JP2675430B2 - Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same - Google Patents

Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same

Info

Publication number
JP2675430B2
JP2675430B2 JP2269635A JP26963590A JP2675430B2 JP 2675430 B2 JP2675430 B2 JP 2675430B2 JP 2269635 A JP2269635 A JP 2269635A JP 26963590 A JP26963590 A JP 26963590A JP 2675430 B2 JP2675430 B2 JP 2675430B2
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
transition metal
rare earth
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2269635A
Other languages
Japanese (ja)
Other versions
JPH03250607A (en
Inventor
由紀子 尾崎
道夫 下斗米
泰隆 福田
藤田  明
葉子 北野
順一 下村
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2269635A priority Critical patent/JP2675430B2/en
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to KR1019910700606A priority patent/KR960013029B1/en
Priority to DE69027201T priority patent/DE69027201T2/en
Priority to PCT/JP1990/001315 priority patent/WO1991006107A1/en
Priority to CA002044171A priority patent/CA2044171C/en
Priority to EP90914967A priority patent/EP0447567B1/en
Priority to CN 90109219 priority patent/CN1027473C/en
Publication of JPH03250607A publication Critical patent/JPH03250607A/en
Priority to US08/238,330 priority patent/US5437741A/en
Priority to US08/266,791 priority patent/US5447578A/en
Application granted granted Critical
Publication of JP2675430B2 publication Critical patent/JP2675430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れるだけでなく、耐蝕性お
よび温度特性にも優れた希土類−遷移金属系磁石および
その製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a rare earth-transition metal magnet having excellent magnetic properties as well as excellent corrosion resistance and temperature characteristics, and a method for producing the same.

(従来の技術) 現在、製造されている代表的な永久磁石材料として
は、アルニコ磁石、フェライト磁石および希土類磁石な
どが挙げられる。アルニコ磁石は歴史的に古いが、安価
なフェライト磁石あるいはさらにより高い磁気特性を持
つ希土類磁石の開発により、需要は低下しつつある。一
方フェライト磁石は、酸化物を主原料としていることか
ら化学的に安定で、かつ低コストであるため、現在でも
磁石材料の主流を占めているが、最大エネルギー積が小
さいという欠点があった。
(Prior Art) Alnico magnets, ferrite magnets, rare earth magnets, and the like are mentioned as typical permanent magnet materials currently manufactured. Alnico magnets are historically old, but demand is declining due to the development of inexpensive ferrite magnets and rare earth magnets with even higher magnetic properties. Ferrite magnets, on the other hand, are chemically stable because they use oxides as the main raw material, and because they are low cost, they still occupy the mainstream of magnet materials, but they have the drawback of a small maximum energy product.

その後、希土類イオンの持つ磁気異方性と遷移金属元
素の持つ磁気モーメントとを組合わせたSm−Co系磁石が
出現し、従来の最大エネルギー積を大幅に更新した。し
かしなが、Sm−Co系磁石は資源的に乏しいSmとCoを主成
分としているために高価な磁石とならざるを得なかっ
た。
After that, Sm-Co based magnets that combined the magnetic anisotropy of rare earth ions and the magnetic moment of transition metal elements appeared, and the conventional maximum energy product was renewed significantly. However, the Sm-Co magnets have to be expensive magnets because they contain Sm and Co, which are scarce resources, as the main components.

そこで高価なSmやCoを含まない、安価でかつ高磁気特
性を有する磁石合金の開発が行われ、その結果佐川ら
は、焼結法により三元系で安定な合金(特公昭61−3424
2号公報および特開昭59−132104号公報)を、またJ.J.C
roatらは液体急冷法により保磁力の高い合金(特開昭59
−64739号公報)を開発した。これらはNd,Fe及びBから
なる磁石で、その最大エネルギー積はSm−Co系磁石のそ
れを超えるものである。
Therefore, a magnetic alloy that does not contain expensive Sm and Co and that has low cost and high magnetic properties was developed.As a result, Sagawa et al. Developed a ternary stable alloy by the sintering method (Japanese Patent Publication Sho 61-3424).
2 and JP-A-59-132104), and JJC
roat et al. have alloys with high coercive force by the liquid quenching method (JP-A-59)
-64739 publication) was developed. These are magnets composed of Nd, Fe and B, and their maximum energy products exceed those of Sm-Co magnets.

しかしながらNd−Fe−B系磁石は、成分として非常に
活性の高いNdなどの軽希土類元素および錆び易いFeを多
量に含んでいることから、耐蝕性に劣り、その結果、磁
気特性が劣化して工業材料としての信頼性に欠けるとい
う欠点があった。
However, since Nd-Fe-B magnets contain a large amount of light rare earth elements such as Nd, which has a very high activity, and Fe, which easily rusts, they are inferior in corrosion resistance and, as a result, their magnetic properties deteriorate. It has a drawback that it lacks reliability as an industrial material.

従って耐蝕性の改善のために、たとえば焼結磁石につ
いては表面めっき(特開昭63−77103号公報)、コーテ
ィング処理(特開昭60−63901号公報)等を施し、また
樹脂結合型磁石では磁粉と樹脂を混練する前に予め表面
処理を施すなどの対策が講じられているが、いずれも長
期間にわたって有効な防錆処理とはいえず、また処理の
ためコスト高となり、さらには保護膜による磁束のロス
などの問題もあった。
Therefore, in order to improve the corrosion resistance, for example, a sintered magnet is subjected to surface plating (Japanese Unexamined Patent Publication No. 63-77103), coating treatment (Japanese Unexamined Patent Publication No. 60-63901), etc. Although measures such as surface treatment are taken in advance before kneading the magnetic powder and resin, none of these can be said to be effective rust-prevention treatment for a long period of time, and the cost increases due to the treatment, and the protective film There were also problems such as loss of magnetic flux due to.

上記の問題の解決策として、発明者らは先に、Nd−Fe
−B系磁石のFeをCoおよびNiで高濃度に置換した希土類
−遷移金属−ボロン系磁石合金を提案した(特開平2−
4939号公報)。
As a solution to the above problem, the inventors have previously proposed Nd-Fe
A rare earth-transition metal-boron-based magnet alloy in which Fe of a B-based magnet is replaced with Co and Ni to a high concentration has been proposed (JP-A-2-
4939 publication).

