JPS59204212A - Isotropic permanent magnet and manufacture thereof - Google Patents

Isotropic permanent magnet and manufacture thereof

Info

Publication number
JPS59204212A
JPS59204212A JP58079099A JP7909983A JPS59204212A JP S59204212 A JPS59204212 A JP S59204212A JP 58079099 A JP58079099 A JP 58079099A JP 7909983 A JP7909983 A JP 7909983A JP S59204212 A JPS59204212 A JP S59204212A
Authority
JP
Japan
Prior art keywords
less
permanent magnet
elements
purity
atomic percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58079099A
Other languages
Japanese (ja)
Other versions
JPH0467325B2 (en
Inventor
Setsuo Fujimura
藤村 節夫
Masato Sagawa
眞人 佐川
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58079099A priority Critical patent/JPS59204212A/en
Priority to US06/567,008 priority patent/US4767474A/en
Priority to CA000444518A priority patent/CA1280013C/en
Priority to DE8383113253T priority patent/DE3381482D1/en
Priority to EP83113253A priority patent/EP0125347B1/en
Publication of JPS59204212A publication Critical patent/JPS59204212A/en
Publication of JPH0467325B2 publication Critical patent/JPH0467325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an isotropic permanent magnet provided with a high Curie point by a method wherein an Fe.Co.B.R.M (an addition element) alloy and an Fe.Co.B.R.M.A (an element of the prescribed percentage) alloy are used making especially an Fe.B.R (R: a rare earth element containing Y) alloy as a base. CONSTITUTION:An alloy using electrolytic iron of 99.9% purity as the Fe, a ferro boron alloy and boron of 99% purity as the B, a material of 99.7% purity or more as the R, and electrolytic Co of 99.9% purity as the Co is used as a starting material to be dissolved according to high-frequency dissolution, and casted by a water-cooled copper mold. Ti, Mo, Bi, Mn, Sb, Ni, Ta of 99% purity, W of 98% purity, Al of 99.9% purity, Hf of 95% purity are used as the M, and moreover ferro vanadium containing V of 81.2%, etc. are used as the V, S of 99% purity or more, ferro phosphate containing P of 26.7%, etc. are used as the element A, and pulverized to the degree of 3-10mum according to a stamp mill and a ball mill. After then, molded applying pressure of the degree of 1.5t/cm<2>, sintered at 1,000-1,200 deg.C, and cooled finally.

Description

【発明の詳細な説明】 本発明は等方性永久磁石であって特にFeBR系合金を
ベースとしたFe*Co*B*RsM及びFe争G。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to isotropic permanent magnets, particularly Fe*Co*B*RsM and Fe magnets based on FeBR alloys.

・B−R−M−Aで表わされる新規な磁石に関する。-Relating to a new magnet represented by B-R-M-A.

本発明においてRはイツトリウムYを含む希土類、Mは
アルミニウムA1、ニッケルNi、マンガンMn等の添
加元素、Aは銅Cu、リンP、炭素C,硫4/(3など
の元素を示す記号として用いる。
In the present invention, R is a rare earth including yttrium Y, M is an additive element such as aluminum A1, nickel Ni, manganese Mn, etc., and A is a symbol representing an element such as copper Cu, phosphorus P, carbon C, sulfur 4/(3), etc. .

永久磁石はエレクトロニクス装置には欠かせない重要な
機能羽村である。現在使用されている永久磁石は主とし
てアルこコ磁石、フェライト磁石、及びXJ土類コバル
ト磁石の3種類である。最近の半導体機器の著しい進展
にともなってエレクトロニクス装置の手足や口(発声)
にあたる部品も小型化、高性能化が求められるようにな
り これらに使用する永久磁石も高い特性が要求される
ようになっている。
Permanent magnets play an important role in electronic devices. There are mainly three types of permanent magnets currently in use: alcoco magnets, ferrite magnets, and XJ earth cobalt magnets. With the recent remarkable progress in semiconductor equipment, the limbs and mouth (speech) of electronic equipment
Components are also required to be smaller and have higher performance, and the permanent magnets used in these components are also required to have higher characteristics.

永久磁石としては等方性磁石より異方性磁石が通常高性
能を示すが、等方性永久磁石は形状や磁化方向に制約を
受は−ない磁気特性から用途及び需要は大であり、より
高性能な磁石が求められている。
As a permanent magnet, anisotropic magnets usually exhibit higher performance than isotropic magnets, but isotropic permanent magnets have a large number of uses and demand due to their magnetic properties, which are not restricted by shape or direction of magnetization. High-performance magnets are in demand.

一般に等方性磁石は異方性磁石材料と同じ材料で殆んど
作られている。しかしアルニコ磁石、フェライト磁石は
最大エネルギーML(BH)ma xが2 MGOe以
下のものが実用化されている。また礼上類コバルト(R
Co)磁石としてのSmCo磁石は4 NGOeと等方
性磁石では高い特性を示すがこれらの異方性磁石の場合
の174〜1/Bであり、且つ資源的に希少なサマリウ
ASmを必要とし、供給が不安定なコバルトCOを50
〜60重量%と多量に使用する必要があるため非常に高
価である。
Generally, isotropic magnets are made of most of the same materials as anisotropic magnet materials. However, alnico magnets and ferrite magnets with a maximum energy ML (BH) max of 2 MGOe or less have been put into practical use. In addition, formal class cobalt (R
Co) SmCo magnets as magnets exhibit high characteristics with 4 NGOe and isotropic magnets, but are 174 to 1/B of these anisotropic magnets, and require Samariu ASm, which is a rare resource. 50% of cobalt CO whose supply is unstable
It is very expensive because it needs to be used in a large amount of ~60% by weight.

゛   重希土類のSmに代わり資源的に豊富な軽希土
類例えばCe、 Nd、 Pr等を用いCOに代わりF
eを用いることが望まれているが、軽希土類とFeは均
質に相Q二溶融し冷却して結晶化した場合でも磁石化に
適した金属間化合物を形成しないことがよく知られてい
る。さらにこのような軽希土類−Fe合金の磁力を粉末
冶金法によって強化する試みも成功しなかった(特開昭
57−210934明細書6貢参照)。
゛ Light rare earths such as Ce, Nd, Pr, etc., which are abundant in resources, are used instead of heavy rare earth Sm, and F is used instead of CO.
However, it is well known that light rare earths and Fe do not form intermetallic compounds suitable for magnetization even when homogeneously melted into phase Q and crystallized by cooling. Furthermore, an attempt to strengthen the magnetic force of such a light rare earth-Fe alloy by powder metallurgy was not successful (see JP-A-57-210934 specification 6).

これに対しくFe、 Ni、 Go)−R系非晶質合金
が溶融急冷により得られることが知られFe−R(Rと
しテce、 Pr、 Nd、 Sm、 Eu等)、特に
Fe−Ndの二元系合金を液体急冷法により非晶質リボ
ンとしこれを磁化して磁石とすることが提案されている
(特開昭57−210934 ) 、この方法では(B
H)ma xが4〜5 MGOeのものが得られるが、
数ミクロンから数10ミクロンの厚さのリボンであるた
め実用的な/ヘルツにするためには積層か粉末化後プレ
スが必要となり、いずれの方法でも理論密度が低下し磁
石特性はさらに低下し実用的なものでなくなってしま〉
On the other hand, it is known that Fe-R (Fe, Ni, Go)-R amorphous alloys can be obtained by melt quenching. It has been proposed that a binary alloy of (B
H) max is 4 to 5 MGOe can be obtained, but
Since the ribbon is several microns to several tens of microns thick, it requires lamination or pressing after powdering to make it practical/hertz, and either method lowers the theoretical density and further deteriorates the magnetic properties, making it impractical. It's no longer something that
.

