JPH03250607A - Corrosive resistant rare earth-transition metal magnet and its manufacture - Google Patents

Corrosive resistant rare earth-transition metal magnet and its manufacture

Info

Publication number
JPH03250607A
JPH03250607A JP2269635A JP26963590A JPH03250607A JP H03250607 A JPH03250607 A JP H03250607A JP 2269635 A JP2269635 A JP 2269635A JP 26963590 A JP26963590 A JP 26963590A JP H03250607 A JPH03250607 A JP H03250607A
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
powder
rare earth
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2269635A
Other languages
Japanese (ja)
Other versions
JP2675430B2 (en
Inventor
Yukiko Ozaki
由紀子 尾崎
Michio Shimotomai
道夫 下斗米
Yasutaka Fukuda
泰隆 福田
Akira Fujita
明 藤田
Yoko Kitano
北野 葉子
Junichi Shimomura
下村 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2269635A priority Critical patent/JP2675430B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to DE69027201T priority patent/DE69027201T2/en
Priority to KR1019910700606A priority patent/KR960013029B1/en
Priority to CA002044171A priority patent/CA2044171C/en
Priority to EP90914967A priority patent/EP0447567B1/en
Priority to PCT/JP1990/001315 priority patent/WO1991006107A1/en
Priority to CN 90109219 priority patent/CN1027473C/en
Publication of JPH03250607A publication Critical patent/JPH03250607A/en
Priority to US08/238,330 priority patent/US5437741A/en
Priority to US08/266,791 priority patent/US5447578A/en
Application granted granted Critical
Publication of JP2675430B2 publication Critical patent/JP2675430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To cause the title magnet to have both high magnetic characteristics and high corrosion resistance by mixing and pressing a powder mainly composed of an intermetallic compound having a specific RE2TM14B composition and one or more kinds of powder having, as a main phase, RE-TM interfamily compound or RE-TM-B intermetallic compound lower in the melting point than the first powder and thereafter by sintering the obtained product. CONSTITUTION:A mixed powder of a permanent magnet alloy, which consists of RE not less than 10% and not more than 25% including one or two sorts or materials selected from Y, Sc and lanthanoids, B of not less then 2% and not more than 20% and the rest TM and its constitution is in the phase od RE2TM14B composition having Nd2Fe14B structure, and a powder mainly composed of RE-TM intermetallic compound phase or RE-TM eutectic structure and/or RE-TM-B intermetallic compound phase lower in the melting point than the first phase is subjected to compression molding and sintered thereafter. For further improvement of corrosion resistance, it is effective that a grain boundary phase is electrochemically nobler than a main phase. Therefore, it is preferable to make the ratio of Ni and/or Co in TM in the RE-TM and RE-TM-B low melting point phase higher than that in the RE2TM14B phase.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れるだけでなく、耐蝕性およ
び温度特性にも優れた希土類−遷移金属系磁石およびそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rare earth-transition metal magnet that not only has excellent magnetic properties but also excellent corrosion resistance and temperature characteristics, and a method for manufacturing the same.

(従来の技術) 現在、製造されている代表的な永久磁石材料としては、
アルニコ磁石、フェライト磁石および希土類磁石などが
挙げられる。アルニコ磁石は歴史的に古いが、安価なフ
ェライト磁石あるいはさらにより高い磁気特性を持つ希
土類磁石の開発により、需要は低下しつつある。一方フ
エライト磁石は、酸化物を主原料としていることから化
学的に安定で、かつ低コストであるため、現在でも磁石
材料の主流を占めているか、最大エネルギー積が小さい
という欠点があった。
(Prior art) Typical permanent magnet materials currently manufactured include:
Examples include alnico magnets, ferrite magnets, and rare earth magnets. Alnico magnets have a long history, but demand is declining due to the development of cheaper ferrite magnets or even rare earth magnets with even higher magnetic properties. On the other hand, ferrite magnets are chemically stable and low-cost because they are mainly made of oxides, so they still occupy the mainstream of magnet materials today, and they have the drawback of having a small maximum energy product.

その後、希土類イオンの持つ磁気異方性と遷移金属元素
の持つ磁気モーメントとを組合わせたSmCo系磁石が
出現し、従来の最大エネルギー積を大幅に更新した。し
かしながら、5lll−Co系磁石は資源的に乏しいS
mとCoを主成分としているために高価な磁石とならざ
るを得なかった。
Subsequently, SmCo-based magnets appeared that combined the magnetic anisotropy of rare earth ions and the magnetic moment of transition metal elements, significantly updating the conventional maximum energy product. However, 5lll-Co-based magnets are S
Since the main components are M and Co, the magnet has to be expensive.

そこで高価な5IIlやCoを含まない、安価でかつ高
磁気特性を有する磁石合金の開発が行われ、その結果性
用らは、焼結法により三元系で安定な合金(特公昭61
−34242号公報および特開昭59−132104号
公報)を、またJ、J、Croatらは液体急冷法によ
り保磁力の高い合金(特開昭59−64739号公報)
を開発した。これらはNd、 Fe及びBからなる磁石
で、その最大エネルギー積はSm −Co系磁石のそれ
を超えるものである。
Therefore, an inexpensive magnetic alloy with high magnetic properties that does not contain expensive 5IIl or Co was developed.
-34242 and JP-A-59-132104), and J, J., Croat et al. developed an alloy with high coercive force by liquid quenching method (JP-A-59-64739).
developed. These are magnets made of Nd, Fe, and B, and their maximum energy product exceeds that of Sm--Co magnets.

しかしながらNd−Fe−B系磁石は、成分として非常
に活性の高いNdなとの軽希土類元素および錆び易いF
eを多量に含んでいることから、耐蝕性に劣り、その結
果、磁気特性が劣化して工業材料としての信頼性に欠け
るという欠点があった。
However, Nd-Fe-B magnets are composed of light rare earth elements such as Nd, which has very high activity, and F, which easily rusts.
Since it contains a large amount of e, it has poor corrosion resistance, resulting in deterioration of magnetic properties and lack of reliability as an industrial material.