上記の磁石は、耐蝕性に優れ、しかもキュリー点が上
昇したので、材料としての信頼性が大幅に向上した。
Since the above-mentioned magnet has excellent corrosion resistance and the Curie point is increased, the reliability as a material is significantly improved.

(この発明が解決しようとする課題) この発明は、上記の磁石をさらに発展させたもので、
二相組織の希土類−遷移金属系磁石を提案する。
(Problems to be Solved by the Invention) This invention is a further development of the above magnet,
We propose a rare-earth-transition metal magnet with a two-phase structure.

なお二相組織のNd系磁石については、先に、希土類富
相と希土類貧相の相とを混合・液相焼結した、磁気特性
に優れた二合金法による磁石が提案されている(特開昭
63−93841号、同63−164403号各公報)が、上記の方法
では、磁気特性は向上するものの耐蝕性という点に関し
ては依然として問題を残していた。
As for the Nd-based magnet having a two-phase structure, a magnet based on a two-alloy method, which is a mixture of a rare-earth-rich phase and a rare-earth-poor phase mixed and liquid-phase sintered, and which has excellent magnetic properties, has been previously proposed (Japanese Patent Application Laid-Open No. 2004-242242). Akira
Nos. 63-93841 and 63-164403), the above method still has a problem with respect to corrosion resistance, although the magnetic characteristics are improved.

この発明は、上記の問題を有利に解決するもので、磁
気特性だけでなく耐蝕性にも優れた二相組織の希土類−
遷移金属系磁石を、その有利な製造方法と共に提案する
ことを目的とする。
The present invention advantageously solves the above problems, and is a rare-earth element having a two-phase structure excellent not only in magnetic properties but also in corrosion resistance.
The aim is to propose a transition metal based magnet together with its advantageous manufacturing method.

(課題を解決するための手段) まずこの発明の解明経緯について説明する。(Means for Solving the Problems) First, the details of the invention will be described.

さて発明者らに、上記の磁石につき、高分解能電子顕
微鏡等を用いて金属組織学的研究を鋭意進めた結果、該
磁石には大きな飽和磁束密度を持つNd2(Fe,Co,Ni)14B
相と、この相からなる結晶粒を取り囲んで強い保磁力を
発現しているNd2(Fe,Co,Ni)17,Nd(Fe,Co,Ni)5,Nd2
(Fe,Co,Ni)7,Nd(Fe,Co,Ni)4BおよびNd(Fe,Co,Ni)
12B6、さらにはCrB構造になるNd1-XTM1+X(ただしTMは
主としてNiOxは−0.2と0.2との間)などの粒界相が存在
することを究明した。
Now, as a result of earnestly advancing the metallurgical studies on the above magnets using a high-resolution electron microscope, etc., the inventors have found that the magnet has Nd 2 (Fe, Co, Ni) 14 having a large saturation magnetic flux density. B
Phase and Nd 2 (Fe, Co, Ni) 17 , Nd (Fe, Co, Ni) 5 , Nd 2 which has strong coercive force surrounding the crystal grains
(Fe, Co, Ni) 7 , Nd (Fe, Co, Ni) 4 B and Nd (Fe, Co, Ni)
It was clarified that there are grain boundary phases such as 12 B 6 and Nd 1-X TM 1 + X (however, TM is mainly Ni O x is between −0.2 and 0.2) which becomes CrB structure.

また、腐蝕の発生点となるNd相の量が少なく、しかも
上記の粒界相におけるNiやCoの濃度が高いほど、より一
層良好な耐蝕性を示すことが併せて突き止められた。
In addition, it was also found that the smaller the amount of Nd phase, which is a generation point of corrosion, and the higher the concentration of Ni and Co in the grain boundary phase, the better the corrosion resistance.

そこで発明者らは、この点につき、さらに考察を重ね
た結果、前述の粒界相は、Nd2(Fe,Co,Ni)17以外はNd
−Fe−B系三元状態図の枠組みでは出現し難く、むしろ
Nd−Co−B系の枠組みでしか出現し得ない相であること
に想い到った。
Therefore, as a result of further studying this point, the inventors have found that the above-mentioned grain boundary phase is Nd 2 (Fe, Co, Ni) 17 except Nd 2.
-Fe-B system It is difficult to appear in the framework of the ternary phase diagram, rather
I came to think that this is a phase that can only appear in the framework of the Nd-Co-B system.

参考のため第1図に、Nd−Fe−B三元状態図(N.F.Ch
aban,Yu.B.Kuzma,N.S.Bilonizhko,O.O.Kachmar and N.
U.Petrov,Akad Nauk,SSSR,SetA,Fiz.−Mat.Tekh,Nauki
No.10(1979)873)を、また第2図には、Nd−Co−B三
元状態図(N.S.Bilonizhko and Yu.B.Kuzma,Izv.Akad.N
auk SSSR Neorg.Mater,19(1983)487)を示す(ただ
し、原論文ではNd2Fe14B相を〜Nd2Fe9B相と、またNd2Co
14B相を〜Nd2Co9B相と取り違えているので、第1,2図で
は修正してある。) 第1図において、番号1の相がNd2Fe14B相であり、そ
の周辺の組成ではNdFe4B4相(番号2の相)、Nd相、Nd2
Fe17相およびFe相が出現することになる。ところが第2
図においては、番号1のNd2Co14B相の周辺組成で作製し
た磁石にはNd2Co17相、NdCo5相、Nd2Co7相、NdCo4B相
(番号2の相)およびNdCo12B6相(番号7の相)等が現
れ、本来Nd相は平衡状態では出現しない筈である。
For reference, Fig. 1 shows the Nd-Fe-B ternary phase diagram (NFCh
aban, Yu.B.Kuzma, NSBilonizhko, OOKachmar and N.
U. Petrov, Akad Nauk, SSSR, SetA, Fiz.−Mat.Tekh, Nauki
No. 10 (1979) 873), and FIG. 2 shows the Nd-Co-B ternary phase diagram (NSBilonizhko and Yu.B.Kuzma, Izv.Akad.N).
auk SSSR Neorg. Mater, 19 (1983) 487) (however, in the original paper, the Nd 2 Fe 14 B phase was changed to the ~ Nd 2 Fe 9 B phase, and also Nd 2 Co).
14 Phase B is confused with ~ Nd 2 Co 9 B phase, so it is corrected in Figs. ) In Fig. 1, the phase of No. 1 is Nd 2 Fe 14 B phase, and the composition around it is NdFe 4 B 4 phase (phase of No. 2), Nd phase, Nd 2
The Fe 17 phase and the Fe phase will appear. But second
In the figure, the magnets prepared with the peripheral composition of the Nd 2 Co 14 B phase of No. 1 have Nd 2 Co 17 phase, NdCo 5 phase, Nd 2 Co 7 phase, NdCo 4 B phase (No. 2 phase) and NdCo. 12 B 6 phase (phase of No. 7) and the like appear, and originally the Nd phase should not appear in the equilibrium state.