本発明はこれらの従来の等方性永久磁石材料に代る新規
な実用的永久磁石を提供することを基本的1]的とし、
特にRとして希少で高価なSm等を必ずしも必要とせず
資源的に豊富な材料を用いると共に、Goを多量に使用
する必要が必ずしもな〈従来のフェライトと同等以上の
磁%特性を有すると八に5らに実用上十分に高いキュリ
一点(温度特性)を有する等方性永久磁石(材料)及び
その製造方法を提供せんとするものである。
The basic objective of the present invention is to provide a new practical permanent magnet to replace these conventional isotropic permanent magnet materials,
In particular, as R, there is no need to use materials with abundant resources such as rare and expensive Sm, and there is no need to use a large amount of Go. Furthermore, it is an object of the present invention to provide an isotropic permanent magnet (material) having a Curie point (temperature characteristic) that is sufficiently high for practical use, and a method for manufacturing the same.

このIJ的の達成のための研究の成果として本発明者等
は実用」二十分に高いキュリ一点を備え且つ実用的な原
料、製造工程により製造可能でありしかもSmCo磁石
と同等以上の磁気特性を有する磁気等方性焼結永久磁石
を得ることが出来た。
As a result of research to achieve this IJ characteristic, the present inventors have developed a magnet that has a sufficiently high Curie point, can be manufactured using practical raw materials and manufacturing processes, and has magnetic properties equivalent to or higher than that of SmCo magnets. We were able to obtain a magnetically isotropic sintered permanent magnet having the following properties.

IIち本発明の磁気等方性焼結永久磁石は、第1の態様
として、原子百分率で10〜25%のR(但しRはYを
包含するn土類元素の少なくとも一種)、 3〜23%
のB、50%以下のGo (但しGo  OXを除く)
、所定百分率の添加元素Mの一種又は二種以上 (但しM  OXを除き、ここにMは、AI   8.
7’%以F、Ti   4.3%以下、v   a、7
z以下、 Cr   8.3%以下、Mn   8.0
%以下、 Zr   5.5X以下、Hf   5.0
 % 以下、 Nb  12.4 %以下、Ta  1
0.3 %以下、 No   8.7%以−ト、Ge 
  5.7%以下、 Sb   2.4%以下、Sn 
  3.5%以下、 Bi   4.8%以下、Ni 
  4.3 %以下、 及び W   8.8%以下で二種以上を含む場合、M合量は
当該添加元素のうち最大値を有するものの原子百分率以
下)、 及び残部Fe及び製造上不可避の不純物から成ることを
特徴とする(第1の組成)。
II. The magnetically isotropic sintered permanent magnet of the present invention has, as a first aspect, 10 to 25% R (wherein R is at least one of the n-earth elements including Y), 3 to 23 %
of B, Go of 50% or less (excluding Go OX)
, a predetermined percentage of one or more additive elements M (excluding MOX, where M is AI8.
7'% or more F, Ti 4.3% or less, v a, 7
z or less, Cr 8.3% or less, Mn 8.0
% or less, Zr 5.5X or less, Hf 5.0
% or less, Nb 12.4% or less, Ta 1
0.3% or less, No. 8.7% or more, Ge
5.7% or less, Sb 2.4% or less, Sn
3.5% or less, Bi 4.8% or less, Ni
4.3% or less, and W 8.8% or less and contains two or more types, the total amount of M is less than the atomic percentage of the one having the maximum value among the added elements), and the balance is Fe and impurities unavoidable in manufacturing. (first composition).

本発明は、さらに第2の態様として、上記第1の組成と
共に下記の成分をも含有して成る磁黛、異方性焼結体永
久磁石を提供する。即ち、第1の組成プラス所定百分率
の元素Aの一種又は二種以1−(イ+1シA  0%を
除き、A 、!: L テ銅Cu  3.3%以丁。
The present invention further provides, as a second aspect, an anisotropic sintered permanent magnet comprising the above-mentioned first composition and the following components. That is, the first composition plus a predetermined percentage of one or more of the elements A (1+1+A 0%, A,!: L Te copper Cu 3.3% or more).

・イオウS2.5%以下、炭素C4,0%以ド及び97
23.3%以下)から成る組成を有し、但しAをM1成
のとする場合、MとAの含量は含有するM、Xの出該各
元素のうち最大値を有するものの原子百分−+<以ドと
する(第2の組成)。
・Sulfur S2.5% or less, carbon C4.0% or more and 97
23.3% or less), provided that when A is M1, the content of M and A is the atomic percentage of the element having the maximum value among the M and X elements contained. +< (second composition).

さらに、本発明の永久磁石は、焼結体の平均結晶才1゛
1径を約 1〜100 #Inとすることにより高い1
1(cを伺与するものであり、」二記第1、第2の組成
に対していずれも妥当する。
Furthermore, the permanent magnet of the present invention has an average crystal diameter of about 1 to 100 #In by setting the average crystal diameter of the sintered body to about 1 to 100 #In.
1 (it gives rise to c), and is applicable to both the first and second compositions of item 2.

本発明の永久磁石は、前記第1又は第2の組成の合金粉
末を加圧成形し、焼結することにより製造される。この
合金は、新規な結晶性合金であり、かかる組成で第1図
に示すようなキュリ一点Tcをイ1するものは従来知ら
れていない。所定の組成どなるよう溶解、冷却(通例鋳
造する)されて得られる合金は、粉末化して加圧成形後
、焼結される。
The permanent magnet of the present invention is manufactured by press-molding and sintering the alloy powder having the first or second composition. This alloy is a new crystalline alloy, and no alloy with such a composition that has a Curie point Tc of 1 as shown in FIG. 1 has been hitherto known. The alloy obtained by melting to a predetermined composition, cooling (usually casting), is pulverized, pressure molded, and then sintered.

本発明の永久磁石におけるGoの役割は基本的にキュリ
一点の増大による磁気特性の温度依存性の改善を図るも
のである。
The role of Go in the permanent magnet of the present invention is basically to improve the temperature dependence of the magnetic properties by increasing the Curie point.

FeをCOで置換することにより合金組成中にCOを5
0%以下(原子百分率)含有させることにより温瓜特性
をさらに実用的なものに改善するものである。Co(7
)量はSmCo系磁石(5,0〜60重量%のCoを含
有)と比べて少なく、また希土類元素Rとして資源的に
豊富なネオジムNdやプラセオジムPrなどの軽希土類
を用いて高い磁気特性が得られ、本発明は従来のRCo
(di石(SmGoにほぼ限られる)と比較して、資源
的、価格的いずれの点においても有利であり、磁気特性
の上からもさらに優れたものが得られる。
By replacing Fe with CO, 5 CO is added to the alloy composition.
By containing 0% or less (atomic percentage), the warming properties are improved to a more practical level. Co(7
) content is small compared to SmCo magnets (containing 5.0 to 60% by weight of Co), and high magnetic properties are achieved by using light rare earth elements such as neodymium Nd and praseodymium Pr, which are abundant in resources, as the rare earth element R. obtained, and the present invention is a conventional RCo
(Compared with di-stone (almost limited to SmGo), it is advantageous in terms of both resources and cost, and even better magnetic properties can be obtained.

−・般にFe合金へGoを添加すると添加量の増大によ
りキュリ一点(Tc)が上昇するものと下降するものが
ありその結果の予測は困難である。本発明によるとFe
のCOによる置換では第1図に示す通りG。
- Generally, when Go is added to an Fe alloy, the Curie point (Tc) may increase or decrease depending on the increase in the amount of addition, and it is difficult to predict the result. According to the invention, Fe
As shown in FIG. 1, the substitution of G with CO.

