JPH063763B2 - Rare earth permanent magnet manufacturing method - Google Patents
Rare earth permanent magnet manufacturing methodInfo
- Publication number
- JPH063763B2 JPH063763B2 JP61313714A JP31371486A JPH063763B2 JP H063763 B2 JPH063763 B2 JP H063763B2 JP 61313714 A JP61313714 A JP 61313714A JP 31371486 A JP31371486 A JP 31371486A JP H063763 B2 JPH063763 B2 JP H063763B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnet
- composition
- rare earth
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はCoを含む希土類鉄、ホウ素系永久磁石すなわち
R-Fe-Co-B系(RはYまたは希土類元素の1種もしくは
2種以上)希土類永久磁石の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a rare earth iron containing Co, a boron-based permanent magnet, that is,
The present invention relates to a method for producing an R-Fe-Co-B system (R is Y or one or more kinds of rare earth elements) rare earth permanent magnets.
(従来の技術) R-Fe-Co-B系永久磁石は高価であるが磁気特性が他の磁
石に比べて格段に優れているため、小型で付加価値の高
い磁気回路に多用されている。しかしながら、製造工程
における磁石粉末の表面酸化が磁気特性に悪影響を与え
るという問題がある。(Prior Art) R-Fe-Co-B based permanent magnets are expensive, but their magnetic properties are remarkably superior to other magnets, so they are widely used in small-sized and high-value-added magnetic circuits. However, there is a problem that surface oxidation of the magnet powder in the manufacturing process adversely affects the magnetic properties.
一般に磁石合金が最も酸化されやすい工程は、磁石粉末
を微粉砕してから磁場中でプレスし、焼結して高密度化
するまでの、空気中におかれた時であるから、商業的生
産を可能にするためには磁石粉を数日間空気中に放置し
ても酸化されないことが望まれる。R-Fe-B系磁石合金に
Coを添加すれば、空気中における磁石粉の酸化の進行が
著るしく抑制され、添加量をふやせばさらにその効果が
大きくなることがわかった。他方、B-Fe-B系磁石に対す
るCo少量添加によって保磁力(iHc)が大きく低下し、添
加量をふやすと回復するものの、無添加の場合に比べて
iHcが低いとの報告があり(応用磁気学会、芝田ら、198
4、11)またNd-Fe-Co-B-Al系磁石では、Co16原子%、Al2
原子%の場合に高いiHcが得られることが報告されてい
る(金属学会、溝口ら、1986,4)。Generally, the process in which a magnet alloy is most likely to be oxidized is when it is placed in air, from when the magnet powder is pulverized, then pressed in a magnetic field, and then sintered and densified. In order to enable the above, it is desired that the magnet powder is not oxidized even if left in the air for several days. For R-Fe-B magnet alloy
It was found that the addition of Co markedly suppressed the progress of oxidation of the magnet powder in the air, and the effect was further enhanced by reducing the addition amount. On the other hand, the coercive force (iHc) is greatly reduced by adding a small amount of Co to the B-Fe-B system magnet, and recovery is achieved by increasing the amount of addition, but compared with the case of no addition.
It has been reported that iHc is low (Japan Applied Magnetics Society, Shibata et al., 198).
4 and 11) In addition, in Nd-Fe-Co-B-Al magnets, Co16 atom%, Al2
It has been reported that a high iHc can be obtained in the case of atomic% (The Institute of Metals, Mizoguchi et al., 1986, 4).
本発明者らはこの報告に基づいてさらに広い範囲のCo,A
l,B量についてiHcの変化等を調べた結果、Nd-Fe-Co-B-A
l系ではCoの増加とともにCo16原子%までは単調にiHcが
低下することを認めた。しかしながらCo添加によって磁
石合金の空気中での酸化を抑制すれば磁石合金の大量生
産が可能になるメリットが得られるが、反面iHcの低下
を招くという不利は避け難い。Based on this report, the present inventors have found that a wider range of Co, A
As a result of investigating changes in iHc with respect to the amounts of l and B, Nd-Fe-Co-BA
In the l system, iHc monotonously decreased up to 16 atom% Co with increasing Co. However, suppressing the oxidation of the magnet alloy in the air by adding Co has the advantage of enabling mass production of the magnet alloy, but on the other hand, the disadvantage of lowering iHc is unavoidable.