先にも述べたように、Nd相は錆の発生点となるが、一
方で主相の結晶粒を取り囲んで保磁力を発現させる作用
がある。
As described above, the Nd phase serves as a rust generation point, but on the other hand, it has a function of surrounding the crystal grains of the main phase and exhibiting coercive force.

そこでこの発明は、磁気的に有用な二相、すなわち残
留磁束密度の高いRE2TM14B相と、融点が低くて焼結性を
上げ、また主相の結晶粒をクリーンな界面で取り囲んで
保磁力を発現し、さらには主相と同程度に電気化学的に
貴となるような組成のRE−TM相やRE−TM−B相とを出発
材料として二相磁石を作製することにより、磁気特性お
よび耐蝕性に優れた永久磁石を得ようとするものであ
る。
Therefore, the present invention has two magnetically useful phases, namely, RE 2 TM 14 B phase having a high residual magnetic flux density, and a low melting point to improve sinterability, and surrounds the main phase crystal grains with a clean interface. By producing a two-phase magnet using a RE-TM phase or a RE-TM-B phase having a composition that exhibits a coercive force and is electrochemically noble to the same extent as the main phase, as a starting material, It is intended to obtain a permanent magnet having excellent magnetic properties and corrosion resistance.

すなわちこの発明は、 RE:10at%以上、25at%以下、 ここでRE:Y,Scおよびランタノイドのうちから選んだ
一種または二種以上 B:2at%以上、20at%以下 を含み、残部は実質的にTM(ただしTMはFe,CoおよびNi
のうちから選んだ一種または二種以上)からなる永久磁
石合金であって、その組織が、Nd2Fe14B構造を持つRE2T
M14B(ここでTMは上記と同じ)なる組成の相と、該相よ
りも融点の低い、RE−TM′系金属間化合物相(ただしT
M′は、NiまたはNiとFe,Coのうちから選んだ少なくとも
一種との混合物で、かつTM′中におけるNi含有量は8at
%以上)もしくはRE−TM′系金属間化合物相が関与する
共晶組織(ここでTM′は上記と同じ)および/またはRE
−TM′−B系金属間化合物相(ここでTM′は上記と同
じ)から構成されていることを特徴とする耐蝕性希土類
−遷移金属系永久磁石である。
That is, the present invention includes RE: 10 at% or more and 25 at% or less, where one or two or more selected from RE: Y, Sc and lanthanoid B: 2 at% or more and 20 at% or less, and the balance is substantially TM (where TM is Fe, Co and Ni
RE 2 T having a Nd 2 Fe 14 B structure whose structure is a permanent magnet alloy consisting of one or more selected from
M 14 B (where TM is the same as above) and a RE-TM'-based intermetallic compound phase (T
M ′ is Ni or a mixture of Ni and at least one selected from Fe and Co, and the Ni content in TM ′ is 8 at.
%) Or a eutectic structure (where TM 'is the same as above) involving RE-TM' type intermetallic compound phase and / or RE
-TM'-B type intermetallic compound phase (where TM 'is the same as above) is a corrosion resistant rare earth-transition metal type permanent magnet.

またこの発明は、RE2TM14B系金属間化合物相(ただし
TMはFe,CoおよびNiのうちから選んだ一種または二種以
上)を主体とする粉末と、該粉末よりも融点の低い、RE
−TM′系金属間化合物相(ただしTM′は、NiまたはNiと
Fe,Coのうちから選んだ少なくとも一種との混合物で、
かつTM′中におけるNi含有量は8at%以上)もしくはRE
−TM′系金属間化合物相が関与する共晶組織(ここでT
M′は上記と同じ)および/またはRE−TM′−B系金属
間化合物相(ここでTM′は上記と同じ)を主体とする粉
末との混合粉を、圧縮成形したのち、焼結することから
なる請求項1記載の耐蝕性希土類−遷移金属系磁石の製
造方法である。
In addition, this invention is based on the RE 2 TM 14 B-based intermetallic compound phase (however,
TM is a powder mainly composed of one or more selected from Fe, Co and Ni), and a melting point lower than that of the powder, RE
-TM 'type intermetallic compound phase (However, TM' is Ni or Ni
A mixture with at least one selected from Fe and Co,
And the Ni content in TM 'is 8 at% or more) or RE
Eutectic structure (here T
M'is the same as above) and / or a powder mainly composed of RE-TM'-B based intermetallic compound phase (where TM 'is the same as above) is compression-molded and then sintered. The method for producing a corrosion resistant rare earth-transition metal magnet according to claim 1.

この発明において、耐蝕性のより一層の向上のために
は、粒界相となるRE−TM′系やRE−TM′−B系の金属間
化合物相を主相と同程度に電気化学的に貴としてガルバ
ーニ腐触が起きないようにすることが有効であり、従っ
てRE−TM′系およびRE−TM′−B系低融点相におけるT
M′に占めるNiおよび/またはCoの比率を、RE2TM14B相
におけるそれよりも高めることが好ましい。とくにNiの
比率を高めることが耐蝕性の向上にとりわけ効果的であ
る。
In the present invention, in order to further improve the corrosion resistance, the intermetallic compound phase of RE-TM 'or RE-TM'-B, which is a grain boundary phase, is electrochemically applied to the same degree as the main phase. It is effective to prevent galvanic corrosion, and therefore T in the RE-TM 'system and RE-TM'-B system low melting phase.
It is preferable to increase the proportion of Ni and / or Co in M ′ than that in the RE 2 TM 14 B phase. In particular, increasing the proportion of Ni is particularly effective in improving the corrosion resistance.

かような低融点RE−TM′系金属間化合物相としては、
CrB構造を有するものが特に好適である。
As such a low melting point RE-TM 'type intermetallic compound phase,
Those having a CrB structure are particularly suitable.