置換量の増大に伴いTcは徐々に増大する。Tcにっい
て本発明においてはRの種類によらず同様な傾向が確認
される。Goの置換量はわずかでもTcの増大に41効
であり第1図として例示する系(78−x)Fee x
Co * 8B@15Nd−LMにおいて明らかな通り
C0j11の調整により凡そ300〜700°Cの任意
のTcを持つ合金がイJIられる。
Tc gradually increases as the amount of substitution increases. Regarding Tc, a similar tendency is confirmed in the present invention regardless of the type of R. Even a small amount of Go substitution has a 41 effect on increasing Tc, and the system (78-x) Fee x exemplified in FIG.
As is clear in Co*8B@15Nd-LM, an alloy having an arbitrary Tc of about 300 to 700°C can be made by adjusting C0j11.

本発明の永久磁石においてBは保磁力iHc IKOe
以1−とするために3%(原子百分率、以下%は合金中
の原r−百分率を示す)以−ヒとし、ハードフェラ・f
l・の残留磁束密度Br約3KG以上とするためにBは
23%以下とする(第8図参照)。この範囲で(BH)
max 2 MGOe以上が得られる。
In the permanent magnet of the present invention, B is coercive force iHc IKOe
In order to obtain the following 1-3% (atomic percentage, the following % indicates the raw r-percentage in the alloy) and
In order to obtain a residual magnetic flux density Br of approximately 3 KG or more, B is set to be 23% or less (see FIG. 8). In this range (BH)
max 2 MGOe or more can be obtained.

Rは保磁力IKOe以上とするため10%以上必要であ
り、また、R含有量の増大と共に保磁力は増大しその後
減少するのでI KOe以1.とするため、また、燃え
易く工業的取扱・製造上の困難性のためまた高価である
ため、25%以下とする(第9図参照)。
R is required to be 10% or more in order to make the coercive force IKOe or more, and since the coercive force increases as the R content increases and then decreases, it is necessary to make the coercive force IKOe or higher. In addition, because it is easily flammable, difficult to handle and manufacture industrially, and is expensive, it is set at 25% or less (see Figure 9).

Rとしては資源的に豊富な軒昂土類を用いることが出来
、必ずしもSmを必要とせず或いはSmを主体とする必
要もないので原料が安価でありきわめて有用である。
As R, eaves earth, which is rich in resources, can be used, and since Sm is not necessarily required or Sm does not need to be the main component, the raw material is inexpensive and extremely useful.

本発明の永久磁石に用いるRとしてはYを包含し軽希土
類及び重希土類を包含するものであり、そのうちの一種
以上を用いる。即ち、Nd、 Pr、ランタンLa、セ
リウムCe、テルビウムTb、ジスプロシウムDy、ホ
ルミウムHo、エルビウムEr、ユウロピウムEu、サ
マリウムSm、ガドリニウムGd、 プロメチウムPm
、 ツリウムTm、イッテルビウムYb、ルテチウムL
u、及びYなどである。
R used in the permanent magnet of the present invention includes Y and includes light rare earths and heavy rare earths, and one or more of them is used. That is, Nd, Pr, lanthanum La, cerium Ce, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, europium Eu, samarium Sm, gadolinium Gd, promethium Pm
, Thulium Tm, Ytterbium Yb, Lutetium L
u, and Y, etc.

Rとしては軽希土類をもって足り、特にNd、 Prが
好ましい。また通常Rは一種で足りるが実用上は二種以
上の混合物であるミツシュメタル、ジジム等を入手上の
便宜から用いることも出来、Sm。
As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferred. Further, normally one type of R is sufficient, but in practice, a mixture of two or more types such as mitshumetal, didymium, etc. can be used for convenience of availability, and Sm.

La、 Ce、 Gd、 Y等は他ノNd、Pr等の軽
希土類と混合して用いることができる。なおRは純希土
類元素でなくてもよく工業上入手可能な範囲で製造上不
可避な不純物を含有するものでも差支えない。
La, Ce, Gd, Y, etc. can be used in combination with other light rare earths such as Nd and Pr. Note that R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Bとしては純ボロン又はフェロポロンを用いることが出
来、不純物として窒素N、けい素Siなどを含むもので
も用いることが出来る。
As B, pure boron or ferropolon can be used, and materials containing nitrogen N, silicon Si, etc. as impurities can also be used.

添加元素Mを添加することにより原則として保磁力iH
cの改善を図ることが出来る。MとしてはAI、 Ti
、 V、 (Er、 Mn、 Zr、 Hf、 Nb、
 Ta、 Mo、 Ge。
In principle, by adding the additive element M, the coercive force iH
It is possible to improve c. M is AI, Ti
, V, (Er, Mn, Zr, Hf, Nb,
Ta, Mo, Ge.

Sb、 Sn、 Bi、 Ni、 Wを一種又は二種風
りで用いることが出来る。また保磁力(iHc)は−・
般に温度−L’tlと共に低下するがMの含有しこよっ
て常温時のiHcを高めることが出来、高温時に曝され
ても減磁が実質的に生じないようにすることが出来る。
Sb, Sn, Bi, Ni, and W can be used singly or in combination. Also, the coercive force (iHc) is -・
Although it generally decreases with temperature -L'tl, the iHc at room temperature can be increased by containing M, and demagnetization can be substantially prevented even when exposed to high temperatures.

[7かしMは非磁性の元素であるため(Niを除く)添
加−111の増大によってBrが低下していき、そのた
め(U)I)waxが減少する。(BH)waxが少し
低くなっても高いiHcが必要とされる用途は最近多く
なっ−できたためMを含む合金は大変有用である。但し
くOH)maxは2 MGOe以上の範囲が有用である
[7 Since M is a nonmagnetic element (excluding Ni), Br decreases as the addition of -111 increases, and therefore (U)I)wax decreases. (BH) Since there are many applications requiring a high iHc even if the wax is slightly lowered, alloys containing M are very useful. However, it is useful for OH)max to be in a range of 2 MGOe or more.

Mの添加によるBrに及ぼす効果についてその添加はを
変化させて確認したところハードフェライトのレベルの
(BH)maw約2 MGOeと同等以上とするために
必要なりr 3KG以りの範囲のMの添加量の上限は第
2〜5図に示すように、 AI   8.7X    Ti   4.3$   
 V   8.7%    Cr  8.3%Mn  
 8.B    Zr  5.5%   If  5.
0%    Nb  12.4%Ta10.3%   
 Mo  8.7%    Ge  5.7X    
Sb   2.4XSn   3.5駕   Bi  
 4.HNi   4.HW   8.8OAである。
The effect of adding M on Br was confirmed by varying the amount of M added, and it was found that the addition of M was necessary to make the hard ferrite level (BH) equal to or higher than about 2 MGOe. The upper limit of the amount is as shown in Figures 2 to 5. AI 8.7X Ti 4.3$
V 8.7% Cr 8.3% Mn
8. B Zr 5.5% If 5.
0% Nb 12.4% Ta 10.3%
Mo 8.7% Ge 5.7X
Sb 2.4XSn 3.5 pieces Bi
4. HNi 4. HW 8.8OA.

Mを二種以上添加含有する場合は各Mの成分比に応じて
合成した特性を通常示し、夫々のMの含有量はL記%の
範囲内でかつその合量は当該置場添加元素に対する上記
%の最大値以下となる。なおM 2種以上含有の場合は
、第2〜5図に示す単独の場合の特性の合成された特性
と同様な特性を示す。その他元素Aを含む場合も、この
点に関しては同様である。
When two or more types of M are added and contained, characteristics synthesized according to the component ratio of each M are usually exhibited, and the content of each M is within the range of % shown in L, and the total amount is within the range of the above-mentioned for the relevant element added at the site. % or less. In addition, when two or more types of M are contained, the properties are similar to those shown in FIGS. 2 to 5, which are the properties obtained by combining the properties when the M is used alone. This also applies to cases where other elements A are included.