(発明の構成) 本発明は、磁石合金中の酸素量を低減させることによ
り、磁石特性を向上させ、安定した性能の磁石を製造す
る目的をもって上述のメリットを最大限利用し、不利な
点を実用上支障のないレベルにすることについて鋭意研
究を進めた結果この種の合金粉末は主相となるR2Fe14B1
相すなわちR貧相以外にR富相が含まれ、R富相の酸化
が磁石合金粉末の酸化の主因であり、これをCo添加によ
って抑制すれば合金の酸化抑制効果が得られることを知
見し、本発明に至ったのであって、平均組成式Rx(F
e1−sCos)100−x−y−By(ただしRはy
または希土類元素の1種もしくは2種以上である)で表
わされ、x,yが重量百分率で夫々29.5≦x≦3
5、0.8≦y≦1.5、sが重量比で0.01≦s≦
0.3である合金組織中に、26≦x≦28、0.8≦
y≦1、0.01≦s≦0.2であるR貧相と29≦x
≦80、0≦y≦10、0.25≦s≦0.7であるR
富相とを含有する希土類永久磁石を前記平均組成式にお
けるx,y,sが25≦x≦29.5、0.8≦y≦
1.5、0≦s≦0.04である合金(I)粉末20〜80
重量部と30≦x≦35、0.8≦y≦1.5、0.0
5≦s≦0.50である合金(II)粉末80〜20重量部と
を混合し、磁場配向成形した後非酸化性雰囲気中で焼結
することを特徴とする希土類永久磁石の製造方法を要旨
とするものである。(Structure of the Invention) The present invention maximizes the above-mentioned merit for the purpose of producing a magnet with stable performance by improving the magnet characteristics by reducing the amount of oxygen in the magnet alloy, and has the disadvantages. As a result of earnest research on achieving a level that does not hinder practical use, this type of alloy powder forms the main phase of R 2 Fe 14 B 1
Phase, that is, an R-rich phase other than the R-poor phase is included, and the oxidation of the R-rich phase is the main cause of the oxidation of the magnet alloy powder, and it has been found that if the addition of Co is suppressed, the effect of suppressing the oxidation of the alloy can be obtained. The present invention has led to the average composition formula Rx (F
e 1-s Co s) 100 -x-y- By ( where R y
Or one or more rare earth elements), and x and y are weight percentages of 29.5 ≦ x ≦ 3, respectively.
5, 0.8 ≦ y ≦ 1.5, s is 0.01 ≦ s ≦ by weight ratio
In the alloy structure of 0.3, 26 ≦ x ≦ 28, 0.8 ≦
R poor phase with y ≦ 1, 0.01 ≦ s ≦ 0.2 and 29 ≦ x
R for ≦ 80, 0 ≦ y ≦ 10, 0.25 ≦ s ≦ 0.7
In a rare earth permanent magnet containing a rich phase, x, y and s in the average composition formula are 25 ≦ x ≦ 29.5 and 0.8 ≦ y ≦.
Alloy (I) powder having a value of 1.5 and 0 ≦ s ≦ 0.04 20 to 80
Parts by weight and 30 ≦ x ≦ 35, 0.8 ≦ y ≦ 1.5, 0.0
A method for producing a rare earth permanent magnet, which comprises mixing 80 to 20 parts by weight of an alloy (II) powder with 5 ≦ s ≦ 0.50, magnetic field orientation molding, and sintering in a non-oxidizing atmosphere. It is a summary.
