flux density Br also increased, and at temperatures above 400°C, d was approximately 7.6 (gr/c
c), p is constant, and Br takes a nearly constant value up to 900°C.

一方、 iHcは400℃以下では磁性のNd−Fe−
Co−B相と非磁性の工n相との反応が不十分であるた
めに小さく、また、900℃以上では反応しすぎのため
に磁性相が非磁性相にくわれてしまってしかも粒成長し
てしまうために、高い温度になるにつれBrは劣化し、
 iHcも小さくなっている。
On the other hand, iHc becomes magnetic Nd-Fe-
Because the reaction between the Co-B phase and the non-magnetic Co-n phase is insufficient, the size is small, and at temperatures above 900°C, the reaction occurs too much, causing the magnetic phase to be swallowed by the non-magnetic phase, resulting in grain growth. Therefore, as the temperature increases, Br deteriorates,
iHc has also become smaller.

このようなことから’ (BH)maxも400℃〜9
00℃のホットプレス温度では大きく、好ましくは50
0〜700℃の温度が最大である。
Because of this, (BH)max is also 400℃~9
At a hot press temperature of 00°C, it is large, preferably 50°C.
Temperatures between 0 and 700°C are maximum.

〔効 果〕〔effect〕

以上説明したように9本発明によればR2Fe14B相
を主相する磁性粉末において、 Feの一部ヲCOに置
換したR2 (F e Co ) 14B相を主相とす
る磁性粉末と。
As explained above, according to the present invention, there is provided a magnetic powder having an R2Fe14B phase as a main phase, and a magnetic powder having an R2 (Fe Co ) 14B phase as a main phase in which a portion of Fe is replaced with CO.

非磁性金属粉末を混合した後、熱間加圧成形を行うこと
により温度特性に優れ、従来の焼結法によシ製造される
R−T−B系磁石よりも高い磁気特性を有する永久磁石
を得ることができる。
A permanent magnet that has excellent temperature characteristics by hot pressing after mixing non-magnetic metal powder, and has higher magnetic properties than R-T-B magnets manufactured by conventional sintering methods. can be obtained.

また9本発明によれば従来の焼結法に比べ低温で成形体
の緻密化が図れ、製品寸法精度向上が実現できる効果が
ある。
Furthermore, according to the present invention, the compact can be densified at a lower temperature than conventional sintering methods, and the dimensional accuracy of the product can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はホットプレスによるNd12.6”e63.0
co15.4B5.8Insのホットプレス温度と磁気
特性の関係図である。
Figure 1 shows Nd12.6”e63.0 made by hot pressing.
FIG. 2 is a diagram showing the relationship between hot press temperature and magnetic properties of co15.4B5.8Ins.

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分率で10〜20%のR(但しRはYを含
む希土類元素)、5〜15%のB(ボロン)50%以下
のCo(コバルト)及び残部がFe(鉄)よりなる合金
粉末に、体積比で10%以下(零を含まず)の非磁性元
素の粉末を混合し、その混合粉末の成形後熱間加圧成形
することを特徴とする希土類系永久磁石の製造方法。
(1) An alloy consisting of 10 to 20% R (where R is a rare earth element including Y) in atomic percentage, 5 to 15% B (boron), 50% or less Co (cobalt), and the balance Fe (iron). A method for producing a rare earth permanent magnet, which comprises mixing powder with a powder of a non-magnetic element at a volume ratio of 10% or less (not including zero), forming the mixed powder, and then hot-pressing the mixed powder.
(2)前記熱間加圧成形が、300〜1100℃の温度
範囲でかつ真空又は不活性気体の雰囲気中で行われるこ
とを特徴とする特許請求の範囲第(1)項記載の製造方
法。
(2) The manufacturing method according to claim (1), wherein the hot pressing is performed at a temperature range of 300 to 1100°C in a vacuum or an inert gas atmosphere.
JP61111827A 1986-05-17 1986-05-17 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP2779794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111827A JP2779794B2 (en) 1986-05-17 1986-05-17 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111827A JP2779794B2 (en) 1986-05-17 1986-05-17 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPS62270746A true JPS62270746A (en) 1987-11-25
JP2779794B2 JP2779794B2 (en) 1998-07-23

Family

ID=14571156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111827A Expired - Lifetime JP2779794B2 (en) 1986-05-17 1986-05-17 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2779794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179305A (en) * 1987-12-29 1989-07-17 Daido Steel Co Ltd Manufacture of anisotropic permanent magnet
JPH0252413A (en) * 1988-08-16 1990-02-22 Sanyo Special Steel Co Ltd Manufacture of permanent magnet
JPH02111001A (en) * 1988-10-20 1990-04-24 Tokin Corp Manufacture of alloy powder for polymer composite-type rare-earth magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814151B2 (en) * 2012-02-09 2015-11-17 株式会社マキタ Electric tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet
JPS59204212A (en) * 1983-05-06 1984-11-19 Sumitomo Special Metals Co Ltd Isotropic permanent magnet and manufacture thereof
JPS59219453A (en) * 1983-05-24 1984-12-10 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS6052556A (en) * 1983-09-02 1985-03-25 Sumitomo Special Metals Co Ltd Permanent magnet and its production
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet
JPS59204212A (en) * 1983-05-06 1984-11-19 Sumitomo Special Metals Co Ltd Isotropic permanent magnet and manufacture thereof
JPS59219453A (en) * 1983-05-24 1984-12-10 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS6052556A (en) * 1983-09-02 1985-03-25 Sumitomo Special Metals Co Ltd Permanent magnet and its production
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179305A (en) * 1987-12-29 1989-07-17 Daido Steel Co Ltd Manufacture of anisotropic permanent magnet
JPH0252413A (en) * 1988-08-16 1990-02-22 Sanyo Special Steel Co Ltd Manufacture of permanent magnet
JPH02111001A (en) * 1988-10-20 1990-04-24 Tokin Corp Manufacture of alloy powder for polymer composite-type rare-earth magnet

Also Published As

Publication number Publication date
JP2779794B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JP7418598B2 (en) Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods
JP2004165482A (en) R-Fe-B SYSTEM SINTERED MAGNET
JPWO2002103719A1 (en) Rare earth permanent magnet material
EP0249973B1 (en) Permanent magnetic material and method for producing the same
US4747874A (en) Rare earth-iron-boron permanent magnets with enhanced coercivity
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2675430B2 (en) Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
JPS62270746A (en) Manufacture of rare earth-type permanent magnet
US4952252A (en) Rare earth-iron-boron-permanent magnets
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JPS6181607A (en) Preparation of rare earth magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH068488B2 (en) Permanent magnet alloy
JPS61179801A (en) Alloy powder for bond magnet and its production
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH04120238A (en) Manufacture of rare earth sintered alloy and manufacture of permanent magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP5501835B2 (en) Rare earth permanent magnet
JPS59219452A (en) Permanent magnet material and its production
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JP2726991B2 (en) Rare earth composite magnet material
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy
JPS62257704A (en) Permanent magnet