Mの添加は残留磁化Brの漸次の低下を招くのでMの含
有量は少なくとも従来のRCo磁石のBr値と同等以上
の範囲とし、且つ従来品と同等以上の高保磁力を示すも
のが本発明の対象として把握される。
Since the addition of M causes a gradual decrease in the residual magnetization Br, the M content should be at least in a range equal to or higher than the Br value of conventional RCo magnets, and the magnet of the present invention should exhibit a high coercive force equal to or higher than that of conventional RCo magnets. It is understood as a target.

Mの添加は基本的には保磁力iHcを増大させる効果を
もっているので磁石の安定性を増しその用途が拡大され
る。なおりrが4,5又は6KG以上等の場合について
Mi!−を選択することにより好ましい添加h:を決め
ることが出来る。
The addition of M basically has the effect of increasing the coercive force iHc, thereby increasing the stability of the magnet and expanding its uses. In cases where Naori r is 4, 5 or 6KG or more, Mi! By selecting -, a preferable addition h: can be determined.

本発明の他の永久磁石(第2の組成)は元*Aを所定%
以下含有するものであるが、AとしてのCu、、 S、
 C,P 等は工業的にFe@co−BIIR@M系磁
石を製造する場合、原料・製造工程等に起因しで含量1
されることが多い。例えばFeBを原料に用いた場合S
、Pが含有されることが多く、Cは粉末冶金プロセスに
おける有機バインダー(成形助剤)の残滓として含有さ
れることが多い。Cuは純度の低い安価な原料中に多量
に含まれることがある。Aの含有による影響はその含有
量の増大に伴って残留磁束密度Brが低下する傾向を示
すことが認められる(第7図参照)。
Another permanent magnet (second composition) of the present invention contains a predetermined percentage of element *A.
The following contains Cu as A, S,
When manufacturing Fe@co-BIIR@M magnets industrially, the content of C, P, etc. is 1 due to raw materials, manufacturing processes, etc.
It is often done. For example, when FeB is used as a raw material, S
, P are often contained, and C is often contained as a residue of an organic binder (molding aid) in the powder metallurgy process. Cu is sometimes contained in large amounts in low-purity and inexpensive raw materials. It is recognized that the influence of the content of A is that the residual magnetic flux density Br tends to decrease as the content increases (see FIG. 7).

ソノ結果Cu  3.3Z以下、3 5%以下、C4,
0%以下、P  3.3%以下の含有の場合はハードフ
ェライ)・と同等以上の特性が得られる。Aを2種以]
―含有する場合、その含量は当該含有元素のうち最大値
を有するもの以下とする。但し、Aの2種以上の場合の
特性は、各元素Aの特性を合成したものとほぼ同様であ
る。
Sono result Cu 3.3Z or less, 35% or less, C4,
If the P content is 0% or less and P is 3.3% or less, properties equivalent to or better than hard ferrite can be obtained. 2 or more types of A]
- If contained, the content shall be less than or equal to the one with the maximum value among the contained elements. However, the characteristics in the case of two or more types of A are almost the same as those obtained by combining the characteristics of each element A.

かくて元素Aの所定範囲内の含有により、実用上、工業
的製造上の利点が大である。
Thus, the content of element A within a predetermined range has great advantages in practical and industrial production.

本発明の等方性永久磁石FeeCo*BeR*M系(第
1の組成)に更にAを含有する場合(第2の組成)M、
Aの含有による特性は、M又はAを夫々二種以−]−含
む場合とほぼ同様である。
When the isotropic permanent magnet FeeCo*BeR*M system (first composition) of the present invention further contains A (second composition) M,
The properties due to the inclusion of A are almost the same as when two or more types of M or A are included.

なお、Aの含有は、本発明の組成範囲内においてTcに
大きな影響を与えない。
Note that the inclusion of A does not have a significant effect on Tc within the composition range of the present invention.

本発明の永久磁石の製造に際しては、合金の溶解は真空
または不活性ガス雰囲気下で行い、鋳造は銅その他金属
製等の鋳型を用い、この場合、インゴット合金の成分偏
析を防ぐために水冷タイプの鋳型などを用いて、冷却速
度を早くすることが望ましい。
When manufacturing the permanent magnet of the present invention, the alloy is melted in a vacuum or in an inert gas atmosphere, and a mold made of copper or other metal is used for casting. It is desirable to speed up the cooling rate by using a mold or the like.

十分冷却したのち、スタンプミル等で粗粉砕、さらにア
トライター、ボールミルなどで微粉砕して約4001t
 m以下、好ましくは1〜100用mとする。
After cooling sufficiently, coarsely pulverize with a stamp mill, etc., and then finely pulverize with an attritor, ball mill, etc. to approximately 4001 tons.
m or less, preferably 1 to 100 m.

FeBR系合金の微粉砕粉を得る方法としては、上述し
た方法の外に、噴霧法などの機械的粉砕法や、還元法・
電解法などの物理化学的製粉法なども用いることができ
る。
In addition to the methods mentioned above, methods for obtaining finely pulverized powder of FeBR alloys include mechanical pulverization methods such as spraying methods, reduction methods,
Physicochemical milling methods such as electrolytic methods can also be used.

この微粉末合金を、常法にて加圧成形し、成形物を約9
00〜1200℃、好ましくは1050〜1150’O
の温度にて所定時間焼結する。焼結後の平均結晶粒径か
所定範囲になるよう焼結条件(特に温度、時間)を選択
することにより、磁気特性の高い等方性焼結磁石体を得
る。例えば出発原料として100μ1m以下の合金粉末
を成形し、温度1050〜1150°Cにおいて30分
〜8時間焼結することにより、好ましい結晶粒径の焼結
体が得られる。
This fine powder alloy was press-molded by a conventional method to obtain a molded product of approximately 9.
00~1200℃, preferably 1050~1150'O
Sinter at a temperature of for a predetermined period of time. By selecting sintering conditions (particularly temperature and time) so that the average crystal grain size after sintering falls within a predetermined range, an isotropic sintered magnet body with high magnetic properties is obtained. For example, a sintered body with a preferable crystal grain size can be obtained by molding an alloy powder of 100 .mu.1 m or less as a starting material and sintering it at a temperature of 1050 to 1150.degree. C. for 30 minutes to 8 hours.

なお、焼結は好ましくは真空又は不活性ガス雰囲気で行
う。また、成形に際しては、カンファ、パラフィン、レ
ジン、塩化アンモニウム等の結合剤、ステアリン酎亜鉛
、ステアリン酸カルシウム、パラフィン、レジン等の滑
剤ないし成形助剤を用いることができる。
Note that sintering is preferably performed in vacuum or in an inert gas atmosphere. Furthermore, during molding, binders such as camphor, paraffin, resin, and ammonium chloride, and lubricants and molding aids such as zinc stearate, calcium stearate, paraffin, and resin can be used.

第6図に示す通り、焼結体平均結晶粒径は約 1〜11
007t テiHc IKOe以上を与え、 2〜40
p、m、3〜151で夫々好ましい又は一層好ましい範
囲を示す。
As shown in Figure 6, the average crystal grain size of the sintered body is approximately 1 to 11
007t TeiHc Gives IKOe or more, 2-40
p, m, and 3 to 151 each indicate a preferable or more preferable range.