またこの発明において、RE2TM14B金属間化合物相とRE
−TM′系、RE−TM′−B系金属間化合物相との比率は、
式量単位で95:5ないし40:60程度とするのが好ましい。
というのは両者の比率が上記の範囲を外れると保磁力や
飽和磁束密度の著しい劣化を招く不利が生じるからであ
る。ここに式量(formula unit)とは、たとえばNd2Fe
14Bを一つの分子(固体ではこれをformulaという)とみ
なした場合に相当する。混合に供する各粉末の粒径は、
0.5〜5μm程度がハンドリングの容易さや均質な混合
のために望ましい。
In the present invention, the RE 2 TM 14 B intermetallic compound phase and RE
-TM 'type and RE-TM'-B type intermetallic compound ratio is
The formula weight unit is preferably about 95: 5 to 40:60.
This is because if the ratio of the two is out of the above range, there is a disadvantage that the coercive force and the saturation magnetic flux density are significantly deteriorated. Here, the formula unit is, for example, Nd 2 Fe.
This corresponds to the case where 14 B is regarded as one molecule (in solid, this is called formula). The particle size of each powder to be mixed is
About 0.5 to 5 μm is desirable for easy handling and homogeneous mixing.

ここにRE2TM14B金属間化合物相よりも融点の低いRE−
TM′系金属間化合物相(共晶組織も含む。以下同じ)お
よびRE−TM′−B系金属間化合物相の代表組成を示す
と、次のとおりである。
Here, RE 2 TM 14 B has a melting point lower than that of the intermetallic compound phase RE-
Representative compositions of the TM'-based intermetallic compound phase (including a eutectic structure; the same applies hereinafter) and the RE-TM'-B-based intermetallic compound phase are as follows.

・RE−TM′系 RE2TM17,RETM5,RE2TM7,RETM3,RETM2,RE1-XTM1+X,RE7T
M3,RE3TMおよびTE−TM共晶組織 ・RE−TM′−B系 RETM4B,RE3TM11B4,RE2TM5B2,RE2TM7B3,RE2TM5B3,RETM12
B6,RETM2B2,RETM9B4,RE2TMB3 なお上記したRE2TM14BやRE−TM′系、RE−TM′−B系
金属間化合物相を主相とする粉末は、次のようにして得
ることができる。
・ RE-TM 'system RE 2 TM 17 ,, RETM 5 ,, RE 2 TM 7 ,, RETM 3 ,, RETM 2 ,, RE 1-X TM 1 + X , RE 7 T
M 3 , RE 3 TM and TE-TM eutectic structure ・ RE-TM'-B type RETM 4 B, RE 3 TM 11 B 4 ,, RE 2 TM 5 B 2 ,, RE 2 TM 7 B 3 ,, RE 2 TM 5 B 3 , RETM 12
B 6 , RETM 2 B 2 , RETM 9 B 4 , RE 2 TMB 3 In addition, the above-mentioned RE 2 TM 14 B, RE-TM 'type, RE-TM'-B type intermetallic compound powders are the main phases. , Can be obtained as follows.

すなわち所定の組成になるように各構成元素単体を秤
量し、アーク溶解ないしは高周波溶解で、真空中または
不活性ガス雰囲気中に合金インゴットを作る。ついでそ
のインゴットを同じく真空中または不活性ガス雰囲気下
で、600〜1000℃の温度で1〜30日間保持して単相の金
属間化合物とする。なお金属間化合物は一般に、ある程
度(〜20%)の固溶範囲をもつものが多いので、出発組
成もそれに応じて組成の幅が許容される。
That is, each constituent element simple substance is weighed so as to have a predetermined composition, and an alloy ingot is produced by vacuum melting or high frequency melting in a vacuum or in an inert gas atmosphere. Then, the ingot is also kept in vacuum or in an inert gas atmosphere at a temperature of 600 to 1000 ° C. for 1 to 30 days to form a single-phase intermetallic compound. Since many intermetallic compounds generally have a solid solution range of a certain degree (up to 20%), the composition range of the starting composition is allowed accordingly.

単相とした金属間化合物は、ハンマーミルで粗粉砕し
たのち、ジェットミルあるいはアトライターを用いて0.
5〜5μm径の微粉とする。なお、低融点相RE−TM′、R
E−TM′−Bの中で、硬度が低く粉砕が困難なものに関
しては、ハンマーミル粉砕の前に、予め室温〜350℃程
度の温度範囲で数時間水素脆化させると、その後の解砕
が容易である。
The intermetallic compound in a single phase is coarsely crushed with a hammer mill and then crushed with a jet mill or an attritor.
Fine powder with a diameter of 5 to 5 μm. The low melting point RE-TM ', R
Among E-TM'-B, those with low hardness and difficult to crush, if crushed by hydrogen embrittlement for several hours in the temperature range of room temperature to 350 ° C before hammer crushing, Is easy.

(作 用) この発明に従い、予め作製しておいたRE2TM14Bの組成
を持つ金属間化合物を主体とする粉末を、それより融点
の低い、予め作製しておいたRE−TM′系金属間化合物も
しくはRE−TM′−B系金属間化合物を主相とする粉末の
1種以上とを混合してプレスした後に焼結を行うことに
よって、高磁石特性と高耐蝕性との両者を兼備させるこ
とができる。
(Working) According to the present invention, a pre-prepared RE-TM'-based powder having a composition of RE 2 TM 14 B as a main component and having a lower melting point than that of the pre-prepared RE-TM 'system is used. Both high magnet characteristics and high corrosion resistance can be obtained by mixing and pressing one or more powders containing an intermetallic compound or RE-TM'-B type intermetallic compound as the main phase, followed by sintering. Can be combined.

この理由は、RE2TM14Bの金属間化合物相を主体とする
粉末より融点の低い粉末は、焼結を促進させるとともに
RE2TM14Bの結晶粒間に粒界相を形成して保磁力を向上さ
せる作用を持つからと考えられる。
The reason is that the powder having a lower melting point than the powder mainly composed of RE 2 TM 14 B intermetallic compound phase promotes sintering and
It is considered that this is because the grain boundary phase is formed between the RE 2 TM 14 B crystal grains to improve the coercive force.