以下これをさらに詳しく説明すると、本発明の前記平均
組成式で表わされるR-Fe-Co-B系磁石合金の組成重量百
分率を29.5≦x≦35、0.8≦y≦1.5とし、
組成重量比を0.01≦s≦0.30の範囲とした理由
はx<29.5では低い保磁力しか得られず、35<x
ではエネルギー積が低くy<0.8では引く保磁力しか
得られず、1.5<yではエネルギー積が低い、またs
<0.01ではCo添加による酸化抑制効果が得られず
0.30<sではCoが多すぎて保磁力が低下しかつコス
ト高とするためである。しかしてこの合金中にはR貧相
とR富相とが含まれ、前者は26≦x≦28、0.8≦
y≦1、0.01≦s≦0.2であり、後者は29≦x
≦80、0≦y≦10、0.25≦s≦0.7の組成で
あることが本発明の目的達成上必要であって、この範囲
以外では所期の効果が得られない。This will be described in more detail below. The composition weight percentage of the R-Fe-Co-B based magnet alloy represented by the average composition formula of the present invention is 29.5≤x≤35, 0.8≤y≤1.5. age,
The reason for setting the composition weight ratio in the range of 0.01 ≦ s ≦ 0.30 is that a low coercive force is obtained when x <29.5, and 35 <x
, The energy product is low at y <0.8, and only coercive force is obtained at y <0.8, and the energy product is low at 1.5 <y, and s
This is because if <0.01, the effect of suppressing the oxidation due to the addition of Co cannot be obtained, and if 0.30 <s, the amount of Co is too large to reduce the coercive force and increase the cost. However, this alloy contains an R-poor phase and an R-rich phase, the former being 26 ≦ x ≦ 28, 0.8 ≦
y ≦ 1, 0.01 ≦ s ≦ 0.2, and the latter is 29 ≦ x
The composition of ≦ 80, 0 ≦ y ≦ 10, and 0.25 ≦ s ≦ 0.7 is necessary for achieving the object of the present invention, and the desired effect cannot be obtained outside this range.
各成分の範囲を限定した理由は次のとおりである。すな
わち、R貧相は合金(I)の組成より決定されかつこの磁
石の主相を成すものであり原子比でR2(Fe1-sCos)14B1の
式で表わされ、この相が安定となる範囲は26≦x≦2
8かつ0.8≦y≦1.0でこれ以外では高い保磁力、
エネルギー積ともに得られない。sは合金(I)と合金(I
I)の組成により決定されるがs<0.01ではCo添加に
よる酸化抑制効果が得られず0.2<sでは高い保磁力
が得られない。R富相はこの磁石が液相焼結により高い
保磁力、エネルギー積を得るための低融点相である。x
<29では融点が上昇し液相焼結が行なわれず保磁力が
低下する80<xではこの相中のCoが少なくなるため酸
化抑制効果が小さい、10<yの場合もCo量が少ないた
め酸化抑制効果が小さい、s<0.25では酸化抑制効
果が小さく、0.7<2では保磁力が低下するからであ
る。The reason for limiting the range of each component is as follows. That is, the R poor phase is determined from the composition of the alloy (I) and constitutes the main phase of this magnet, and is represented by the formula of R 2 (Fe 1-s Co s ) 14 B 1 in atomic ratio. Is stable in the range of 26 ≦ x ≦ 2
8 and 0.8 ≦ y ≦ 1.0, otherwise high coercive force,
Energy product cannot be obtained. s is alloy (I) and alloy (I
Although it is determined by the composition of I), when s <0.01, the effect of suppressing the oxidation by the addition of Co cannot be obtained, and when 0.2 <s, a high coercive force cannot be obtained. The R-rich phase is a low melting point phase for this magnet to obtain a high coercive force and energy product by liquid phase sintering. x
At <29, the melting point rises and liquid phase sintering is not performed, and the coercive force decreases. At 80 <x, the amount of Co in this phase is small and the effect of suppressing oxidation is small. This is because the suppression effect is small, the oxidation suppression effect is small when s <0.25, and the coercive force is decreased when 0.7 <2.
本発明は前記磁石合金を製造するに当り、意図的に組成
を異にする2つの合金、合金(I)と合金(II)を混合する
ことにより製造工程中の磁石中への酸素の量を1合金よ
り製造する場合に比べて少なく抑える方法を採用するの
であって、合金(I)の組成は、25≦x≦29.5、
0.8≦y≦1.5、0≦s≦0.04であり、合金(I
I)の組成は30≦x≦35、0.8≦y≦1.5、0.
05≦s≦0.50の範囲である。In the present invention, when the magnet alloy is manufactured, the amount of oxygen in the magnet during the manufacturing process is controlled by mixing two alloys, alloy (I) and alloy (II), which are intentionally different in composition. As compared with the case where it is manufactured from one alloy, the method of suppressing the amount is adopted, and the composition of the alloy (I) is 25 ≦ x ≦ 29.5.