以下本発明について実施例を用いて詳述するが本発明は
これらに限定されるものではない。
The present invention will be described in detail below using Examples, but the present invention is not limited thereto.

所定の添加元素を含むFe−Coo B * R* M
合金及びFe −Co・B・R−A合金からなる永久磁
石試料をつぎの方法で作製した。
Fe-Coo B*R*M containing predetermined additive elements
Permanent magnet samples made of alloy and Fe-Co.B.R-A alloy were prepared in the following manner.

(1)出発原料はFeとして純度89.9χの電解鉄、
Bとしてフェロボロン合金および純度99%のボロン、
Rとして純度98.7%以上(不純物は主とし斗他の希
−]二類金属)のもの、Coとして純度99.9%の電
解Goを使用した合金を高周波溶解し、水冷銅鋳型にて
鋳造した。Mとしては純度98%のTi、 No。
(1) The starting material is electrolytic iron with a purity of 89.9χ as Fe,
Ferroboron alloy and 99% purity boron as B;
An alloy using electrolytic Go with a purity of 98.7% or more as R (the impurities are mainly rare metals such as Toshito and others) and 99.9% purity as Co is high-frequency melted and made in a water-cooled copper mold. Cast. M is Ti with a purity of 98%, and No.

Bi、 Mn、 Sb、 Ni、 Ta、 98% ノ
w、 99.8%ノAI、 95%のHf、またVとし
て81.2$のりを含むノエロバナジウム、Nbとして
67.6%のNbを含むフェロニオブ、Crとして61
.9%のOrを含むフェロクロムおよヒZrとして75
.5%のZrを含むフェロジルコニウムを使用した。
Bi, Mn, Sb, Ni, Ta, 98% NOW, 99.8% NOAI, 95% Hf, and NOEROVANADIUM containing 81.2$ glue as V, 67.6% Nb as Nb. Contains ferroniobium, 61 as Cr
.. 75 as ferrochrome and H-Zr containing 9% Or
.. Ferrozirconium containing 5% Zr was used.

なお元素Aは、純度99”X以Ll)S、26.7Xノ
Pを含むフェロリン、純度88%以、LのC5純度99
.9%以上の電解Cuを使用した。但し一14記原料金
属の純度は重量%で示す。
Element A is ferroline with a purity of 99"X or higher, S, 26.7X or higher, and a C5 purity of 99, with a purity of 88% or higher.
.. Electrolytic Cu of 9% or more was used. However, the purity of the raw material metal in item 114 is expressed in % by weight.

(2)粉砕: スタンプミルにより35メツシユスルー
まで粗粉砕し次いでボールミルにより 3 ill )
7I)微粉砕(3〜10JLm)。
(2) Grinding: Coarsely pulverize to 35 mesh through using a stamp mill and then pulverize using a ball mill.
7I) Fine grinding (3-10 JLm).

(3)成形:   1.5t/ cm’の加圧−[で成
形(4)焼結:   1000〜1200’0 7 )
ly コ’ 7 Ar中で1時間焼結体の平均結晶粒径
が5〜30gmとなるよう焼結。焼結後放冷。
(3) Molding: Pressure of 1.5t/cm' - Molding (4) Sintering: 1000-1200'07)
ly Co' 7 Sintered in Ar for 1 hour so that the average crystal grain size of the sintered body becomes 5 to 30 gm. Allow to cool after sintering.

多種多様な組成の上記試料についてiHc、 Br。iHc, Br for the above samples with various compositions.

(BH)maxの測定により磁石特性を検討した。第1
表、第2表に代表的な試料について永久磁石特性111
c、 Br、 (BH)nIaxを示す。なお表中Fe
量は残部である。又RとしてNd、 Pr、 Gd、 
Ha、 Laを含む合金の例を1月載したが希土類金属
15種類(Y、 Ce、 Sm。
Magnet characteristics were investigated by measuring (BH)max. 1st
Permanent magnet characteristics 111 for representative samples in Table and Table 2
c, Br, (BH)nIax is shown. In addition, Fe in the table
The amount is the remainder. Also, as R, Nd, Pr, Gd,
Examples of alloys containing Ha and La were listed in January, but there are 15 types of rare earth metals (Y, Ce, Sm, etc.).

Eu、 Tb、 Dy、 Er、 Tm、 Yb、 L
u、 Nd、 Pr、 Gd、 Ha。
Eu, Tb, Dy, Er, Tm, Yb, L
u, Nd, Pr, Gd, Ha.

La)は性質が類似している。しかし、Nd、 Prは
右上類鉱石中に比較的多量に含まれており、ことにNd
は大量に使用される用途がまだ知られていないので他の
希少な希土類(Sm、 y、重希土類)を主原料とする
合金よりはるかに有利である。
La) have similar properties. However, Nd and Pr are contained in relatively large amounts in the ores, especially Nd.
It is far more advantageous than alloys whose main raw materials are other rare earths (Sm, y, heavy rare earths) because their applications in large quantities are not yet known.

本発明の実施例を第1.2表に示したが、その中で第1
表のNo、14 、第2表のNo、28について平均結
晶粒径D(pm)とその保磁力1)1c(KOe)の関
係を調べた結果、第6図に示すような関係が得られた。
Examples of the present invention are shown in Table 1.2.
As a result of investigating the relationship between the average grain size D (pm) and its coercive force 1) 1c (KOe) for No. 14 in the table and No. 28 in Table 2, the relationship shown in Figure 6 was obtained. Ta.

なお、第6図は、前記製造方法において結晶粒径が変化
するよう、条件を変更した以外、前記と同様にして製造
した試料に基づく。これにより本発明の永久磁石の特性
を有効に生かすためには平均結晶粒径を所定の範囲にそ
ろえて用いることが好ましいことが明らかとなった。
Note that FIG. 6 is based on a sample manufactured in the same manner as described above, except that the conditions were changed in the manufacturing method so that the crystal grain size varied. As a result, it has become clear that in order to effectively utilize the characteristics of the permanent magnet of the present invention, it is preferable to adjust the average crystal grain size within a predetermined range.

第2.3図はFe −15C:o −8B −15Nd
 −KMにおいてXを0〜15原子%に変化させて、前
記と同様にして得た試料による。
Figure 2.3 shows Fe −15C:o −8B −15Nd
- Samples obtained in the same manner as above, with X changed from 0 to 15 atomic % in KM.

第4.5図はFe −IGo −8B−15Nd −1
Mにおいて、第2.3図と同様にして求めたものである
Figure 4.5 shows Fe -IGo -8B-15Nd -1
M, it was obtained in the same manner as in Fig. 2.3.

第7図はFe −15C:o −8B −15Nd −
xAにおいて、Xを 0〜10原子%に変化させてその
他前記と同様にして得た試料に基づく。この傾向は、M
を含む場合にも同様である。
Figure 7 shows Fe −15C:o −8B −15Nd −
xA is based on a sample obtained in the same manner as above except that X was varied from 0 to 10 atomic %. This tendency is M
The same applies when it includes.