さてRE2TM14B相において、REとしては、その磁気モー
メントの大きさやTM原子との磁気的カップリングの観点
から、またコスト的にも、NdやPrが望ましいけれども、
その他のRE、さらにはそれらとNd,Prとの組合せでもよ
いのは言うまでもない。
Now, in RE 2 TM 14 B phase, Nd and Pr are preferable as RE in terms of the magnitude of the magnetic moment and the magnetic coupling with the TM atom, and also in terms of cost.
It goes without saying that other REs, or a combination of these with Nd and Pr may be used.

TMについては、Fe,CoおよびNiのうちから選んだ一種
または二種以上であれば良く、とくに磁石の高耐蝕性の
観点からはNiの割合を大きくすることが望ましい。また
このRE2TM14B相が磁石の飽和磁束密度を担っているの
で、TM中のFe,CoおよびNiの存在割合は、Feが10at%以
上、73at%未満、Coが7at%以上、50at%以下、Niが5at
%以上、30at%以下程度とするのが望ましいが、TMとし
てのFeが100%のRE2TM14B相を主相とする場合もこの発
明の永久磁石の耐蝕性は従来のRE−TM−B磁石より優れ
ており、従って磁石の用途によっては勿論主相として採
用することができる。
The TM may be one or more selected from Fe, Co and Ni, and in particular, it is desirable to increase the proportion of Ni from the viewpoint of high corrosion resistance of the magnet. Also, since this RE 2 TM 14 B phase is responsible for the saturation magnetic flux density of the magnet, the proportion of Fe, Co and Ni present in TM is 10 at% or more and less than 73 at% for Fe and 7 at% or more for Co and 50 at% for Co. % Or less, Ni is 5 at
% Or more and 30 at% or less is preferable, but the corrosion resistance of the permanent magnet according to the present invention is the same as that of the conventional RE-TM- even when the RE 2 TM 14 B phase with 100% Fe as TM is the main phase. It is superior to B magnets and can therefore be used as the main phase, depending on the application of the magnet.

次にRE−TM′系およびRE−TM′−B系低融点相におけ
るREとしては、コストを重視する場合にはLa,Ce,Pr,Nd
などの軽希土類元素が、また一層耐蝕性を高めたい場合
には原子番号でSm以降のLuまでの中重希土類元素やY,Sc
などが有利に適合する。
Next, as RE in the RE-TM 'type and RE-TM'-B type low melting point phases, when cost is important, La, Ce, Pr, Nd
For light rare earth elements such as, if you want to further improve the corrosion resistance, medium heavy rare earth elements up to Lu after the atomic number Sm or Y, Sc
Etc. fits advantageously.

またTM′については、Niおよび/またはCo、とくにNi
を含有させることが耐蝕性の向上に効果的なので、この
発明では、TM′としてNiは必ず含有させるものとし、そ
の含有量は耐蝕性の観点から8at%以上の限定した。
For TM ', Ni and / or Co, especially Ni
Since it is effective to improve the corrosion resistance in the present invention, Ni is always included as TM 'in the present invention, and the content is limited to 8 at% or more from the viewpoint of the corrosion resistance.

Niの添加効果は次のとおりである。 The effects of adding Ni are as follows.

i)RE−TM′系およびRE−TM′−B系の融点を下げ、液
相焼結時における液相の浸潤を促進し、焼結密度を上
げ、残留磁束密度を向上させる。
i) The melting points of the RE-TM 'system and RE-TM'-B system are lowered, the infiltration of the liquid phase during the liquid phase sintering is promoted, the sintering density is increased, and the residual magnetic flux density is improved.

ii)上記i)と同じ理由で、液相焼結時における液相の
粒界クリーニング効果を高め、保磁力の一層の向上に効
果がある。
ii) For the same reason as the above i), the effect of cleaning the grain boundary of the liquid phase during the liquid phase sintering is enhanced, and the coercive force is further improved.

iii)Coより耐蝕性の改善に有効であり、また安価でも
ある。
iii) It is more effective in improving the corrosion resistance than Co and is also inexpensive.

さらに低融点相のNiおよび/またはCoの比率をRE2TM
14B相のそれよりも高めることによって、耐蝕性を一段
と向上させることができるが、この理由は、低融点相で
はRE/TM′の比率が、RE2TM14B相のそれよりも一般に高
いので、ガルバーニ腐食が起きないように電気化学的腐
食電位を主相と粒界相でほぼ同じにするには、粒界相と
なる低融点相でのNiの比率を高めることが望ましいから
である。さらに磁気的には無用のNd相を排除できるの
で、残留磁束密度が増加し、その結果最大エネルギー積
(BH)maxも向上する。
Furthermore, the ratio of Ni and / or Co in the low melting point phase is set to RE 2 TM
Corrosion resistance can be further improved by increasing it higher than that of the 14 B phase because the RE / TM 'ratio is generally higher in the low melting point phase than in the RE 2 TM 14 B phase. Therefore, in order to make the electrochemical corrosion potentials almost the same in the main phase and the grain boundary phase so that galvanic corrosion does not occur, it is desirable to increase the ratio of Ni in the low melting point phase that becomes the grain boundary phase. . Furthermore, since magnetically unnecessary Nd phases can be eliminated, the residual magnetic flux density increases, and as a result, the maximum energy product (BH) max also improves.

この点、粒界相にNiを富化させる方法としては、従来
のように最初さら磁石全体の平均組成で合金を溶解し、
粉砕、プレス、焼結を行い、主相のRE2TM14BへのNiの固
溶限が小さいことを利用して結果的に粒界相にNiを富化
させることもできる。
In this respect, as a method of enriching the grain boundary phase with Ni, the alloy is first melted with the average composition of the entire magnet as in the conventional case,
It is also possible to pulverize, press, and sinter to utilize the fact that the solid solution limit of Ni in RE 2 TM 14 B of the main phase is small, and consequently the grain boundary phase can be enriched with Ni.

しかし、より有利な方法として、主相と粒界相の粉末
を予め別々に製作しておき、それを混合、プレス、焼結
する方法を提案したのである。このいわゆる二相粉末混
合法によれば、粒界相にNiを富化させた磁石の製造が容
易なだけでなく、保磁力の向上に有利となるDyやGaなど
の元素を粒界相に仕込んでその効果を高めることもでき
るのである。
However, as a more advantageous method, a method has been proposed in which the powders of the main phase and the grain boundary phase are separately produced in advance, and the powders are mixed, pressed and sintered. According to this so-called two-phase powder mixing method, not only is it easy to produce a magnet that is rich in Ni in the grain boundary phase, but elements such as Dy and Ga that are advantageous for improving the coercive force are added to the grain boundary phase. It can also be charged to enhance its effect.