0.8 ≦ y ≦ 1.5, 0 ≦ s ≦ 0.04, and the alloy (I
The composition of I) is 30 ≦ x ≦ 35, 0.8 ≦ y ≦ 1.5, 0.
The range is 05 ≦ s ≦ 0.50.
これらの組成範囲を限定した理由について述べると合金
(I)の組成はこの磁石の主相である原子比でR2Fe(Fe1-sC
os)14B1を成すものであるから25≦x≦29.5、
0.8≦y≦1.5以外では主相が安定化しないため高
い保磁力、エネルギー積が得られない。また0.04<
sでは合金(II)との混合後Co量を少なくすることができ
ないので、0≦s≦0.04の範囲とするのである。合
金(II)の組成はx<30では高い保磁力が得られず、3
5<xではエネルギー積が低下してしまい、30≦x≦
35、y<0.8では高い保磁力が得られず、1.5<
yではエネルギー積が低下してしまうので、0.8≦y
≦1.5とし0.05>sでは酸化抑制効果が小さく、
0.05<sでは合金(I)との混合後もCo量をへらせず
保磁力が低いので、0.05≦s≦0.5の範囲とする
のである。合金(I)に対する合金(II)の混合比は、20
〜80:80〜20重量部好ましくは、30〜70:7
0〜30重量部でありその混合方法としては、合金(I)
と合金(II)とをそれぞれ1〜50μmの粉末に粉砕した
後、混合するか、または50μmを超える粒状物の合金
(I)と合金(II)とを混合した後、1〜50μmの粉末に
粉砕する方法のいずれでもよい。The reason why these composition ranges are limited
The composition of (I) is R 2 Fe (Fe 1-s C in atomic ratio which is the main phase of this magnet.
Since o s) is intended to form a 14 B 1 25 ≦ x ≦ 29.5 ,
Outside of 0.8 ≦ y ≦ 1.5, the main phase is not stabilized, so that high coercive force and energy product cannot be obtained. Also 0.04 <
With s, the amount of Co cannot be reduced after mixing with the alloy (II), so the range is 0 ≦ s ≦ 0.04. When the composition of alloy (II) is x <30, a high coercive force cannot be obtained and 3
When 5 <x, the energy product decreases, and 30 ≦ x ≦
35, y <0.8 cannot obtain high coercive force, and 1.5 <
Since the energy product decreases at y, 0.8 ≦ y
When ≦ 1.5 and 0.05> s, the effect of suppressing oxidation is small,
When 0.05 <s, the Co amount is not reduced even after mixing with the alloy (I) and the coercive force is low, so the range is 0.05 ≦ s ≦ 0.5. The mixing ratio of alloy (II) to alloy (I) is 20.
-80: 80-20 parts by weight, preferably 30-70: 7
0 to 30 parts by weight, and the mixing method is alloy (I)
And alloy (II) are crushed into powders each having a particle size of 1 to 50 μm and then mixed, or an alloy of particles having a particle size of more than 50 μm
Any method of mixing (I) and alloy (II) and then pulverizing to powder of 1 to 50 μm may be used.
つぎに、上記の合金粉末を磁場配向成形したのち非酸化
性雰囲気中で焼結するのであるが、この場合の非酸化性
雰囲気としては10Torr以下の減圧にするか、アルゴンな
どの不活性ガスの雰囲気とすればよく、また焼結温度と
しては1000〜1200℃の範囲とすればよい。Next, the alloy powder is magnetically oriented and then sintered in a non-oxidizing atmosphere.In this case, the non-oxidizing atmosphere is a reduced pressure of 10 Torr or less, or an inert gas such as argon. The atmosphere may be set, and the sintering temperature may be set in the range of 1000 to 1200 ° C.
混合比はそれぞれの合金組成により最も好ましい比が存
在するが要は混合後の組成が29.5≦x≦35、0.
8≦y≦1.5、0.01≦s≦0.30の範囲になる
ようにすべきであり、この範囲外では高いエネルギー積
が得られない。The mixing ratio has the most preferable ratio depending on the alloy composition, but the important point is that the composition after mixing is 29.5 ≦ x ≦ 35, 0.