(以1おt3) 第1表 磁石特性 8°°    組   成 (原子χ)(BH)。88
1(c(KOe)  Br(KG)  (MGOe)l
 Fe−5Co−−8B−15Nd−2AI     
12.4 5.8  B、52 Fe−20Go−88
−13Nd−0,5A1.   10.[i  4.9
 4−73 Fe−35Go−13B−17Nd−IT
i     8.8 4.6 4.14 Fe−10G
o−17B−14Nd−3Ti    7.8 3.5
 2.55  Fe−2Go−10B−+6Nd−3V
         9.2   ・3.2   2.1
8 Fe−15Go−78’−14Nd−2C:r  
   7.2 4.4 3.97  Fa−25GO−
7B−14Nd−IMn         8.8  
 5.4   5.78 Fe−5Go−9B−15N
d−iZr     8.0 5.2 5.39 Fe
−20Go−17B−14Nd−G、5Zr    1
0.1 3.9 3、IIQ Fe−10co−10B
−15Nd−5Zr    7.8 3.3 2.21
1  Fe−15Co−88−14Nd−IHf   
   11.4  5.5  6.2+2 Fe−2C
o−7B−15Nd−INb     7.3 5.9
 7,2+3  Fe−10Co−8B−16Nd−3
Nb         7.3   4.7   4.
514 Fe−30Go−7B−15Nd−BNb  
   7.8 3.5 2.415  Fe−20Go
−13B−14Nd−3Ta       8.6  
 5.1   5.+16  FeFe−3Go−8B
−15Nd−I         8.8   8.1
   7.717 Fe−15Co−8B−15Nd−
1,5Mo    13.5 8.0  ?、418 
 Fe−25Go−BB−1?Nd−5Mo’    
   9.4   5.2   5.1第   2  
 表 本発明の永久磁石は工業的に入手可能な材料を用いて製
造可能であり、軽希土類元素を磁石材料の中心的元素と
することは極めて有利である。
(hereafter 1 and t3) Table 1 Magnet properties 8°° Composition (atomic χ) (BH). 88
1(c(KOe) Br(KG) (MGOe)l
Fe-5Co--8B-15Nd-2AI
12.4 5.8 B, 52 Fe-20Go-88
-13Nd-0,5A1. 10. [i 4.9
4-73 Fe-35Go-13B-17Nd-IT
i 8.8 4.6 4.14 Fe-10G
o-17B-14Nd-3Ti 7.8 3.5
2.55 Fe-2Go-10B-+6Nd-3V
9.2 ・3.2 2.1
8 Fe-15Go-78'-14Nd-2C:r
7.2 4.4 3.97 Fa-25GO-
7B-14Nd-IMn 8.8
5.4 5.78 Fe-5Go-9B-15N
d-iZr 8.0 5.2 5.39 Fe
-20Go-17B-14Nd-G, 5Zr 1
0.1 3.9 3, IIQ Fe-10co-10B
-15Nd-5Zr 7.8 3.3 2.21
1 Fe-15Co-88-14Nd-IHf
11.4 5.5 6.2+2 Fe-2C
o-7B-15Nd-INb 7.3 5.9
7,2+3 Fe-10Co-8B-16Nd-3
Nb 7.3 4.7 4.
514 Fe-30Go-7B-15Nd-BNb
7.8 3.5 2.415 Fe-20Go
-13B-14Nd-3Ta 8.6
5.1 5. +16 FeFe-3Go-8B
-15Nd-I 8.8 8.1
7.717 Fe-15Co-8B-15Nd-
1,5Mo 13.5 8.0? , 418
Fe-25Go-BB-1? Nd-5Mo'
9.4 5.2 5.1 2nd
Table The permanent magnet of the present invention can be manufactured using industrially available materials, and it is extremely advantageous to use light rare earth elements as the central element of the magnet material.

重希土類は資源的に希少でかつ高価であり一般的に工業
的利用価値は少ないものが多いが、軽希土類と混合して
用いることが有利である。
Heavy rare earths are rare and expensive resources and generally have little industrial utility value, but it is advantageous to use them in combination with light rare earths.

保磁力の増大はその磁気特性の安定化に資するのでMの
添加により実用的に極めて安定でかつ高エネルギー積の
永久磁石が得られる。
Since an increase in coercive force contributes to stabilizing its magnetic properties, the addition of M makes it possible to obtain a permanent magnet that is extremely stable in practice and has a high energy product.

本発明において、Goの置換量はわずかでもTcの増大
に有効であると共にCOはFeに比べて耐食性を有する
のでGoを含有させることにより磁石へ耐食性を伺与す
ることにもなる。
In the present invention, even a small amount of Go substitution is effective in increasing Tc, and since CO has more corrosion resistance than Fe, the inclusion of Go also imparts corrosion resistance to the magnet.

以上詳述の通り本発明はFeeCo・B−R−M系合金
およびFe@co−B争RIIM−x系合金からなる磁
気等方性焼結体から成る永久磁石を提供し、従来レベル
以上の磁気特性を高価な材料を特に用いることなく実現
したものである。更には従来品以上の優れた高保磁力、
高エネルギー積を備えると共に実質的に従来のアルニコ
、RCO系磁石に匹敵する温度特性をIftえた等方性
永久磁石を提供する。加えてRとしてNd、 Pr等の
軽希土類を用いることにより資源的、価格的、磁気特性
的いずれの点においても実用的な永久磁石でありL業的
利用性の高いものである。
As detailed above, the present invention provides a permanent magnet made of a magnetically isotropic sintered body made of a FeeCo・BRM-based alloy and a Fe@co-B-RIIM-x based alloy, and provides a permanent magnet that is superior to the conventional level. Magnetic properties are achieved without using any expensive materials. Furthermore, it has a higher coercive force than conventional products,
To provide an isotropic permanent magnet which has a high energy product and has temperature characteristics substantially comparable to conventional alnico and RCO magnets. In addition, by using a light rare earth element such as Nd or Pr as R, the permanent magnet is practical in terms of resources, cost, and magnetic properties, and has high utility in the L industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGo含含有(横軸)と本発明の永久磁石実施例
のキュリ一点(縦軸)との関係を示すグラフ、第2〜5
図は、本発明の実施例の添加元素Mの含有量(横軸)と
残留磁化Br(KG)との関係を示すグラフ、第6図は
本発明の永久磁石実施例の平均結晶粒径(横軸)と保磁
力iHcの関係を示すグラフ、第7図は、元素Aの含有
量とBr(KG)の関係を示すグラフ、第8.9図は、
B、Rの含有量と111c、Brの関係なすグラフを夫
々示す。 出願人  住友特殊金属株式会社 代理人   弁理士  加 藤 朝 運筆1図 Fe−xCo−8B−15Nd−M MモW、 Cr、 V Co厘′l+色分牽(X%) 第2図 Fe−15Co−8B−15Nd−xMM原−!r白令
計(8%) 第6図 1           5   10       
   5Q    100−P内糸す晶粗色0(μm) 第7図 Fe−15Co−88−15Nd−xAA厘I崎塾(X
腎 第8図 Fe−10Co−x−8−15Nd−IW8虚:!r白
分年(X%) 第9図 Fe−10co−88−x−Nd−IWNd 7t 3
6 分牟tx%)
FIG. 1 is a graph showing the relationship between the Go content (horizontal axis) and the Curie point (vertical axis) of the permanent magnet example of the present invention, Nos. 2 to 5.
The figure is a graph showing the relationship between the content of the additive element M (horizontal axis) and the residual magnetization Br (KG) in the example of the present invention, and Figure 6 is the average crystal grain size ( Figure 7 is a graph showing the relationship between the content of element A and Br (KG), and Figure 8.9 is a graph showing the relationship between the horizontal axis) and coercive force iHc.
Graphs showing the relationship between the contents of B and R and 111c and Br are shown. Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Asa Kato Brush stroke 1 Figure Fe-xCo-8B-15Nd-M Mow, Cr, V Co + color separation (X%) Figure 2 Fe-15Co -8B-15Nd-xMM original-! r white scale (8%) Figure 6 1 5 10
5Q 100-P Inner thread crystal coarse color 0 (μm) Fig. 7Fe-15Co-88-15Nd-xAArin Isakijuku (X
Renal Diagram 8Fe-10Co-x-8-15Nd-IW8 Irregularity:! r white equinox year (X%) Fig. 9Fe-10co-88-x-Nd-IWNd 7t 3
6 mintx%)