従って耐蝕性の改善のために、たとえば焼結磁石につい
ては表面めっき(特開昭63−77103号公報)コー
ティング処理(特開昭60−63901号公報)等を施
し、また樹脂結合型磁石では磁粉と樹脂を混練する前に
予め表面処理を施すなどの対策が講しられているが、い
ずれも長期間にわたって有効な防錆処理とはいえず、ま
た処理のためコスト高となり、さらには保護膜による磁
束のロスなどの問題もあった。
Therefore, in order to improve the corrosion resistance, for example, sintered magnets are subjected to surface plating (Japanese Unexamined Patent Publication No. 63-77103), coating treatment (Japanese Unexamined Patent Publication No. 60-63901), etc., and resin-bonded magnets are treated with magnetic powder. Countermeasures such as pre-surface treatment before kneading the resin and resin have been taken, but none of these treatments can be said to be an effective anti-corrosion treatment over a long period of time, and the cost of treatment is high, and furthermore, the protective film is There were also problems such as loss of magnetic flux.

上記の問題の解決策として、発明者らは先に、Nd−F
e−B系磁石のFeをCoおよびNiで高濃度に置換し
た希土類−遷移金属−ボロン系磁石合金を提案した(特
開平2−4939号公報)。
As a solution to the above problem, the inventors first developed an Nd-F
We have proposed a rare earth-transition metal-boron magnet alloy in which Fe in an e-B magnet is replaced with Co and Ni at a high concentration (Japanese Patent Application Laid-Open No. 2-4939).

上記の磁石は、耐蝕性に優れ、しかもキュリー点が上昇
したので、材料としての信頼性が大幅に向上した。
The above-mentioned magnet has excellent corrosion resistance and has a raised Curie point, so its reliability as a material has been greatly improved.

(この発明が解決しようとする課題) この発明は、上記の磁石をさらに発展させたもので、二
相組織の希土類−遷移金属系磁石を提案する。
(Problems to be Solved by the Invention) The present invention is a further development of the above magnet, and proposes a rare earth-transition metal magnet with a two-phase structure.

なお二相組織のNd系磁石については、先に、希土類冨
相と希土類貧相の相とを混合・液相焼結した、磁気特性
に優れた二合金法による磁石が提案されている(特開昭
63−93841号、同63−164403号各公報)
が、上記の方法では、磁気特性は向上するものの耐蝕性
という点に関しては依然として問題を残していた。
Regarding Nd-based magnets with a two-phase structure, a magnet using a two-alloy method with excellent magnetic properties, in which a rare earth-rich phase and a rare earth-poor phase are mixed and liquid-phase sintered, has previously been proposed (Unexamined Japanese Patent Publication No. Publications No. 63-93841 and No. 63-164403)
However, although the above-mentioned method improves the magnetic properties, there still remains a problem in terms of corrosion resistance.

この発明は、上記の問題を有利に解決するもので、磁気
特性だけでなく耐蝕性にも優れた二相組織の希土類−遷
移金属系磁石を、その有利な製造方法と共に提案するこ
とを目的とする。
The purpose of this invention is to advantageously solve the above problems, and to propose a rare earth-transition metal magnet with a two-phase structure that has excellent not only magnetic properties but also corrosion resistance, together with an advantageous manufacturing method. do.

(課題を解決するための手段) まずこの発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

さて発明者らは、上記の磁石につき、高分解能電子顕微
鏡等を用いて金属組織学的研究を鋭意進めた結果、該磁
石には大きな飽和磁束密度を持つNdz(Fe、Co、
N+) 14B相と、この相からなる結晶粒を取り囲ん
で強い保磁力を発現しているNdz(Fe、C。
Now, as a result of intensive metallographic research on the above-mentioned magnet using a high-resolution electron microscope, the inventors found that the magnet contains Ndz (Fe, Co,
N+) 14B phase and Ndz (Fe, C.

Ni)+7. Nd(Fe、Co、Ni)s、 Ndz
(Fe、Co、Ni)7. Nd(Fe。
Ni)+7. Nd(Fe, Co, Ni)s, Ndz
(Fe, Co, Ni)7. Nd(Fe.

Co + N i ) a BおよびNd(Fe、Co
、Ni) 12B&、さらにはCrB構造になるNd+
−xTMx (ただしTMは主としてNi)などの粒界
相が存在することを究明した。
Co + N i ) a B and Nd(Fe, Co
, Ni) 12B&, and further Nd+ which becomes CrB structure
-xTMx (however, TM is mainly Ni) and other grain boundary phases were found to exist.

また、腐蝕の発生点となるNd相の量が少なく、しかも
上記の粒界相におけるNiやCoの濃度が高いほど、よ
り一層良好な耐蝕性を示すことが併せて突き止められた
It was also found that the smaller the amount of Nd phase, which is a point where corrosion occurs, and the higher the concentration of Ni and Co in the grain boundary phase, the better the corrosion resistance.

そこで発明者らは、この点につき、さらに考察を重ねた
結果、前述の粒界相は、Ndz(Fe、Co、Ni)+
7以外はNd−Fe−B系三元状態図の枠組みでは出現
し難く、むしろNd−Co−B系の枠組みでしか出現し
得ない相であることに想い到った。
Therefore, the inventors further considered this point and found that the aforementioned grain boundary phase is Ndz (Fe, Co, Ni) +
I came to realize that phases other than 7 are difficult to appear in the framework of the Nd-Fe-B ternary phase diagram, and can only appear in the framework of the Nd-Co-B system.

参考のため第1図に、Nd−Fe−B三元状態図(N、
F、Chaban、 Yu、B、Kuzma、 N、S
、B11onizhko、 0゜0、にachmar 
and N、U、Petrov、 Akad Nauk
、 5SSR。
For reference, Figure 1 shows the Nd-Fe-B ternary phase diagram (N,
F., Chaban, Yu, B., Kuzma, N.S.
, B11onizhko, 0゜0, niachmar
and N, U, Petrov, Akad Nauk
, 5SSR.