It should be in the range of 8 ≦ y ≦ 1.5 and 0.01 ≦ s ≦ 0.30, and a high energy product cannot be obtained outside this range.
本発明においてiHc増大の目的でAl、Nd、Vのうちの1種以
上で合金(I)または合金(II)あるいは両方の合金のFeとC
oを置換することが効果的である。この場合添加量が多
いと(BH)maxが低下するためAl、Nd、Vの和が5重量%未満
がよい。In the present invention, for the purpose of increasing iHc, at least one of Al, Nd, and V may be alloy (I) or alloy (II), or Fe and C of both alloys.
Replacing o is effective. In this case, if the addition amount is large, (BH) max decreases, so the sum of Al, Nd, and V is preferably less than 5% by weight.
実施例1 合金(I)の組成 25.ONd-73.5Fe-0co-1.0B-0.5Al 合金(II)の組成 35Nd-50.5Fe-13.0Co-1.0B-0.5Al 上記組成の合金(I)および合金(II)を1対1の混合比で
混合し、ジェットミルにて平均粒径3.5μmの粉末とし、
空気中に100時間放置した後、10kOeの磁場中、圧力1.5t
/cm2、温度1100℃にて、アルゴン雰囲気中で約1時間焼
結し、温度500〜900℃で1時間熱処理して焼結体
を得た。Example 1 Composition of alloy (I) 25. Composition of ONd-73.5Fe-0co-1.0B-0.5Al alloy (II) 35Nd-50.5Fe-13.0Co-1.0B-0.5Al Alloy (I) of the above composition and The alloy (II) was mixed at a mixing ratio of 1: 1 and made into a powder having an average particle size of 3.5 μm by a jet mill,
After leaving it in air for 100 hours, in a magnetic field of 10 kOe, pressure 1.5 t
/ cm 2 , at a temperature of 1100 ° C., it was sintered in an argon atmosphere for about 1 hour and heat-treated at a temperature of 500 to 900 ° C. for 1 hour to obtain a sintered body.
この焼結体をEPMA(エレクトロン、プローブ、マイクロ
アナライザー)で分析した。磁気特性および酸素分析結
果はつぎのとおりである。This sintered body was analyzed by EPMA (electron, probe, microanalyzer). The magnetic properties and oxygen analysis results are as follows.
磁石の酸素量:0.45% iHc:10500 Oe (BH)max:41.0 MGOe 平均組成:30.0Nd-62.0Fe-6.5Co-1.0B-0.5Al R貧相:27.0Nd-67.5Fe-4.0Co-1.0B-0.5Al R富相:66.0Nd-23.5Fe-10.0Co-0.5Al 比較例1 合金混合を行わず、1種の合金粉末(合金組成、31.0Nd
-64.5Fe-3.0Co-1.0B-0.5Al)を用いたほかは実施例1と
同様に処理して焼結体を得た。このものの測定結果は次
のとおりである。Oxygen content of magnet: 0.45% iHc: 10500 Oe (BH) max : 41.0 MGOe Average composition: 30.0Nd-62.0Fe-6.5Co-1.0B-0.5Al R Poor phase: 27.0Nd-67.5Fe-4.0Co-1.0B- 0.5Al R-rich phase: 66.0Nd-23.5Fe-10.0Co-0.5Al Comparative Example 1 One kind of alloy powder (alloy composition, 31.0Nd without alloy mixing)
-64.5Fe-3.0Co-1.0B-0.5Al) was used to obtain a sintered body by the same process as in Example 1. The measurement results of this product are as follows.