Claims (6)

【特許請求の範囲】[Claims] (1)原子百分率で10〜25%のR(但しRはYを包
含する希土類元素の少なくとも一種)、3〜23%(7
)B、50%以下ノCo(但LCO0%を除く)、所定
百分率の楕加元素Mの一種又は二種以上(但し、M O
zを除き、ここにMは AI   8.7%以下、 Ti   4.3%以下、
V   8.7%:以下、 Or   8.3X以下、
Mn   8.0%以下、 Zr   5.5%以下、
Hr   5.ox以下、 Nb  12.4%以下、
Ta  lQ、3 %以下、 Mo   8.7%以下
、Ge   5.75.’以下、 Sb   2.4%
以下、Sn   3.5$以下、 Bi   4.8*
以下、N+   4.3 %以下、 及び lil   8.8%以下で二種以上を含む場合M合量
は当該添加元素のうち最大値を有するものの原子百分率
以下)、 及び残部Fe及び製造1不σfaの不純物からなる磁気
等方性焼結体永久磁石。
(1) atomic percentage of 10 to 25% R (R is at least one rare earth element including Y), 3 to 23% (7
) B, 50% or less Co (excluding LCO 0%), one or more of the elliptic elements M at a predetermined percentage (however, M O
Except for z, here M is AI 8.7% or less, Ti 4.3% or less,
V 8.7%: or less, Or 8.3X or less,
Mn 8.0% or less, Zr 5.5% or less,
Hr 5. ox or less, Nb 12.4% or less,
Ta IQ, 3% or less, Mo 8.7% or less, Ge 5.75. 'Below, Sb 2.4%
Below, Sn 3.5$ or less, Bi 4.8*
Hereinafter, if two or more types are included in N+ 4.3% or less, and lil 8.8% or less, the total amount of M is not more than the atomic percentage of the one having the maximum value among the added elements), and the balance is Fe and the manufacturing 1 non-σfa. Magnetic isotropic sintered permanent magnet consisting of impurities.
(2)原子百分率で10〜25%のR(但しRはYを包
含する希土類元素の少なくとも一種)、3〜23%のB
、50%以下のCo (但しCo  Ozを除く)、所
定百分+aの添加元素Mの一種又は二種以上(但し、M
  Oyoを除き、ここにMは、Al   8.7%以
ド、 Ti   4.3%以下、V   8.7%以下
、 Cr   8.3%以亡Mn   8.O%以ド、
 Zr   5.5%以下、Hf   5.OX以下、
 Nb  !2.4 X以下、Ta  10.3 ’A
Ar1 No   8.7 %以下、Ge   5.7
%以下、 Sb   2.4%以下、Sn   L5%
以−ド、 Bi   4.8%以下、N i   4 
、3%以下、 及び w  8.8’X以下)、 所定百分率の元素Aの一種又は二種以上(但し、A  
OXを除き、Aは Cu   3.3%以下、 S   2.5%以下、C
4,0%以下、及び P   3.3%以下)、 但し、M及びAの合量は含有するM、Aの当該元素のう
ち最大値を有するものの原子百分率以下、 及び残部Fe及び製造−ヒ不可避の不純物から成る磁気
等方性焼結体永久磁石。
(2) 10 to 25% R (R is at least one rare earth element including Y), 3 to 23% B in atomic percentage
, 50% or less Co (excluding CoOz), one or more types of additive element M (however, M
Except for Oyo, here M means Al 8.7% or more, Ti 4.3% or less, V 8.7% or less, Cr 8.3% or more, Mn 8. More than 0%,
Zr 5.5% or less, Hf 5. Below OX,
Nb! 2.4X or less, Ta 10.3'A
Ar1 No 8.7% or less, Ge 5.7
% or less, Sb 2.4% or less, Sn L5%
Hard, Bi 4.8% or less, Ni 4
, 3% or less, and w 8.8'
Except for OX, A is Cu 3.3% or less, S 2.5% or less, C
4.0% or less, and P 3.3% or less), provided that the total amount of M and A is not more than the atomic percentage of the element having the maximum value among the M and A elements contained, and the balance is Fe and manufacturing heat. A magnetically isotropic sintered permanent magnet consisting of unavoidable impurities.
(3)原子百分率で10〜25%のR(但しRはYを包
含する希土類元素の少なくとも一種)、 3〜23%L
:r)B、50% 以下(7)Go (但LCo  O
’X’j−除く)、所定百分率の添加元素Mの一種又は
二種以上(但し、M 0%を除き、ここにMは AI   8.7%以下、 Ti   4.3%以下、
V   8.7%以下、 Cr   8.3’X以下、
Hn   8.0%以下、 Zr   5.5%以下、
Hf   5.0%以下、 Nb  12.4 % 以
下、Ta  10.3 %以下、 Mo   8.7$
以下。 Ge   5.7%以下、 sb   2.4z以下、
Sn   3.5%以下、 Bi   4.13%以下
、Ni   4.3%以下、 及び W   8.8%以下で二種以上を含む場合M合邦は当
該添加元素のうち最大値を有するものの原子百分率具F
)、 及び残部Fe及び製造上不可避の不純物力1らなり、焼
結体の平均結晶粒径が約1〜IOCI−mである磁気等
方性焼結体永久磁石。
(3) 10 to 25% R in atomic percentage (R is at least one kind of rare earth element including Y), 3 to 23% L
:r) B, 50% or less (7) Go (However, LCo O
'X'j-), a predetermined percentage of one or more of the additive elements M (however, excluding M 0%, where M is AI 8.7% or less, Ti 4.3% or less,
V 8.7% or less, Cr 8.3'X or less,
Hn 8.0% or less, Zr 5.5% or less,
Hf 5.0% or less, Nb 12.4% or less, Ta 10.3% or less, Mo 8.7$
below. Ge 5.7% or less, sb 2.4z or less,
When two or more elements are included: Sn 3.5% or less, Bi 4.13% or less, Ni 4.3% or less, and W 8.8% or less, the M combination is the atomic percentage of the one with the maximum value among the added elements. Ingredients F
), and the balance is Fe and impurity force 1 unavoidable in manufacturing, and the magnetically isotropic sintered body permanent magnet has an average crystal grain size of about 1 to IOCI-m.
(4)原子百分率で10〜25%のR(但しRはYを包
含する希土類元素の少なくとも一種)、3〜23%(1
) B、50%以下ノco(但シCa  0%を除く)
、所定百分率の添加元素Mの一種又は二種具−ヒ(但し
、M 0%を除き、ここにMは、A1  8.7%以下
、 Ti   4.3%以下、V   8.7%以下、
 Cr   8.3 %以−ド、Mn   8.0%以
下、 Zr   5.5 %以下、   ′If   
5.0 % 以下、 Nb  12.4 %以下、Ta
  10.3 %以ド、 Mo   8.7%以下、G
e   5.7%以下、 Sb   2.4%以下、S
n   3.5%以下、 Bi   4.8%以「、N
i   4.3%以下、 及び W    8.8%以下)、 所定百分率の元素Aの一種又は二種以上(但し、A  
OXを除き、Aは 。、3.3%以下、 3  2.5y6以下、C4,O
X以下、及び P    3.3X以下)、 但し、M及びAの含量は含有するM、Aの当該元素のう
ち最大値を有するものの原子百分率以下、及び残部Fe
及び製造上不可避の不純物から成り、焼結体の平均結晶
粒径が約1〜+004 rnである磁気等方性焼結体永
久磁石。
(4) 10 to 25% R in atomic percentage (where R is at least one kind of rare earth element including Y), 3 to 23% (1
) B, 50% or less (excluding Ca 0%)
, a predetermined percentage of one or two additive elements M (excluding M 0%, where M is A1 8.7% or less, Ti 4.3% or less, V 8.7% or less,
Cr 8.3% or more, Mn 8.0% or less, Zr 5.5% or less, 'If
5.0% or less, Nb 12.4% or less, Ta
10.3% or more, Mo 8.7% or less, G
e 5.7% or less, Sb 2.4% or less, S
n 3.5% or less, Bi 4.8% or more, N
i 4.3% or less, and W 8.8% or less), a specified percentage of one or more elements A (however, A
Except for OX, A is. , 3.3% or less, 3 2.5y6 or less, C4,O
X or less, and P 3.3X or less), provided that the content of M and A is not more than the atomic percentage of the element having the maximum value among the M and A elements contained, and the balance is Fe.
and a magnetically isotropic sintered permanent magnet comprising impurities unavoidable during manufacturing, the sintered body having an average crystal grain size of about 1 to +004 rn.
(5)原子百分率で10〜25XのR(但しRはYを包
含する希土類元素の少なくとも一種)、 3〜23%(
7)B、50% 以下ノco (但LCo  O%ヲ除
く)、所定自分率の添加元素Mの一種又は二種以上(世
し、M 0%を除き、ここにMは、AI   8.7%
以下、 Ti   4.3%以下、V   8.7%以
下、 Or   8.3 % 以下。 Mn   8.0%以下、 Zr   5.5%以下、
Hf   5.0%以下、 Nb  i2.4 %以下
、Ta  10.3 %以下、 Mo   8.7%以
下、G25.7 % 以下、 Sb   2.4 % 
以下、Sn   3.5%以ド、 Bi   4.8%
以下、Ni   4.3%以下、 及び W   8.8%以下で二種以上を含む場合、M合量は
当該添加元素のうち最大値を有するものの原子百分率以
下)、 及び残部Fe及び製造上不可避の不純物からなる合金粉
末を加圧成形し焼結することを特徴とする磁気等力性焼
結体永久磁石の製造方法。
(5) R of 10 to 25X in atomic percentage (where R is at least one kind of rare earth element including Y), 3 to 23% (
7) B, 50% or less (excluding LCo O%), one or more types of additive elements M (excluding M 0%, here M is AI 8.7) %
Below, Ti: 4.3% or less, V: 8.7% or less, Or: 8.3% or less. Mn 8.0% or less, Zr 5.5% or less,
Hf 5.0% or less, Nb i2.4% or less, Ta 10.3% or less, Mo 8.7% or less, G25.7% or less, Sb 2.4%
Below, Sn 3.5% or more, Bi 4.8%
Hereinafter, if Ni is 4.3% or less and W is 8.8% or less, and two or more types are included, the total M content is the atomic percentage or less of the one with the maximum value among the added elements), and the remainder is Fe and unavoidable in manufacturing. 1. A method for producing a magnetically homogeneous sintered permanent magnet, which comprises pressurizing and sintering an alloy powder containing impurities.
(6)原子百分率で10〜25%のR(但しRはYを包
含する力士類元素の少なくとも一種)、3〜23%[7
)B、50%以%以下)Go(但LCO0%を除ぐ)、
所定百分率の添加元素Mの一種又は二種具−L(但し、
M  0%を除き、ここにMは、AI   8.72;
以下、 Ti   4.3%以下、V   8.7%以
下、 Cr   8.3%以下、Mn   8.0%以
下、 Zr   5.5%以下、Hf   5.0%以
下、 Nb  12.4 X以下、Ta  10.3 
%以下、 Mo   8.7%以ド、Ge   5.7
 %以下、 Sb   2.4%以ド、Sn   3.
5%以下、 Bi   4.8%以下、Ni   4.
3X以下、 及び 讐  8,8z以下)、 所定百分率の元素Aの一種又は二種以上(但し、A  
OXを除き、Aは Cu   3.3%以下、 9  2.5%以下、C4
,0%以下、及び P   3.3%以下)、 伊し、M及びAの合量は含有するM、Aの当該元素のう
ち最大イ1αを有するものの原子百分率以下、及び残部
Fe及び製造上不可避の不純物から成る合金粉末を加圧
成形し、焼結することを特徴とする磁気等方性焼結体永
久磁石の製造方法。
(6) 10 to 25% R (R is at least one of the sumo elements including Y), 3 to 23% [7
) B, 50% or more% or less) Go (excluding LCO 0%),
A predetermined percentage of one or two types of additive elements M-L (however,
Except for M 0%, where M is AI 8.72;
Below, Ti 4.3% or less, V 8.7% or less, Cr 8.3% or less, Mn 8.0% or less, Zr 5.5% or less, Hf 5.0% or less, Nb 12.4X or less , Ta 10.3
% or less, Mo 8.7% or more, Ge 5.7
% or less, Sb 2.4% or more, Sn 3.
5% or less, Bi 4.8% or less, Ni 4.
3X or less, and 8,8z or less), a specified percentage of one or more types of element A (however, A
Except for OX, A is Cu 3.3% or less, 9 2.5% or less, C4
, 0% or less, and P 3.3% or less), the total amount of M and A is less than the atomic percentage of the element containing M and A that has the maximum 1α, and the balance is Fe and manufacturing A method for producing a magnetically isotropic sintered permanent magnet, which comprises pressurizing and sintering an alloy powder containing unavoidable impurities.
JP58079099A 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof Granted JPS59204212A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58079099A JPS59204212A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof
US06/567,008 US4767474A (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same
CA000444518A CA1280013C (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same
DE8383113253T DE3381482D1 (en) 1983-05-06 1983-12-30 ISOTROPE MAGNETS AND METHOD FOR THEIR PRODUCTION.
EP83113253A EP0125347B1 (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079099A JPS59204212A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59204212A true JPS59204212A (en) 1984-11-19
JPH0467325B2 JPH0467325B2 (en) 1992-10-28