5etA   Fiz、−Mat、  Tekh、  
Nauki  No、10  (1979)  873
)を、また第2図には、Nd−C0−B三元状態図(N
S B11onizhko and Yu、B、Kuz
ma、 Izv、Akad、 NaukSSSRNeo
rg、 Mater、 19 (1983) 487)
を示す(ただし、原論文ではNdzFe+aB相を〜N
 d z F e q B相と、またNdCo5相相を
〜Nd2Co、B相と取り違えているので、第1,2図
では修正しである。)第1図において、番号1の相がN
dzFe+aB相であり、その周辺の組成ではNdFe
jL相(番号2の相)、Nd相、NdJe+7相および
Fe相が出現することになる。ところか第2図において
は、番号1のNd2Co14B相の周辺組成で作製した
磁石にはNd zCo + 7相、NdCo5相、Nd
2Co、相、NdCo4B相(番号2の相)およびNd
Co4B相相(番号7の相)等が現れ、本来Nd相は平
衡状態では出現しない筈である。
5etA Fiz, -Mat, Tekh,
Nauki No. 10 (1979) 873
), and Figure 2 shows the Nd-C0-B ternary phase diagram (N
S B11onizhko and Yu, B, Kuz
ma, Izv, Akad, NaukSSSRNeo
rg, Mater, 19 (1983) 487)
(However, in the original paper, the NdzFe+aB phase is ~N
Since the d z F e q B phase and the NdCo5 phase were mistaken for ~Nd2Co, B phase, they have been corrected in FIGS. 1 and 2. ) In Figure 1, the phase numbered 1 is N
dzFe+aB phase, and the surrounding composition is NdFe
jL phase (phase numbered 2), Nd phase, NdJe+7 phase, and Fe phase will appear. On the other hand, in Fig. 2, the magnet manufactured with the surrounding composition of Nd2Co14B phase number 1 has Nd zCo + 7 phase, NdCo5 phase, Nd
2Co, phase, NdCo4B phase (phase with number 2) and Nd
Co4B phase (phase number 7) etc. appear, and originally the Nd phase should not appear in an equilibrium state.

先にも述べたように、Nd相は錆の発生点となるばかり
でなく、磁気的にも有用性のない相であり、排除される
べき相である。
As mentioned above, the Nd phase not only becomes a point of rust generation, but also has no magnetic utility, and should be eliminated.

そこでこの発明では、磁気的に有用な二相、すなわち残
留磁束密度の高いRE2TM、、B相と、焼結性を上げ
、また主相粒界のクリーニング作用を持ら、さらには電
気化学的にも責な組成になる低融点のRE−TM相やR
E−TM−B相とを出発材料として二相磁石を作製する
ことにより、磁気特性および耐蝕性に優れた永久磁石を
得ようとするものである。
Therefore, in this invention, we have developed two magnetically useful phases, namely RE2TM and B phases with high residual magnetic flux density, which improve sintering properties, have a main phase grain boundary cleaning action, and furthermore have an electrochemical The low melting point RE-TM phase and R
By producing a two-phase magnet using the E-TM-B phase as a starting material, it is attempted to obtain a permanent magnet with excellent magnetic properties and corrosion resistance.

すなわちこの発明は、 RE : 10at%以上、25a t%以下、ここで
RELY、Scおよびランタノイドのうちから選んだ一
種または二種以上 B : 2at%以上、20a t%以下を含み、残部
は実質的にTM (ただしTM4よFe、 Coおよび
Niのうちから選んだ一種または二種以上)からなる永
久磁石合金であって、その組織が、Nd2Fe+J構造
を持つRE2TM14B (ここでTMは上記と同じ)
なる組成の相と、該相よりも融点の低い、RE −TM
系金属間化合物相(ただしTMは、■またはNiとFe
C0のうちから選んだ少なくとも一種との混合物)もし
くはRE−TM系共晶組織(ここでTMは上記と同じ)
および/またはRE−TM−B系金属間化合物相(ここ
でひは上記と同じ)から構成されていることを特徴とす
る耐蝕性希土類−遷移金属系永久磁石である。
That is, this invention includes RE: 10 at% or more and 25 at% or less, where one or more selected from RELY, Sc, and lanthanoids, B: 2 at% or more and 20 at% or less, and the remainder is substantially RE2TM14B is a permanent magnet alloy consisting of TM (TM4, one or more selected from Fe, Co, and Ni) and has a structure of Nd2Fe+J (here TM is the same as above).
A phase with a composition of
system intermetallic compound phase (TM is ■ or Ni and Fe
mixture with at least one selected from C0) or RE-TM-based eutectic structure (here, TM is the same as above)
The present invention is a corrosion-resistant rare earth-transition metal based permanent magnet characterized by being composed of a RE-TM-B based intermetallic compound phase (where H is the same as above).

またこの発明は、RE2TM、、B系金属間化合物相(
ただしTMはFe、 CoおよびNiのうちから選んだ
一種または二種以上)を主体とする粉末と、該粉末より
も融点の低いRE−TM系金属間化合物相(たたしひは
、NiまたはNiとFe、 Coのうちから選んだ少な
くとも一種との混合物)もしくはRE −TM系共品組
織(ここでTt’lは上記と同じ)および/またはRE
T!’I−B系金属間化合物相(ここてTMは上記と同
じ)を主体とする粉末との混合粉を、圧縮成形したのち
、焼結することからなる耐蝕性希土類−遷移金属系磁石
の製造方法である。
This invention also provides RE2TM, B-based intermetallic compound phase (
However, TM consists of a powder mainly composed of one or more selected from Fe, Co, and Ni, and a RE-TM intermetallic compound phase with a lower melting point than the powder (Tatashihi means Ni or mixture of Ni and at least one selected from Fe and Co) or RE-TM system co-product structure (here, Tt'l is the same as above) and/or RE
T! Manufacture of a corrosion-resistant rare earth-transition metal magnet by compressing and molding a mixed powder with a powder mainly consisting of an I-B intermetallic compound phase (here TM is the same as above) and then sintering it. It's a method.

この発明において、耐蝕性のより一層の向上のためには
、粒界相を主相よりも電気化学的に責とすることが有効
であり、従ってRE−TM系およびRETM−B系低融
点相におけるTMに占めるNiおよび/またはCoの比
率を、RE2TM、 4B相におけるそれよりも高める
ことが好ましい。とくにNiの比率を高めることが耐蝕
性の向上および低コスト化にとりわけ効果的である。
In this invention, in order to further improve corrosion resistance, it is effective to make the grain boundary phase more electrochemically responsible than the main phase. It is preferable that the proportion of Ni and/or Co in the TM is higher than that in the RE2TM and 4B phases. In particular, increasing the Ni ratio is particularly effective in improving corrosion resistance and reducing costs.