磁石の酸素:0.60% iHc:6000Oe (BH)max:28.0 MGOe 平均組成:31.0Nd-64.5Fe-3.0Co-1.0B-0.5Al R貧相:27.0Nd-69.0Fe-2.5Co-1.0B-0.5Al R富相:90.0Nd-9.0Fe-0.5Co-0.5Al 実施例2 合金(I)の組成 27.0Nd-71.5Fe-1.0B-0.5Al 合金(II)の組成 33.0Nd-65.5Fe-1.0B-0.5Al 上記合金(I)および合金(II)を使用したほかは実施例1
と同様に処理して焼結体を得た。このものの測定結果は
次のとおりである。Magnet oxygen: 0.60% iHc: 6000Oe (BH) max : 28.0 MGOe Average composition: 31.0Nd-64.5Fe-3.0Co-1.0B-0.5Al R Poor phase: 27.0Nd-69.0Fe-2.5Co-1.0B-0.5Al R-rich phase: 90.0Nd-9.0Fe-0.5Co-0.5Al Example 2 Composition of alloy (I) 27.0Nd-71.5Fe-1.0B-0.5Al Alloy (II) composition 33.0Nd-65.5Fe-1.0B- 0.5Al Example 1 except that the above alloy (I) and alloy (II) were used
The same process as above was performed to obtain a sintered body. The measurement results of this product are as follows.
磁石の酸素:0.44% iHc:10500 Oe (BH)max:40.8 MGOe 磁石の平均組成:30.0Nd-62.0Fe-6.5Co-1.0B-0.5Al R貧相:27.0Nd-67.0Fe-4.5Co-1.0B-0.5Al R富相:66.0Nd-23.5Fe-10.0Co-0.5Al 実施例3 合金(I)の組成 29.5Nd-69.0Fe-1.0B-0.5Al 合金(II)の組成 30.0Nd-54.8Fe-13.7Co-1.0B-0.5Al 上記合金(I)および合金(II)を使用したほかは実施例1
と同様に処理して焼結体を得た。このものの測定結果は
次のとおりである。Magnet oxygen: 0.44% iHc: 10500 Oe (BH) max : 40.8 MGOe Magnet average composition: 30.0Nd-62.0Fe-6.5Co-1.0B-0.5Al R Poor phase: 27.0Nd-67.0Fe-4.5Co-1.0B -0.5Al R-rich phase: 66.0Nd-23.5Fe-10.0Co-0.5Al Example 3 Composition of alloy (I) 29.5Nd-69.0Fe-1.0B-0.5Al Composition of alloy (II) 30.0Nd-54.8Fe- 13.7Co-1.0B-0.5Al Example 1 except that the above alloy (I) and alloy (II) were used
The same process as above was performed to obtain a sintered body. The measurement results of this product are as follows.
磁石の酸素:0.48% iHc:10100 Oe (BH)max:41.2 MGOe 平均組成:29.75Nd-61.9Fe-68.5Co-1.0B-0.5Al R貧相:27.0Nd-68.0Fe-3.5Co-1.0B-0.5Al R富相:66.0Nd-24.0Fe-9.5Co-0.5Al 比較例2 合金(I)の組成 27.0Nd-71.5Fe-1.0B-0.5Al 合金(II)の組成 33.0Nd-65.5Fe-1.0B-0.5Al 上記合金(I)および合金(II)を使用したほかは実施例1
と同様に処理して焼結体を得た。このものの測定結果は
次のとおりである。Magnet oxygen: 0.48% iHc: 10100 Oe (BH) max : 41.2 MGOe Average composition: 29.75Nd-61.9Fe-68.5Co-1.0B-0.5Al R Poor phase: 27.0Nd-68.0Fe-3.5Co-1.0B-0.5 Al R Rich phase: 66.0Nd-24.0Fe-9.5Co-0.5Al Comparative example 2 Composition of alloy (I) 27.0Nd-71.5Fe-1.0B-0.5Al Composition of alloy (II) 33.0Nd-65.5Fe-1.0B -0.5Al Example 1 except that the above alloy (I) and alloy (II) were used
The same process as above was performed to obtain a sintered body. The measurement results of this product are as follows.