Family

ID=13680426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079099A Granted JPS59204212A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59204212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066802A (en) * 1983-09-22 1985-04-17 Daido Steel Co Ltd Permanent magnet material
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066802A (en) * 1983-09-22 1985-04-17 Daido Steel Co Ltd Permanent magnet material
JPH056321B2 (en) * 1983-09-22 1993-01-26 Daido Steel Co Ltd
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet

Also Published As

Publication number Publication date
JPH0467325B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
US4767474A (en) Isotropic magnets and process for producing same
US4597938A (en) Process for producing permanent magnet materials
EP0126802B1 (en) Process for producing of a permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPS6134242B2 (en)
EP0124655B1 (en) Isotropic permanent magnets and process for producing same
US4840684A (en) Isotropic permanent magnets and process for producing same
JPH0574618A (en) Manufacture of rare earth permanent magnet
JPH0316761B2 (en)
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
US5192372A (en) Process for producing isotropic permanent magnets and materials
JPH0316762B2 (en)
JP2684140B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
CN114255947A (en) Sm-Fe-N magnetic material and method for producing same
JPH0146575B2 (en)
JPH085664B2 (en) Rare earth / iron / boron tetragonal compound
JPH0467324B2 (en)
JPS59204212A (en) Isotropic permanent magnet and manufacture thereof
JPH08245295A (en) Rare earth element-iron-cobalt-boron tetragonal compound
JPH03170643A (en) Alloy for permanent magnet
JPH0146574B2 (en)
JPH0535210B2 (en)
JPH044386B2 (en)
JPS6365742B2 (en)
JPH0467322B2 (en)