またこの発明において、RE2TM、JB金属間化合物
相とRE −TM系、RE−TM−B系金属間化合物相
との比率は、代置単位で95=5ないし40 : 60
程度とするのが好ましい。というのは両者の比率が上記
の範囲を外れると保磁力や飽和磁束密度の著しい劣化を
招く不利が生しるからである。ここに代置(formu
la unit)とは、たとえばNd2Fe14Bを一
つの分子(固体ではこれをformulaという)とみ
なした場合に相当する。混合に供する各粉末の粒径は、
0.5〜5μm程度がハンドリングの容易さや均質な混
合のために望ましい。
Further, in this invention, the ratio of the RE2TM, JB intermetallic compound phase and the RE-TM series, RE-TM-B series intermetallic compound phase is from 95=5 to 40:60 in substitution units.
It is preferable to set it as approximately. This is because if the ratio of both is out of the above range, there will be a disadvantage that the coercive force and saturation magnetic flux density will be significantly deteriorated. substitute here
la unit) corresponds to the case where, for example, Nd2Fe14B is regarded as one molecule (in the case of a solid, this is called a formula). The particle size of each powder to be mixed is
A thickness of about 0.5 to 5 μm is desirable for ease of handling and homogeneous mixing.

ここにRE2TMI4B金属間化合物相よりも融点の低
いRE −TM系金属間化合物相(共晶組織も含む。以
下間し)およびRE−TM−B系金属間化合物相の代表
組成を示すと、次のとおりである。
Here, the typical compositions of the RE-TM intermetallic compound phase (including eutectic structure, hereinafter) and the RE-TM-B intermetallic compound phase, which have a lower melting point than the RE2TMI4B intermetallic compound phase, are as follows. It is as follows.

・RE −TM系 REzTM+t、 RETM5. REZTM7. R
ETM:l、 RETMZREITMI−X、 REt
Tl’h、 RE3TMおよびRE −TMM晶組織 ・RE−門−B系 RETM4B、RE3TMII8−1RE2TMSBZ
、RE2TM7BllRE2TM5B3.RETM、2
B6.RETM□B2.RETM、B。
・RE-TM system REzTM+t, RETM5. REZTM7. R
ETM:l, RETMZREITMI-X, REt
Tl'h, RE3TM and RE-TMM crystal structure/RE-phylum-B system RETM4B, RE3TMII8-1RE2TMSBZ
, RE2TM7BllRE2TM5B3. RETM, 2
B6. RETM□B2. RETM,B.

REzTMBi なお上記したRE2TM、、BやRE−TM系、RE−
T!’I−B系金属間化合物相を主相とする粉末は、次
のようにして得ることができる。
REzTMBi In addition, the above-mentioned RE2TM, B, RE-TM series, RE-
T! A powder having an I-B intermetallic compound phase as a main phase can be obtained as follows.

すなわち所定の組成になるように各構成元素単体を秤量
し、アーク溶解ないしは高周波溶解で、真空中または不
活性ガス雰囲気中にて合金インゴットを作る。ついでそ
のインゴットを同じく真空中または不活性ガス雰囲気下
で、600〜1000°Cの温度で1〜30日間保持し
て単相の金属間化合物とする。なお金属間化合物相は一
般に、ある程度(〜20%)の固溶範囲をもつものが多
いので、出発組成もそれに応じて組成の幅が許容される
That is, each constituent element is weighed so as to have a predetermined composition, and an alloy ingot is produced by arc melting or high frequency melting in a vacuum or an inert gas atmosphere. Then, the ingot is held at a temperature of 600 to 1000°C for 1 to 30 days, also in vacuum or under an inert gas atmosphere, to form a single-phase intermetallic compound. Note that since the intermetallic compound phase generally has a solid solution range of a certain degree (up to 20%), a range of starting compositions is allowed accordingly.

単相とした金属間化合物は、ハンマーミルで粗粉砕した
のち、ジェットミルあるいはアトライターを用いて0.
5〜5μm径の微粉とする。なお、低融点相RE −T
M、RE−付−Bの中で、硬度が低く粉砕が困難なもの
に関しては、ハンマーミル粉砕の前に、予め室温〜35
0°C程度の温度範囲で数時間水素脆化させると、その
後の解砕が容易である。
The intermetallic compound made into a single phase is coarsely ground with a hammer mill, and then pulverized with a jet mill or an attritor.
Finely powder with a diameter of 5 to 5 μm. In addition, the low melting point phase RE-T
Among M and RE-B, those with low hardness and difficult to grind should be heated at room temperature to 35°C before being crushed in a hammer mill.
Hydrogen embrittlement at a temperature of about 0°C for several hours facilitates subsequent crushing.

(作 用) この発明に従い、予め作製しておいたI?E2TM、4
Bの組成を持つ金属間化合物を主体とする粉末を、それ
より融点の低い、予め作製しておいたRE −TM系系
間間化合物しくはRE−TM−B系金属間化合物を主相
とする粉末の1種以上とを混合してプレスした後に焼結
を行うことによって、高磁石特性と高耐蝕性との両者を
兼備させることができる。
(Function) According to this invention, I? E2TM, 4
Powder mainly composed of an intermetallic compound having the composition B, with a pre-prepared RE-TM intersystem compound or RE-TM-B intermetallic compound having a lower melting point as the main phase. By mixing and pressing the powder with one or more of the following powders and then sintering the mixture, it is possible to have both high magnetic properties and high corrosion resistance.

この理由は、RE2TM14Bの金属間化合物相を主体
とする粉末より融点の低い粉末は、焼結を促進させると
ともにRE2TM、 、Bの結晶粒間に粒界相を形成し
て保磁力を向上させる作用を持つからと考えられる。
The reason for this is that the powder, which has a lower melting point than the RE2TM14B powder mainly consisting of an intermetallic compound phase, has the effect of promoting sintering and forming a grain boundary phase between the crystal grains of RE2TM, B, and improving the coercive force. This is thought to be because it has

さてRE2TM、、B相において、REとしては、その
磁気モーメントの大きさや重原子との磁気的カップリン
グの観点から、またコスト的にも、NdやPrが望まし
いけれども、その他のRE、さらにはそれらとNd、 
Prとの組合せでもよいのは言うまでもない。
Now, in the RE2TM, B phase, it is desirable to use Nd or Pr as the RE from the viewpoint of the magnitude of its magnetic moment and magnetic coupling with heavy atoms, as well as from the viewpoint of cost. and Nd,
Needless to say, it may be used in combination with Pr.

TMについては、Fe、 CoおよびNiのうちから選
んだ一種または二種以上であれば良(、と(に磁石の高
耐蝕性の観点からはNiの割合を大きくすることが望ま
しい。またこのRE2TM、4B相が磁石の飽和磁束密
度を担っているので、TM中のFe、 CoおよびNi
の存在割合は、Feが1Oat%以上、73a t%未
満、Coが7at%以上、50a t%以下、Niが5
at%以上、30a t%以下程度とするのが望ましい
が、TMとしてのFeが100%のRE2TM、、B相
を主相とする場合もこの発明の永久磁石の耐蝕性は従来
のRa−TM−B[石より優れており、従って磁石の用
途によっては勿論主相として採用することができる。
Regarding TM, one or more selected from Fe, Co, and Ni may be used (and (). From the viewpoint of high corrosion resistance of the magnet, it is desirable to increase the proportion of Ni. Also, this RE2TM , 4B phase is responsible for the saturation magnetic flux density of the magnet, so Fe, Co and Ni in TM
The abundance ratio of Fe is 10at% or more and less than 73at%, Co is 7at% or more and 50at% or less, and Ni is 5at% or more.
It is desirable that the corrosion resistance of the permanent magnet of the present invention is about 30 at% or more and 30 at% or less, but even when RE2TM with 100% Fe as TM and B phase is used as the main phase, the corrosion resistance of the permanent magnet of this invention is equal to that of conventional Ra-TM. -B [It is superior to stone, so it can of course be used as the main phase depending on the purpose of the magnet.

次にRE−TM系およびRE−TM−B系低融点相にお
けるREとしては、コストを重視する場合乙こはLa。
Next, as the RE in the low melting point phase of the RE-TM system and RE-TM-B system, if cost is important, La is the preferred RE.

Ce、 Pr、 Ndなどの軽希土類元素が、また−層
耐蝕性を高めたい場合には原子番号でSm以降のLuま
での中型希土類元素やY、Scなどが有利に適合する。
Light rare earth elements such as Ce, Pr, and Nd are advantageously suitable, and when it is desired to improve the corrosion resistance of the layer, medium rare earth elements having an atomic number from Sm to Lu, Y, Sc, etc. are suitable.

またTMについては、Niおよび/またはCo、とくに
Niを含有させることが耐蝕性の向上に効果的なので、
この発明では、TI’lとしてNiは必ず含有させるも
のとし、そのTM中における含有率は  %以上程度と
するのが好適である。
Regarding TM, containing Ni and/or Co, especially Ni, is effective in improving corrosion resistance.
In this invention, Ni must be included as TI'l, and its content in the TM is preferably approximately 2% or more.

Niの添加効果は次のとおりである。The effects of adding Ni are as follows.

1)RE−T1系およびRE−TM−B系の融点を下げ
、液相焼結時における液相の浸潤を促進し、焼結密度を
上げ、残留磁束密度を向上させる。
1) Lowering the melting point of the RE-T1 system and the RE-TM-B system, promoting liquid phase infiltration during liquid phase sintering, increasing the sintered density, and improving the residual magnetic flux density.

ii)上記i)と同じ理由で、液相焼結時における液相
の粒界クリーニング効果を高め、保磁力の一層の向上に
効果がある。
ii) For the same reason as i) above, it is effective in enhancing the grain boundary cleaning effect of the liquid phase during liquid phase sintering and further improving the coercive force.

1ii)Coより耐蝕性の改善に有効であり、また安価
でもある。
1ii) It is more effective than Co in improving corrosion resistance and is also cheaper.

さらに低融点相のNiおよび/またはCoの比率をRE
2TM144B相のそれよりも高めることによって、耐
蝕性を一段と向上させることができるが、この理由は、
これらの粉末の相は、もしTMの構成が同じであれば、
焼結体においてはRE2TM14 4B相よりは粒界に
おいて優先的に腐蝕される傾向があるので、予め電気化
学的に責にしておくことが有利に作用するからである。
Furthermore, the ratio of Ni and/or Co in the low melting point phase is RE
Corrosion resistance can be further improved by increasing the corrosion resistance higher than that of the 2TM144B phase, and the reason for this is
The phases of these powders, if the TM composition is the same,
This is because in a sintered body, corrosion tends to occur preferentially at the grain boundaries rather than at the RE2TM14 4B phase, so it is advantageous to electrochemically attack the grain boundaries in advance.

さらに磁気的には無用のNd相を排除できるので、残留
磁束密度が増加し、その結果最大エネルギー積(BH)
、、、も向上する。
Furthermore, since the magnetically useless Nd phase can be eliminated, the residual magnetic flux density increases, resulting in the maximum energy product (BH).
,,, will also improve.

この点、従来のよう二こ最初から磁石全体の平均組成で
合金を溶解し、粉砕、プレス、焼結を行って平衡状態に
近づけてもNd相はできないはずでシまあるが、そのた
めには高温での長時間加熱を必要とし、その間に結晶粒
の異常成長が起きて保磁力の著しい低下を招くという欠
点があったのである。
In this regard, even if the alloy is melted at the average composition of the entire magnet from the beginning and then crushed, pressed, and sintered to bring it close to an equilibrium state, as in the past, the Nd phase cannot be formed. The drawback was that it required heating at high temperatures for a long time, during which time abnormal growth of crystal grains occurred, resulting in a significant decrease in coercive force.

なお、主相のREと低融点相のREとは同一の元素であ
る必要はない。また上記した二相を主成分とする磁石に
おいて、REとTMの一部を、Mg、 AI、 5iT
i、  V  Cr、 Mn、 Cu、 Ag、 Au
、 Cd、 Rh、 Pd、 Ir。
Note that the RE of the main phase and the RE of the low melting point phase do not need to be the same element. In addition, in the above-mentioned two-phase magnet, a part of RE and TM is replaced by Mg, AI, 5iT.
i, V Cr, Mn, Cu, Ag, Au
, Cd, Rh, Pd, Ir.

Pt  Zn  Ga、 Ge、 Zr、 Nb、 M
o、 In、 Sn、 Hf、 TaおよびWのうちか
ら選んだ少なくとも一種で、磁石全体の8at%まで置
換してもこの発明の効果が失われることはない。
Pt Zn Ga, Ge, Zr, Nb, M
Even if up to 8 at % of the entire magnet is replaced with at least one selected from O, In, Sn, Hf, Ta, and W, the effects of the present invention will not be lost.

さらに製造方法に関しては、上記したような、RE、T
M、、B組成の粉末と、融点の低いRE−TM系および
/またはRE −TM−B系金属間化合物相を主体とす
る粉末との混合粉を、圧縮成形したのち、焼結する方法
の他、磁石特性は幾分犠牲になるけれども、大型磁石の
製造法として、上記の混合粉を鉄パイプ中に真空封入し
たのち、熱間圧延しつつ焼結を行わせる方法も可能であ
る。
Furthermore, regarding the manufacturing method, as mentioned above, RE, T
A method in which a mixed powder of powders having compositions M, B and powders mainly consisting of RE-TM and/or RE-TM-B intermetallic compound phases with low melting points is compression molded and then sintered. Another possible method for manufacturing large magnets is to vacuum seal the mixed powder in an iron pipe and then sinter it while hot rolling, although the magnetic properties are sacrificed to some extent.

(実施例) 実施例1 ネオジム、遷移金属およびボロンの原子比が2+14:
1となるようにアーク)容解して、合金ボタンを作製し
、真空炉で950°C,7日間の均一化処理を施したの
ち、粗粉砕と微粉砕を施して、数ミクロンの径の微粉末
を得た。なおこのとき遷移金属中のFe、 Co、 N
iの比率を種々に変化させて、複数種の合金粉を製造し
た。
(Example) Example 1 The atomic ratio of neodymium, transition metal and boron is 2+14:
1) to produce an alloy button, homogenize it in a vacuum furnace at 950°C for 7 days, and then coarsely and finely crush it to a diameter of several microns. A fine powder was obtained. At this time, Fe, Co, N in the transition metal
A plurality of types of alloy powders were manufactured by varying the ratio of i.

同様にして、ネオジムまたは(矛オジム+ジスプロシウ
ム)とニッケルとの比が1=1となる粉末を作製した。
In the same manner, a powder was prepared in which the ratio of neodymium or (dysprosium) to nickel was 1=1.

その際の均一化処理条件は680°C5日間とした。The homogenization treatment conditions at that time were 680°C for 5 days.

次に、上記の2グループの中から一種類づつを選んでそ
れらを表1に示す種々の割合で混合し、15 koeの
磁場を印加しつつプレスしたのち、真空雰囲気下100
0°Cで2時間焼結し、その後室温まで象冷した。
Next, one type was selected from each of the above two groups, mixed in various proportions shown in Table 1, pressed while applying a magnetic field of 15 koe, and then heated at 100 koe in a vacuum atmosphere.
It was sintered at 0°C for 2 hours, and then cooled to room temperature.

かくして得られた試料の磁気特性および腐蝕特性につい
て調べた結果を表1に示す。なお腐蝕特性は、試料を温
度70″C1湿度95%の環境に48時間さらしたのち
における試料表面の発錆面積率で評価した。
Table 1 shows the results of investigating the magnetic properties and corrosion properties of the samples thus obtained. The corrosion characteristics were evaluated by the rusted area ratio on the surface of the sample after the sample was exposed to an environment with a temperature of 70'' C1 and humidity of 95% for 48 hours.

また表1には比較のため、焼結磁石の全体組成で最初か
ら溶解し、粗粉砕−徹粉砕一磁場中ブレスー焼結工程か
らなる従来法によって製造した試料の調査結果も併せて
示す。
For comparison, Table 1 also shows the investigation results of a sample manufactured by a conventional method consisting of melting the entire composition of a sintered magnet from the beginning, coarse grinding, thorough grinding, and breath sintering in a magnetic field.

同表より明らかなように、この発明に従う二相組織の希
土類−遷移金属系磁石は、従来のように全体組成で最初
から溶解したものに比べ、磁気特性は勿論のこと耐蝕性
が格段に向上している。
As is clear from the table, the rare earth-transition metal magnet with the two-phase structure according to the present invention has significantly improved magnetic properties and corrosion resistance compared to conventional magnets whose entire composition is melted from the beginning. are doing.

実施例2 ネオジム、遷移金属およびボロンの原子比が2:14:
1となるようにアーク溶解して、合金ボタンを作製し、
真空炉で950°C,7日間の均一化処理を施したのち
、粗粉砕と微粉砕を施して、数ミクロンの径の微粉末を
得た。なおこのとき遷移金属中のFe、 Co、 Ni
の比率を種りに変化させて、複数種の合金粉を製造した
Example 2 Atomic ratio of neodymium, transition metal and boron is 2:14:
Arc melting is performed so that the alloy button becomes 1, and an alloy button is produced.
After homogenizing in a vacuum furnace at 950°C for 7 days, the mixture was coarsely pulverized and finely pulverized to obtain a fine powder with a diameter of several microns. At this time, Fe, Co, Ni in the transition metal
Multiple types of alloy powders were produced by varying the ratio of .

同様にして、ネオジムおよび/またはジスプロシウムあ
るいはプラセオジムと、ニッケルまたはにンケル+コバ
ルト)との原子比が3:1となる粉末を作製した。その
際の均一化処理条件は485°C35日間とした。
In the same manner, a powder was prepared in which the atomic ratio of neodymium and/or dysprosium or praseodymium and nickel or nickel+cobalt was 3:1. The homogenization treatment conditions at that time were 485° C. for 35 days.

かくして得られた試料の磁気特性および腐食特性につい
ての調査結果を表2に示す。
Table 2 shows the investigation results regarding the magnetic properties and corrosion properties of the samples thus obtained.

なお表2には、参考のため、特開昭63−164403
号公報に開示の磁石の特性について調べた結果も、併記
する。
For reference, Table 2 includes Japanese Patent Application Laid-Open No. 63-164403.
The results of investigating the characteristics of the magnet disclosed in the publication are also listed.

/ / / 同表より、この発明に従う二相組織の希土類遷移金属系
磁石は、磁気特性および耐蝕性に優れていることがわか
る。また適合例8および適合例I3を比べれば明らかな
ように、とくにRE+ (Ni、 Co) 。
/ / / From the same table, it can be seen that the rare earth transition metal magnet with the two-phase structure according to the present invention has excellent magnetic properties and corrosion resistance. Moreover, as is clear from comparing Compatible Example 8 and Compatible Example I3, especially RE+ (Ni, Co).

においてNi比率が高(なるほど耐蝕性は向上している
。さらに従来例については、磁石特性は良好ではあるけ
れども、Niを含有していないので耐蝕性に劣る。
The Ni ratio is high (indeed, the corrosion resistance is improved).Although the conventional example has good magnetic properties, it is inferior in corrosion resistance because it does not contain Ni.

実施例3 実施例1と同様にして、REzTM+−B組成の合金微
粉末を作製した。またこれに混合する粉末原料として、
REZTMI4Bの粉末よりもTM中に占めるNiやG
Example 3 In the same manner as in Example 1, an alloy fine powder having a composition of REzTM+-B was produced. In addition, as a powder raw material to be mixed with this,
Ni and G occupy more in TM than REZTMI4B powder.
.

の比率を高めた合金微粉末を作り、それらを混合したの
ち、実施例1と同様にして、焼結磁石を製造した。
After preparing fine alloy powders with a high ratio of and mixing them, a sintered magnet was manufactured in the same manner as in Example 1.

かくして得られた焼結磁石の特性を、従来法により得ら
れた焼結磁石のそれと比較して表3に示す。
The characteristics of the sintered magnet thus obtained are shown in Table 3 in comparison with those of the sintered magnet obtained by the conventional method.

O− 同表より明らかなように、混合粉末として、RE、TM
、 4B粉末よりもTI’l中に占めるNiやCoの比
率を高めた合金微粉末を用いた場合は、耐蝕性のより一
層の改善が達成されている。
O- As is clear from the same table, as a mixed powder, RE, TM
When a fine alloy powder with a higher proportion of Ni and Co in TI'I than 4B powder is used, further improvement in corrosion resistance is achieved.

(発明の効果) かくしてこの発明によれば、従来の製造法に比べて、耐
蝕性が向上し、かつ磁気特性も改善された希土類−遷移
金属系磁石を製造することができ、とくに耐蝕性が改善
されたことにより、工業材料としての信転性の著しい向
上が実現した。
(Effects of the Invention) Thus, according to the present invention, it is possible to manufacture a rare earth-transition metal magnet with improved corrosion resistance and improved magnetic properties compared to conventional manufacturing methods. These improvements have resulted in a significant improvement in reliability as an industrial material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Nd−Fe−B三元状態図、第2図は、Nd
−Go−B三元状態図である。 第1図 1 ・−Nd2FeHa B 2− Nd Fea Ba 3−−− Nd Z Fe 8J 手 罰に 補 正 書 平成 2年12月20巳
Figure 1 is a ternary phase diagram of Nd-Fe-B, and Figure 2 is a Nd-Fe-B ternary phase diagram.
-Go-B ternary phase diagram. Figure 1 1 ・-Nd2FeHa B 2- Nd Fea Ba 3 --- Nd Z Fe 8J Amendment to manual punishment December 20, 1990

Claims (4)

【特許請求の範囲】[Claims] 1.RE:10at%以上、25at%以下、ここでR
E:Y,Scおよびランタノイドのうちから選んだ一種
または二種以上 B:2at%以上、20at%以下 を含み、残部は実質的にTM(ただしTMはFe,Co
およびNiのうちから選んだ一種または二種以上)から
なる永久磁石合金であって、その組織が、Nd_2Fe
_1_4B構造を持つRE_2TM_1_4B(ここで
TMは上記と同じ)なる組成の相と、該相よりも融点の
低い、RE−TM系金属間化合物相(ただしTMは、N
iまたはNiとFe,Coのうちから選んだ少なくとも
一種との混合物)もしくはRE−TM系共晶組織(ここ
でTMは上記と同じ)および/またはRE−TM−B系
金属間化合物相(ここでTMは上記と同じ)から構成さ
れていることを特徴とする耐蝕性希土類−遷移金属系永
久磁石。
1. RE: 10 at% or more and 25 at% or less, where R
E: One or more selected from Y, Sc, and lanthanoids B: Contains 2 at% or more and 20 at% or less, and the remainder is substantially TM (however, TM is Fe, Co
and Ni), the structure of which is Nd_2Fe
A phase with a composition of RE_2TM_1_4B (here, TM is the same as above) having a structure of _1_4B, and a RE-TM intermetallic compound phase with a lower melting point than that phase (however, TM is N
i or a mixture of Ni and at least one selected from Fe and Co), RE-TM-based eutectic structure (here TM is the same as above) and/or RE-TM-B-based intermetallic compound phase (here and TM is the same as above).
2.RE−TM系およびRE−TM−B系低融点相にお
けるTMに占めるNiおよび/またはCoの比率を、R
E_2TM_1_4B相におけるそれより高めてなる請
求項1記載の耐蝕性希土類−遷移金属系永久磁石。
2. R
The corrosion-resistant rare earth-transition metal permanent magnet according to claim 1, which has a higher corrosion resistance than that of the E_2TM_1_4B phase.
3.RE_2TM_1_4B系金属間化合物相(ただし
TMはFe,CoおよびNiのうちから選んだ一種また
は二種以上)を主体とする粉末と、該粉末よりも融点の
低いRE−TM系金属間化合物相(ただしTMは、Ni
またはNiとFe,Coのうちから選んだ少なくとも一
種との混合物)もしくはRE−TM系共晶組織(ここで
TMは上記と同じ)および/またはRE−TM−B系金
属間化合物相(ここでTMは上記と同じ)を主体とする
粉末との混合粉を、圧縮成形したのち、焼結することか
らなる請求項1記載の耐蝕性希土類−遷移金属系磁石の
製造方法。
3. A powder mainly composed of a RE_2TM_1_4B intermetallic compound phase (TM is one or more selected from Fe, Co, and Ni) and a RE-TM intermetallic compound phase with a lower melting point than the powder (however, TM is one or more selected from Fe, Co, and Ni). TM is Ni
or a mixture of Ni and at least one selected from Fe and Co), RE-TM eutectic structure (here TM is the same as above) and/or RE-TM-B intermetallic compound phase (here 2. The method for producing a corrosion-resistant rare earth-transition metal magnet according to claim 1, comprising compression molding a mixed powder with a powder mainly consisting of TM (same as above) and then sintering the mixture.
4.RE_2TM_1_4B系金属間化合物相(ただし
TMはFe,CoおよびNiのうちから選んだ一種また
は二種以上)を主体とする粉末と、該粉末よりも融点の
低いRE−TM系金属間化合物相(ただしTMは、Ni
またはNiとFe,Coのうちから選んだ少なくとも一
種との混合物)もしくはRE−TM系共晶組織(ここで
TMは上記と同じ)および/またはRE−TM−B系金
属間化合物相(ここでTMは上記と同じ)を主体とする
粉末との混合粉を、圧縮成形したのち、焼結することか
らなる請求項2記載の耐蝕性希土類−遷移金属系磁石の
製造方法。
4. A powder mainly composed of a RE_2TM_1_4B intermetallic compound phase (TM is one or more selected from Fe, Co, and Ni) and a RE-TM intermetallic compound phase with a lower melting point than the powder (however, TM is one or more selected from Fe, Co, and Ni). TM is Ni
or a mixture of Ni and at least one selected from Fe and Co), RE-TM eutectic structure (here TM is the same as above) and/or RE-TM-B intermetallic compound phase (here 3. The method for producing a corrosion-resistant rare earth-transition metal magnet according to claim 2, comprising compressing and molding a mixed powder with a powder mainly consisting of TM (same as above), and then sintering the mixture.
JP2269635A 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same Expired - Lifetime JP2675430B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2269635A JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
KR1019910700606A KR960013029B1 (en) 1989-10-12 1990-10-11 Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
CA002044171A CA2044171C (en) 1989-10-12 1990-10-11 Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
EP90914967A EP0447567B1 (en) 1989-10-12 1990-10-11 Corrosion-resistant tm-b-re type magnet and method of production thereof
DE69027201T DE69027201T2 (en) 1989-10-12 1990-10-11 CORROSION-RESISTANT MAGNET OF THE TM-B-RE TYPE AND THEIR PRODUCTION METHOD
PCT/JP1990/001315 WO1991006107A1 (en) 1989-10-12 1990-10-11 Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
CN 90109219 CN1027473C (en) 1989-10-12 1990-10-12 Anticorrosive rare-earth-transition metal series magnet and method thereof
US08/238,330 US5437741A (en) 1990-10-09 1994-05-05 Corrosion-resistant rare earth metal-transition metal-boron permanent magnets
US08/266,791 US5447578A (en) 1989-10-12 1994-06-28 Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP26394689 1989-10-12
JP1-263946 1989-10-12
JP1-335028 1989-12-26
JP33502889 1989-12-26
JP2269635A JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03250607A true JPH03250607A (en) 1991-11-08
JP2675430B2 JP2675430B2 (en) 1997-11-12