磁石の酸素:0.71% iHc:4000 Oe (BH)max:26.0 MGOe 磁石の平均組成:30.0Nd-68.5Fe-1.0B-0.5Al R貧相:27.0Nd-71.5Fe-1.0B-0.5Al R富相:90.0Nd-9.5Fe-0.5Al 比較例3 合金(I)の組成 27.0Nd-68.5Fe-13.0Co-1.0B-0.5Al 合金(II)の組成 31.0Nd-48.5Fe-19.0Co-1.0B-0.5Al 上記合金(I)および合金(II)を使用したほかは実施例1
と同様に処理して焼結体を得たこのものの測定結果は次
のとおりである。Magnet oxygen: 0.71% iHc: 4000 Oe (BH) max : 26.0 MGOe Magnet average composition: 30.0Nd-68.5Fe-1.0B-0.5Al R Poor phase: 27.0Nd-71.5Fe-1.0B-0.5Al R Rich phase : 90.0Nd-9.5Fe-0.5Al Comparative Example 3 Composition of alloy (I) 27.0Nd-68.5Fe-13.0Co-1.0B-0.5Al Composition of alloy (II) 31.0Nd-48.5Fe-19.0Co-1.0B- 0.5Al Example 1 except that the above alloy (I) and alloy (II) were used
The following are the measurement results of the sintered body obtained by the same treatment as described above.
磁石の酸素:0.40% iHc:3500 Oe (BH)max:18.0 MGOe 磁石の平均組成:29.0Nd-58.5Fe-16.0Co-1.0B-0.5Al R貧相:27.0Nd-54.5Fe-17.0Co-1.0B-0.5Al R富相:66.0Nd-10.0Fe-23.5Co-1.0B-0.5Al 前記実施例から、本発明によれば、所望の磁石組成を得
るにあたり酸化しやすいR富相にCoを多量に含有せしめ
酸化抑制効果を付与し、Coなしでも比較的酸化しにくい
R貧相との混在組織よりなる磁石とすることにより、焼
結体は良好なiHcを有し、かつCoの多い組成と同等の耐
酸化性を有する磁石が得られることがわかる。Magnet oxygen: 0.40% iHc: 3500 Oe (BH) max : 18.0 MGOe Magnet average composition: 29.0Nd-58.5Fe-16.0Co-1.0B-0.5Al R Poor phase: 27.0Nd-54.5Fe-17.0Co-1.0B -0.5Al R-rich phase: 66.0Nd-10.0Fe-23.5Co-1.0B-0.5Al From the above example, according to the present invention, a large amount of Co is added to the R-rich phase which is easily oxidized to obtain a desired magnet composition. The sintered body has a good iHc and is equivalent to a composition with a large amount of Co, by providing a magnet with a mixed structure of R poor phase that is relatively hard to oxidize even without Co It can be seen that a magnet having oxidation resistance can be obtained.
したがって本発明によれば大量生産性を有し、良好な性
能をもつ磁石を安定的に製造することができる。Therefore, according to the present invention, it is possible to stably manufacture a magnet having mass productivity and good performance.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−17905(JP,A) 特開 昭60−128603(JP,A) 特開 昭60−182105(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-17905 (JP, A) JP-A-60-128603 (JP, A) JP-A-60-182105 (JP, A)
Claims (1)
を含有する希土類磁石を、合金(I)粉末20〜80重
量部と合金(II)粉末80〜20重量部とを混合し、磁
場中配向成形した後、非酸化雰囲気中で焼結することを
特徴とする希土類永久磁石の製造方法。 希土類磁石の組成式:Rx(Fe1−sCos)
100−x−yBy(ただしRはYまたは希土類元素の
1種もしくは2種以上で、かつx,yが重量百分率で夫
々29.5≦x<35、0.8≦y≦1.5、sが重量
比で0.01≦s≦0.3であり、R貧相が26≦x≦
28、0.08≦y≦1、0.01≦s≦0.2であ
り、R富相が29≦x≦80、0≦y≦10、0.25
≦s≦0.7である。) 合金(I):組成式は上記希土類磁石に同じでかつ25
≦x≦29.5、0.8≦y≦1.5、0≦s≦0.0
4である。 合金(II):組成式は上記希土類磁石に同じでかつ3
0≦x≦35、0.8≦y≦1.5、0.05≦s≦
0.50である。1. A rare earth magnet containing R-poor phase and R-rich phase represented by the following composition formula is mixed with 20 to 80 parts by weight of alloy (I) powder and 80 to 20 parts by weight of alloy (II) powder. A method for producing a rare earth permanent magnet, which comprises performing orientation molding in a magnetic field and then sintering in a non-oxidizing atmosphere. Composition formula of the rare-earth magnet: R x (Fe 1-s Co s)
100- xy By (where R is Y or one or more rare earth elements, and x and y are weight percentages of 29.5 ≦ x <35 and 0.8 ≦ y ≦ 1.5, respectively. , S is 0.01 ≦ s ≦ 0.3 by weight ratio, and R poor phase is 26 ≦ x ≦.