なお、主相のREと低融点相のREとは同一の元素である
必要はない。また上記した二相を主成分とする磁石にお
いて、REとTMおよびTM′の一部を、Mg,Al,Si,Ti,V,Cr,M
n,Cu,Ag,Au,Cd,Rh,Pd,Ir,Pt,Zn,Ga,Ge,Zr,Nb,Mo,In,Sn,
Hf,TaおよびWのうちから選んだ少なくとも一種で、磁
石全体の8at%まで置換してもこの発明の効果が失われ
ることはない。
The main phase RE and the low melting point RE do not have to be the same element. In addition, in the above-mentioned magnet mainly composed of two phases, RE, TM, and a part of TM ′ are replaced with Mg, Al, Si, Ti, V, Cr, and M.
n, Cu, Ag, Au, Cd, Rh, Pd, Ir, Pt, Zn, Ga, Ge, Zr, Nb, Mo, In, Sn,
At least one selected from Hf, Ta and W does not lose the effect of the present invention even if it is replaced up to 8 at% of the whole magnet.

さらに製造方法に関しては、上記したような、RE2TM
14B組成の粉末と、融点の低いRE−TM′系および/また
はRE−TM′−B系金属間化合物相を主体とする粉末との
混合粉を、圧縮成形したのち、焼結する方法の他、磁石
特性は幾分犠牲になるけれども、大型磁石の製造法とし
て、上記の混合粉を鉄パイプ中に真空封入したのち、熱
間圧延しつつ焼結を行わせる方法も可能である。
Furthermore, regarding the manufacturing method, as described above, RE 2 TM
A powder of 14 B composition, after a mixed powder of powder consisting mainly of low RE-TM 'system and / or RE-TM'-B based intermetallic compound phases having a melting point, and compression molding, the method of sintering In addition, although the magnet characteristics are somewhat sacrificed, as a method for manufacturing a large-sized magnet, a method in which the above mixed powder is vacuum-sealed in an iron pipe and then sintered while hot rolling is possible.

(実施例) 実施例1 ネオジム、遷移金属およびボロンの原子比が2:14:1と
なるようにアーク溶解して、合金ボタンを作製し、真空
炉で950℃,7日間の均一化処理を施したのち、粗粉砕と
微粉砕を施して、数ミクロンの径の微粉末を得た。なお
このとき遷移金属中のFe,Co,Niの比率を種々に変化させ
て、複数種の合金粉を製造した。
(Example) Example 1 Arc melting was carried out so that the atomic ratio of neodymium, transition metal, and boron was 2: 14: 1 to prepare an alloy button, which was homogenized in a vacuum furnace at 950 ° C for 7 days. After that, coarse pulverization and fine pulverization were performed to obtain fine powder having a diameter of several microns. At this time, various kinds of alloy powders were manufactured by changing the ratio of Fe, Co, and Ni in the transition metal variously.

同様にして、ネオジムまたは(ネオジム+ジスプロシ
ウム)とニッケルとの比が1:1となる粉末を作製した。
その際の均一化処理条件は680℃,5日間とした。
Similarly, a powder having a ratio of neodymium or (neodymium + dysprosium) to nickel of 1: 1 was produced.
The homogenization treatment conditions at that time were 680 ° C. and 5 days.

次に、上記の2グループの中から一種類づつを選んで
それらを表1に示す種々の割合で混合し、15kOeの磁場
を印加しつつプレスしたのち、真空雰囲気下1000℃で2
時間焼結し、その後室温まで急冷した。
Next, select one type from each of the above two groups, mix them at various ratios shown in Table 1, press while applying a magnetic field of 15 kOe, and then press at 1000 ° C. for 2 hours in a vacuum atmosphere.
Sintered for hours and then quenched to room temperature.

かくして得られた試料の磁気特性および腐触特性につ
いて調べた結果を表1に示す。なお腐触特性は、表面に
一切の皮膜を付けずに、試料を温度70℃、湿度95%の環
境に48時間さらしたのちにおける試料表面の発錆面積率
で評価した。
Table 1 shows the results of examining the magnetic properties and corrosion properties of the samples thus obtained. The corrosion characteristics were evaluated by the rusting area ratio of the sample surface after exposing the sample to an environment of a temperature of 70 ° C. and a humidity of 95% for 48 hours without forming any film on the surface.

また表1には比較のため、焼結磁石の全体組成で最初
から溶解し、粗粉砕−微粉砕−磁場中プレス−焼結工程
からなる従来法によって製造した試料の調査結果も併せ
て示す。
In addition, for comparison, Table 1 also shows the results of investigation of the sample prepared by the conventional method, which comprises the steps of coarse pulverization-fine pulverization-pressing in a magnetic field-sintering step in which the entire composition of the sintered magnet is dissolved.

同表より明らかなように、この発明に従う二相組織の
希土類−遷移金属系磁石は、従来のように全体組成で最
初から溶解したものに比べ、磁気特性は勿論のこと耐蝕
性が格段に向上している。
As is clear from the table, the two-phase rare earth-transition metal magnet according to the present invention has much improved corrosion resistance as well as magnetic characteristics as compared with the conventional one in which the entire composition is dissolved. doing.

実施例2 ネオジム、遷移金属およびボロンの原子比が2:14:1と
なるようにアーク溶解して、合金ボタンを作製し、真空
炉で950℃,7日間の均一化処理を施したのち、粗粉砕と
微粉砕を施して、数ミクロンの径の微粉末を得た。なお
このとき遷移金属中のFe,Co,Niの比率を種々に変化させ
て、複数種の合金粉を製造した。
Example 2 After arc melting was performed so that the atomic ratio of neodymium, transition metal and boron was 2: 14: 1, an alloy button was produced and homogenized at 950 ° C. for 7 days in a vacuum furnace. Coarse pulverization and fine pulverization were performed to obtain a fine powder having a diameter of several microns. At this time, various kinds of alloy powders were manufactured by changing the ratio of Fe, Co, and Ni in the transition metal variously.

同様にして、ネオジムおよび/またはジスプロシウム
あるいはプラセオジムと、ニッケルまたは(ニッケル+
コバルト)との原子比が3:1となる粉末を作製した。そ
の際の均一化処理条件は485℃,5日間とした。
Similarly, with neodymium and / or dysprosium or praseodymium, nickel or (nickel +
A powder having an atomic ratio with cobalt of 3: 1 was prepared. At that time, the homogenizing treatment conditions were 485 ° C. and 5 days.

かくして得られた試料の磁気特性および腐触特性につ
いての調査結果を表2に示す。
Table 2 shows the results of investigations on the magnetic properties and corrosion properties of the samples thus obtained.

なお表2には、参考のため、特開昭63−164403号公報
に開示の磁石の特性について調べた結果も、併記する。
For reference, Table 2 also shows the results of examining the characteristics of the magnet disclosed in JP-A-63-164403.

同表より、この発明に従う二相組織の希土類−遷移金
属系磁石は、磁気特性および耐蝕性に優れていることが
わかる。また適合例8および適合例13を比べれば明らか
なように、とくにRE3(Ni,Co)においてNi比率が高く
なるほど耐蝕性は向上している。さらに従来例について
は、磁石特性は良好ではあるけれども、Niを含有してい
ないので耐蝕性に劣る。
From the table, it is understood that the two-phase structure rare earth-transition metal magnet according to the present invention is excellent in magnetic characteristics and corrosion resistance. Further, as is clear from comparison between the conforming example 8 and the conforming example 13, particularly in RE 3 (Ni, Co) 1 , the higher the Ni ratio, the higher the corrosion resistance. Further, in the conventional example, although the magnet characteristics are good, the corrosion resistance is inferior because it does not contain Ni.

実施例3 実施例1と同様にして、RE2TM14B組成の合金微粉末を
作製した。またこれを混合する粉末原料として、RE2TM
14Bの粉末よりもTM中に占めるNiやCoの比率を高めた合
金微粉末を作り、それらを混合したのち、実施例1と同
様にして、焼結磁石を製造した。
Example 3 In the same manner as in Example 1, fine alloy powder having a RE 2 TM 14 B composition was produced. Also, as a powder raw material for mixing this, RE 2 TM
Sintered magnets were manufactured in the same manner as in Example 1 after making alloy fine powders in which the proportion of Ni and Co in TM was higher than that of 14B powders and mixing them.

かくして得られた焼結磁石の特性を、従来法により得
られた焼結磁石のそれと比較して表3に示す。
The characteristics of the sintered magnet thus obtained are shown in Table 3 in comparison with those of the sintered magnet obtained by the conventional method.

同表より明らかなように、混合粉末として、RE2TM14B
粉末よりもTM中に占めるNiやCoの比率を高めた合金微粉
末を用いた場合は、耐蝕性のより一層の改善が達成され
ている。
As is clear from the table, as a mixed powder, RE 2 TM 14 B
Further improvement in corrosion resistance has been achieved when using alloy fine powder in which the proportion of Ni or Co in TM is higher than that of powder.

(発明の効果) かくしてこの発明によれば、従来の製造法に比べて、
耐蝕性が向上し、かつ磁気特性も改善された希土類−遷
移金属系磁石を製造することができ、とくに耐蝕性が改
善されたことにより、工業材料としての信頼性の著しい
向上が実現した。
(Effect of the Invention) Thus, according to the present invention, compared with the conventional manufacturing method,
It is possible to manufacture a rare earth-transition metal magnet having improved corrosion resistance and improved magnetic properties. In particular, the improved corrosion resistance realizes a marked improvement in reliability as an industrial material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、Nd−Fe−B三元状態図、 第2図は、Nd−Co−B三元状態図である。 FIG. 1 is an Nd-Fe-B ternary phase diagram, and FIG. 2 is an Nd-Co-B ternary phase diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 明 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 北野 葉子 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 下村 順一 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (56)参考文献 特開 昭63−127505(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Akira Fujita Inventor 1 Kawasaki-cho, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Yoko Kitano 1 Kawasaki-cho, Chiba City Chiba Prefecture Kawasaki Steel Co., Ltd. Corporate Technology Research Headquarters (72) Inventor Junichi Shimomura 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Corporate Technology Research Headquarters (56) References JP-A-63-127505 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RE:10at%以上、25at%以下、 ここでRE:Y,Scおよびランタノイドのうちから選んだ一
種または二種以上 B:2at%以上、20at%以下 を含み、残部は実質的にTM(ただしTMはFe,CoおよびNi
のうちから選んだ一種または二種以上)からなる永久磁
石合金であって、その組織が、Nd2Fe14B構造を持つRE2T
M14B(ここでTMは上記と同じ)なる組成の相と、該相よ
りも融点の低い、RE−TM′系金属間化合物相(ただしT
M′は、NiまたはNiとFe,Coのうちから選んだ少なくとも
一種との混合物で、かつTM′中におけるNi含有量は8at
%以上)もしくはRE−TM′系金属間化合物相が関与する
共晶組織(ここでTM′は上記と同じ)および/またはRE
−TM′−B系金属間化合物相(ここでTM′は上記と同
じ)から構成されていることを特徴とする耐蝕性希土類
−遷移金属系永久磁石。
1. RE: 10 at% or more and 25 at% or less, where one or two or more selected from RE: Y, Sc and lanthanoid B: 2 at% or more and 20 at% or less, and the balance substantially TM (where TM is Fe, Co and Ni
RE 2 T having a Nd 2 Fe 14 B structure whose structure is a permanent magnet alloy consisting of one or more selected from
M 14 B (where TM is the same as above) and a RE-TM'-based intermetallic compound phase (T
M ′ is Ni or a mixture of Ni and at least one selected from Fe and Co, and the Ni content in TM ′ is 8 at.
%) Or a eutectic structure (where TM 'is the same as above) involving RE-TM' type intermetallic compound phase and / or RE
A corrosion-resistant rare earth-transition metal permanent magnet, characterized in that it is composed of a -TM'-B based intermetallic compound phase (where TM 'is the same as above).
【請求項2】請求項1において、融点の低いRE−TM′系
金属間化合物相がCrB構造を有する耐蝕性希土類−遷移
金属系永久磁石。
2. The corrosion-resistant rare earth-transition metal permanent magnet according to claim 1, wherein the RE-TM'-based intermetallic compound phase having a low melting point has a CrB structure.
【請求項3】RE2TM14B系金属間化合物相(ただしTMはF
e,CoおよびNiのうちから選んだ一種または二種以上)を
主体とする粉末と、該粉末よりも融点の低い、RE−TM′
系金属間化合物相(ただしTM′は、NiまたはNiとFe,Co
のうちから選んだ少なくとも一種との混合物で、かつT
M′中におけるNi含有量は8at%以上)もしくはRE−TM′
系金属間化合物相が関与する共晶組織(ここでTM′は上
記と同じ)および/またはRE−TM′−B系金属間化合物
相(ここでTM′は上記と同じ)を主体とする粉末との混
合粉を、圧縮成形したのち、焼結することからなる請求
項1記載の耐蝕性希土類−遷移金属系磁石の製造方法。
3. A RE 2 TM 14 B-based intermetallic compound phase (where TM is F
powder mainly composed of one or more selected from e, Co and Ni), and RE-TM 'having a lower melting point than the powder.
Intermetallic compound phase (However, TM 'is Ni or Ni and Fe, Co
A mixture of at least one of the
Ni content in M'is 8 at% or more) or RE-TM '
A powder mainly composed of a eutectic structure (where TM 'is the same as above) and / or RE-TM'-B based intermetallic phase (where TM' is the same as above) in which the intermetallic compound phase is involved. The method for producing a corrosion-resistant rare earth-transition metal magnet according to claim 1, which comprises compressing and mixing the mixed powder with and.
【請求項4】請求項3において、融点の低いRE−TM′系
金属間化合物相がCrB構造を有する耐蝕性希土類−遷移
金属系永久磁石の製造方法。
4. The method for producing a corrosion-resistant rare earth-transition metal permanent magnet according to claim 3, wherein the RE-TM ′ intermetallic compound phase having a low melting point has a CrB structure.
JP2269635A 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same Expired - Lifetime JP2675430B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2269635A JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
DE69027201T DE69027201T2 (en) 1989-10-12 1990-10-11 CORROSION-RESISTANT MAGNET OF THE TM-B-RE TYPE AND THEIR PRODUCTION METHOD
PCT/JP1990/001315 WO1991006107A1 (en) 1989-10-12 1990-10-11 Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
CA002044171A CA2044171C (en) 1989-10-12 1990-10-11 Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
KR1019910700606A KR960013029B1 (en) 1989-10-12 1990-10-11 Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
EP90914967A EP0447567B1 (en) 1989-10-12 1990-10-11 Corrosion-resistant tm-b-re type magnet and method of production thereof
CN 90109219 CN1027473C (en) 1989-10-12 1990-10-12 Anticorrosive rare-earth-transition metal series magnet and method thereof
US08/238,330 US5437741A (en) 1990-10-09 1994-05-05 Corrosion-resistant rare earth metal-transition metal-boron permanent magnets
US08/266,791 US5447578A (en) 1989-10-12 1994-06-28 Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP26394689 1989-10-12
JP33502889 1989-12-26
JP1-335028 1989-12-26
JP1-263946 1989-12-26
JP2269635A JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03250607A JPH03250607A (en) 1991-11-08
JP2675430B2 true JP2675430B2 (en) 1997-11-12

Family

ID=27335262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269635A Expired - Lifetime JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same

Country Status (6)

Country Link
EP (1) EP0447567B1 (en)
JP (1) JP2675430B2 (en)
KR (1) KR960013029B1 (en)
CA (1) CA2044171C (en)
DE (1) DE69027201T2 (en)
WO (1) WO1991006107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405455A (en) * 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
EP0517179B1 (en) * 1991-06-04 1995-05-17 Shin-Etsu Chemical Co., Ltd. Method of making two phase Rare Earth permanent magnets
JP2782024B2 (en) * 1992-01-29 1998-07-30 住友特殊金属株式会社 Method for producing raw material powder for R-Fe-B-based permanent magnet
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
EP0583041B1 (en) * 1992-08-13 1997-02-05 Koninklijke Philips Electronics N.V. Method of manufacturing a permanent magnet on the basis of NdFeB
CN1044940C (en) * 1992-08-13 1999-09-01 Ybm麦格奈克斯公司 Method of manufacturing a permanent magnet on the basis of ndfeb
US5482575A (en) * 1992-12-08 1996-01-09 Ugimag Sa Fe-Re-B type magnetic powder, sintered magnets and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700643B2 (en) * 1987-04-11 1998-01-21 株式会社トーキン Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
EP0261579B1 (en) * 1986-09-16 1993-01-07 Tokin Corporation A method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JPH0621324B2 (en) * 1986-10-04 1994-03-23 信越化学工業株式会社 Rare earth permanent magnet alloy composition
JPS63127505A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof
JPH063763B2 (en) * 1986-12-26 1994-01-12 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP2948223B2 (en) * 1987-03-31 1999-09-13 住友特殊金属 株式会社 High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material

Also Published As

Publication number Publication date
WO1991006107A1 (en) 1991-05-02
KR960013029B1 (en) 1996-09-25
KR920701999A (en) 1992-08-12
JPH03250607A (en) 1991-11-08
CA2044171C (en) 2000-12-12
EP0447567B1 (en) 1996-05-29
EP0447567A4 (en) 1992-05-20
EP0447567A1 (en) 1991-09-25
CA2044171A1 (en) 1991-04-13
DE69027201D1 (en) 1996-07-04
DE69027201T2 (en) 1996-10-10

Similar Documents

Publication Publication Date Title
EP1970924B1 (en) Rare earth permanent magnets and their preparation
US7488394B2 (en) Rare earth permanent magnet
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
CN101521068A (en) Rare earth permanent magnet and method of manufacturing the same
JP2782024B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2000188213A (en) R-t-b sintered permanent magnet
US8182618B2 (en) Rare earth sintered magnet and method for producing same
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP2675430B2 (en) Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
US5447578A (en) Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2018174314A (en) R-T-B based sintered magnet
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
TW202142708A (en) Anisotropic rare-earth sintered magnet and method for producing same
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JPH09237708A (en) Rare earth fen group sintered magnet and manufacture thereof
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP4650218B2 (en) Method for producing rare earth magnet powder
JPH04120238A (en) Manufacture of rare earth sintered alloy and manufacture of permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPS6247455A (en) Permanent magnet material having high performance