Family

ID=27335262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269635A Expired - Lifetime JP2675430B2 (en) 1989-10-12 1990-10-09 Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same

Country Status (6)

Country Link
EP (1) EP0447567B1 (en)
JP (1) JP2675430B2 (en)
KR (1) KR960013029B1 (en)
CA (1) CA2044171C (en)
DE (1) DE69027201T2 (en)
WO (1) WO1991006107A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405455A (en) * 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
DE69202515T2 (en) * 1991-06-04 1995-09-21 Shinetsu Chemical Co Process for the production of two-phase permanent magnets based on rare earths.
JP2782024B2 (en) * 1992-01-29 1998-07-30 住友特殊金属株式会社 Method for producing raw material powder for R-Fe-B-based permanent magnet
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN1044940C (en) * 1992-08-13 1999-09-01 Ybm麦格奈克斯公司 Method of manufacturing a permanent magnet on the basis of ndfeb
EP0583041B1 (en) * 1992-08-13 1997-02-05 Koninklijke Philips Electronics N.V. Method of manufacturing a permanent magnet on the basis of NdFeB
US5482575A (en) * 1992-12-08 1996-01-09 Ugimag Sa Fe-Re-B type magnetic powder, sintered magnets and preparation method thereof
CN1934283B (en) 2004-06-22 2011-07-27 信越化学工业株式会社 R-Fe-B-based rare earth permanent magnet material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127505A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700643B2 (en) * 1987-04-11 1998-01-21 株式会社トーキン Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
DE3783413T2 (en) * 1986-09-16 1993-05-27 Tokin Corp METHOD FOR PRODUCING A RARE-EARTH IRON BOR PERMANENT MAGNET WITH THE AID OF A QUARKED ALLOY POWDER.
JPH0621324B2 (en) * 1986-10-04 1994-03-23 信越化学工業株式会社 Rare earth permanent magnet alloy composition
JPH063763B2 (en) * 1986-12-26 1994-01-12 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP2948223B2 (en) * 1987-03-31 1999-09-13 住友特殊金属 株式会社 High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127505A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof

Also Published As

Publication number Publication date
EP0447567B1 (en) 1996-05-29
KR920701999A (en) 1992-08-12
WO1991006107A1 (en) 1991-05-02
DE69027201T2 (en) 1996-10-10
CA2044171A1 (en) 1991-04-13
CA2044171C (en) 2000-12-12
JP2675430B2 (en) 1997-11-12
KR960013029B1 (en) 1996-09-25
EP0447567A4 (en) 1992-05-20
DE69027201D1 (en) 1996-07-04
EP0447567A1 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
EP1970924B1 (en) Rare earth permanent magnets and their preparation
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
CN101521068A (en) Rare earth permanent magnet and method of manufacturing the same
KR20110002441A (en) Rare earth magnet and its preparation
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
US4857118A (en) Method of manufacturing a permanent magnet
US5447578A (en) Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
EP0477810B1 (en) R-Fe-B type permanent magnet powder and bonded magnet therefrom
JPH03250607A (en) Corrosive resistant rare earth-transition metal magnet and its manufacture
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JP2018174314A (en) R-T-B based sintered magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2747236B2 (en) Rare earth iron permanent magnet
CN1061163C (en) Double-phase rare-earth-iron-boron magnetic powder and its prepn. method
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP3652751B2 (en) Anisotropic bonded magnet
JPH05205927A (en) Rare earth element transition metal base permanent magnet and manufacturing method thereof
JPH04338606A (en) Manufacture of corrosion-resistant rare earthtransition metal magnet
JP3703903B2 (en) Anisotropic bonded magnet