28, 0.08 ≦ y ≦ 1, 0.01 ≦ s ≦ 0.2, and R-rich phase is 29 ≦ x ≦ 80, 0 ≦ y ≦ 10, 0.25
≦ s ≦ 0.7. ) Alloy (I): The composition formula is the same as that of the rare earth magnet and 25
≦ x ≦ 29.5, 0.8 ≦ y ≦ 1.5, 0 ≦ s ≦ 0.0
It is 4. Alloy (II): The composition formula is the same as the above rare earth magnet and 3
0 ≦ x ≦ 35, 0.8 ≦ y ≦ 1.5, 0.05 ≦ s ≦
It is 0.50.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61313714A JPH063763B2 (en) | 1986-12-26 | 1986-12-26 | Rare earth permanent magnet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61313714A JPH063763B2 (en) | 1986-12-26 | 1986-12-26 | Rare earth permanent magnet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63164403A JPS63164403A (en) | 1988-07-07 |
JPH063763B2 true JPH063763B2 (en) | 1994-01-12 |
Family
ID=18044631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61313714A Expired - Lifetime JPH063763B2 (en) | 1986-12-26 | 1986-12-26 | Rare earth permanent magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH063763B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2675430B2 (en) * | 1989-10-12 | 1997-11-12 | 川崎製鉄株式会社 | Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same |
US5447578A (en) * | 1989-10-12 | 1995-09-05 | Kawasaki Steel Corporation | Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017905A (en) * | 1983-07-08 | 1985-01-29 | Sumitomo Special Metals Co Ltd | Permanent magnet alloy powder |
JPS60128603A (en) * | 1983-12-15 | 1985-07-09 | Hitachi Metals Ltd | Permanent magnet having composite organization |
JPS60182105A (en) * | 1984-02-28 | 1985-09-17 | Sumitomo Special Metals Co Ltd | Permanent magnet material and manufacture thereof |
JPS61207546A (en) * | 1985-03-12 | 1986-09-13 | Tohoku Metal Ind Ltd | Manufacture of magnet containing rare earth element |
JPS61264133A (en) * | 1985-05-17 | 1986-11-22 | Sumitomo Special Metals Co Ltd | Permanent magnet alloy and its manufacture |
-
1986
- 1986-12-26 JP JP61313714A patent/JPH063763B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63164403A (en) | 1988-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4684406A (en) | Permanent magnet materials | |
JPH0510806B2 (en) | ||
JP2001189206A (en) | Permanent magnet | |
EP0237416B1 (en) | A rare earth-based permanent magnet | |
JP3865180B2 (en) | Heat-resistant rare earth alloy anisotropic magnet powder | |
JPS6325904A (en) | Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet | |
JP2002038245A (en) | Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JP3222482B2 (en) | Manufacturing method of permanent magnet | |
EP0386286B1 (en) | Rare earth iron-based permanent magnet | |
JP3303044B2 (en) | Permanent magnet and its manufacturing method | |
US4954186A (en) | Rear earth-iron-boron permanent magnets containing aluminum | |
JP2000114016A (en) | Permanent magnet and manufacture thereof | |
US5055129A (en) | Rare earth-iron-boron sintered magnets | |
JPH06231926A (en) | Rare earth permanent magnet | |
JPH063763B2 (en) | Rare earth permanent magnet manufacturing method | |
JPH0146575B2 (en) | ||
JPH045739B2 (en) | ||
JPS63128606A (en) | Permanent magnet | |
JPH0461041B2 (en) | ||
JP2874392B2 (en) | Production method of rare earth cobalt 1-5 permanent magnet alloy | |
JPH0536494B2 (en) | ||
JPS6318603A (en) | Permanent magnet | |
JPS619551A (en) | Rare earth element-iron type permanent magnet alloy | |
JP2632025B2 (en) | Rare earth permanent magnet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |