KR0159651B1 - Method for manufacturing a magnet made from anisotropic rare earth - Google Patents

Method for manufacturing a magnet made from anisotropic rare earth Download PDF

Info

Publication number
KR0159651B1
KR0159651B1 KR1019950016210A KR19950016210A KR0159651B1 KR 0159651 B1 KR0159651 B1 KR 0159651B1 KR 1019950016210 A KR1019950016210 A KR 1019950016210A KR 19950016210 A KR19950016210 A KR 19950016210A KR 0159651 B1 KR0159651 B1 KR 0159651B1
Authority
KR
South Korea
Prior art keywords
anisotropic
molded body
powder
tubular member
resin
Prior art date
Application number
KR1019950016210A
Other languages
Korean (ko)
Other versions
KR970003294A (en
Inventor
정태승
김윤배
김창석
안길수
Original Assignee
정몽원
만도기계주식회사
정명세
재단법인한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정몽원, 만도기계주식회사, 정명세, 재단법인한국표준과학연구원 filed Critical 정몽원
Priority to KR1019950016210A priority Critical patent/KR0159651B1/en
Priority to CN96100326A priority patent/CN1138735A/en
Priority to JP8019408A priority patent/JP2816130B2/en
Publication of KR970003294A publication Critical patent/KR970003294A/en
Application granted granted Critical
Publication of KR0159651B1 publication Critical patent/KR0159651B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

본 발명은 간단한 구조의 열간압축 금형 및 다이업셋 금형을 사용하여 이방성 수지 자석 분말을 제조한 후 사출 및 압축 성형으로 영구자석을 제조할 수 있는 이방성 수지 영구자석 제조방법을 제공하는 데 있고, 자성분말을 튜브형 부재내에 넣는 단계와, 400 내지 1000℃ 의 온도에서 가압 부재를 작용시켜 상기 튜브형 부재와 함께 자성분말을 열간압축하여 고밀도의 등방성 성형체를 얻는 단계와, 상기 성형체가 자기 이방성을 갖도록 400 내지 1000℃의 온도에서 가압부재를 작용시켜 상기 튜브형 부재와 함께 성형체를 열간가공하는 단계와, 상기 이방화된 성형체를 튜브형 부재와 분리한후 분쇄하여 이방성 파우더를 만드는 단계와, 상기 이방성 파우더에 수지를 믹싱한후 자장중에서 사출 및 압축 성형하는 단계로 제조되는 것이다.The present invention provides an anisotropic resin permanent magnet manufacturing method capable of producing permanent magnets by injection and compression molding after producing anisotropic resin magnet powder using a hot compression mold and a die-upset mold having a simple structure. To obtain a high-density isotropic shaped body by compressing the magnetic powder together with the tubular member by acting a pressing member at a temperature of 400 to 1000 ° C., and 400 to 1000 so that the molded body has magnetic anisotropy. Hot working the molded body together with the tubular member by acting a pressure member at a temperature of 占 폚, separating the anisotropic molded body from the tubular member and pulverizing to form an anisotropic powder, and mixing the resin with the anisotropic powder. After that, it is manufactured by injection molding and compression molding in a magnetic field.

Description

이방성 희토류 영구자석 제조방법Anisotropic rare earth permanent magnet manufacturing method

제1도(a) ~ (g)는 본 발명에 따른 영구자석 제조방법을 나타낸 공정도.1 (a) to (g) is a process chart showing a permanent magnet manufacturing method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 다이업셋 장치 11,12 : 상, 하부펀치10: die-up set device 11, 12: upper, lower punch

13 : 가열기 14 : 자성분말13: heater 14: magnetic powder

15 : 튜브 16 : 등방성 성형체15 tube 16: isotropic molded body

17 : 이방성 성형체17: anisotropic molded body

본 발명은 이방성 수지 영구자석 제조방법에 관한 것으로서, 특히 튜브 내에 있는 자성 분말을 열가압축하여 고밀도 등방성 성형체를 만들고, 이를 열간가공하여 등방성 성형체 자기적 이방성을 부여하며, 다시 이를 분쇄하여 이방성을 갖는 파우더로 만들어 수지재와 믹싱한후 사출 또는 압축 및 소성을 실시하여 이방성 수지 영구자석을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing permanent magnets of anisotropic resin, in particular, a magnetic powder in a tube is thermally compressed to make a high-density isotropic molded body, and hot-processed to give the magnetic anisotropy of the isotropic molded body, and to grind it again to have an anisotropic powder The present invention relates to a method for manufacturing anisotropic resin permanent magnets by mixing with a resin material and then performing injection or compression and firing.

일반적으로, 하나 또는 그 이상의 희토류원소(RE)(rare earth element), 하나 또는 그 이상의 천이금속(TM)(transistion metal) 및 붕소(B)(boron)로 구성된 ME-TM-B계 영구자석을 제조하는 방법에는 두가지가 있다. 그중 하나는, ME-TM-B계 영구자석 인고트(ingot)를 가루로 만든 분말을 자장중에서 성형하고, 100℃ 이상의 온도에서 소결 및 열처리하여 제조하는 소결법으로, 이 방법은 분말 재료르 높은 온도에서 처리하여야 하므로, 비용이 많이 드는 복잡한 방법이며, 재료가 쉽게 산화되는 문제점이 있다.Generally, ME-TM-B permanent magnets composed of one or more rare earth elements (RE), one or more transition metals (TM) and boron (B) (boron) There are two ways to prepare. One of them is a sintering method in which a powder made of ME-TM-B-based permanent magnet ingots is formed in a magnetic field, sintered and heat-treated at a temperature of 100 ° C. or higher. Because it has to be processed in, it is a complicated and expensive method, the material is easily oxidized.

두번째 방법은 용융 합금(molten alloy)를 급속 응고하여 얻은 비정질 및/또는 미세 결정 입자의 자성 분말을 금형에 넣고, 이 자성 분말을 가압하여 고밀도의 등방성 연구자석 성형체(densified isotropic magnet compact)를 얻으며, 이 성형체를 금형에 넣고 약 700℃의 온도에서 열간가공(hot working)함으로써 이방성 영구자석(anisotropic magnet)을 제조하는 열간가공법으로, 이는 소결법보다 간단하며, 사용하는 재료가 산화될 가능성은 적다.In the second method, a magnetic powder of amorphous and / or microcrystalline particles obtained by rapid solidification of a molten alloy is put into a mold, and the magnetic powder is pressed to obtain a densified isotropic magnet compact. The molded product is placed in a mold and hot worked at a temperature of about 700 ° C. to produce an anisotropic magnet. This is simpler than the sintering method, and the material used is less likely to be oxidized.

그러나 열간압축 금형 및 다이업셋 금형을 높은 압력 및 온도에서 반복적으로 사용해야 하므로, 금형이 쉽게 변형되거나 파손되는 경향이 있다. 따라서 그러한 변형 및 파손 문제를 최소화하기 위해서는 높은 강성 및 경도를 가진 재료를 제작한 금형을 사용하여야 한다. 또한 마그네트는 다양한 크기와 다양한 형상을 가질 수 있기 때문에 다양한 크기 및 형상 조건에 맞는 금형들을 경질재료로 제작하는 작업은 상당한 비용이 드는 어려운 작업이다.However, since the hot compression die and the die upset die have to be used repeatedly at high pressure and temperature, the mold tends to be easily deformed or broken. Therefore, in order to minimize such deformation and damage problems, a mold made of a material having high rigidity and hardness should be used. In addition, since magnets can have various sizes and shapes, fabricating molds made of hard materials for various sizes and shape conditions is a difficult and expensive operation.

특히 이방성 수지 마그네트는 여러가지 이유로 인하여 현재까지 상용화가 전혀 되어 있지 않은 상태이다.In particular, anisotropic resin magnets have not been commercialized at present for various reasons.

따라서 본 발명의 목적은 고가의 금형을 사용하지 않고 간단한 구조를 갖는 구리와 스텐레스 스틸 튜브를 이용하여 이방성 마그네트 분말을 만든후 분쇄하여 수지와 혼합에 이방성 수지 영구자석을 제조하는 경제적인 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide an economical method for producing anisotropic resin permanent magnet in mixing with the resin by making an anisotropic magnet powder using a copper and stainless steel tube having a simple structure without using an expensive mold and then crushed There is.

상기의 목적은 자성분말을 튜브형 부재내에 넣는 단계와, 400 내지 1000℃ 의 온도에서 가압 부재를 작용시켜 상기 튜브형 부재와 함께 자성분말을 열간압축하여 고밀도 성형체를 얻는 단계와, 상기 성형체가 자기 이방성을 갖도록 400 내지 1000℃의 온도에서 가압부재를 작용시켜 상기 튜브형 부재와 함께 성형체를 열간가공하는 단계와, 상기 이방화된 성형체를 튜브와 분리한후 분쇄하여 이방성 파우더를 만드는 단계와, 상기 이방성 파우더에 수지를 믹싱한후 자장중에 성형하는 단계를 포함하는 영구자석 제조방법에 의해 달성될 수 있다.The above object is to put the magnetic powder into the tubular member, to press the magnetic member at a temperature of 400 to 1000 ℃ to hot compress the magnetic powder with the tubular member to obtain a high density molded body, the molded body is magnetic anisotropic Hot working the molded body together with the tubular member by acting a pressure member at a temperature of 400 to 1000 ° C., separating the anisotropic molded body from the tube, and then pulverizing to form an anisotropic powder; It can be achieved by a permanent magnet manufacturing method comprising the step of mixing in a magnetic field after mixing the resin.

이하, 본 발명에 따른 영구자석 제조방법을 첨부 도면에 의하여 상세히 설명한다.Hereinafter, a permanent magnet manufacturing method according to the present invention will be described in detail by the accompanying drawings.

제1도(a)는 다이업셋 장치(10)를 도시하고 있는 것으로, 다이업셋 장치(10)는 상부펀치(11), 하부펀치(12) 및 가열기(13)를 갖는다. 상부펀치(11)에 있는 평탄한 펀치면은 공작물을 완전히 덮을 정도로 넓고, 가압수단(도시하지 안음)에 부착되어 있다. 또한 하부펀치(12)에 있는 평탄한 펀치면도 공작물을 완전히 덮을 정도로 충분히 넓고, 가압수단(도시하지 않음)에 부착되어 있으며, 가열기(13)가 다이업셋 장치(10)를 둘러싸고 있다.FIG. 1 (a) shows the die upset apparatus 10, which has an upper punch 11, a lower punch 12, and a heater 13. The flat punch surface in the upper punch 11 is wide enough to completely cover the work piece and is attached to the pressing means (not shown). The flat punch surface in the lower punch 12 is also wide enough to completely cover the work piece, attached to the pressing means (not shown), and the heater 13 surrounds the die-up set device 10.

본 발명의 제1단계는 자성분말(14)을 중공형 튜브(15)내에 넣는 것이다. 상기 자성분말(14)은 하나 또는 그 이상의 희토류원소(RE), 하나 또는 그 이상의 천이금속(TM) 및 붕소(B)를 포함하는 재료를 사용할 수 있다. 희토류원소는 대체로 Nd를 사용하지만, 부분적으로 또는 전부를 Pr 로 대체할 수도 있고, 천이금속의 경우에는 Fe가 바람직하지만, 부분적으로 또는 전부를 Co로 대체할 수도 있다. 이러한 자성분말(14)은 ME-TM-B 재료의 용융합금을 급속 냉각하여 제조한 자성재료를 분말화하여 만든다.The first step of the invention is to put the magnetic powder 14 into the hollow tube 15. The magnetic powder 14 may use a material including one or more rare earth elements (RE), one or more transition metals (TM), and boron (B). Rare earth elements generally use Nd, but may partially or entirely replace Pr, and in the case of transition metals, Fe is preferred, but may partially or entirely replace Co. The magnetic powder 14 is made by powdering a magnetic material prepared by rapidly cooling a molten alloy of a ME-TM-B material.

중공형 튜브(15)는 예를 들면 구리 또는 스테인레스 스틸과 같은 상자성 또는 비자성 금속으로 만드는 것이 바람직하며, 강자성금속으로 만들 수도 있다. 도면에는 중공형 튜브(15)가 원형으로 도시되어 있지만 이에 한정되는 것은 아니고, 여러형태로 변형가능하다.The hollow tube 15 is preferably made of paramagnetic or nonmagnetic metal such as, for example, copper or stainless steel, and may be made of ferromagnetic metal. Although the hollow tube 15 is shown in the figure in a circular shape, it is not limited thereto, and may be modified in various forms.

자성분말(14)을 중공형 튜브(15)에 넣은 후, 다이업셋 장치(10)를 이용하여 제1도(b)에서와 같이 열간압축 작업을 시작한다. 상부펀치(11)를 아래로 이동시켜 400 내지 1000℃ 바람직하기로는 700 내지 800℃의 온도에서, 예를들면 0.1 내지 0.5 톤/㎤의 압력을 자성분말(14)과 중공형 튜브(15)에 가함으로써 고밀도의 등방성 성형체(16)를 만든다. 이 압력은 튜브(15) 재료의 강도와 두께에 따라 변경될 수 있다. 온도는, 예를들면 저항 가열기와 같은 가열기에 의해 제공되는 것으로, 400℃ 보다 낮은 온도에서는 가공성이 떨어지며, 1000℃ 보다 낮은 온도에서는 입자가 조대화할 수도 있다.After the magnetic powder 14 is placed in the hollow tube 15, the hot compression operation is started using the die upset apparatus 10 as shown in FIG. The upper punch 11 is moved downward so that a pressure of, for example, 0.1 to 0.5 ton / cm 3 is applied to the magnetic powder 14 and the hollow tube 15 at a temperature of 400 to 1000 ° C., preferably 700 to 800 ° C. The high density isotropic molded body 16 is made by adding. This pressure may vary depending on the strength and thickness of the tube 15 material. The temperature is provided, for example, by a heater such as a resistance heater, and is poor in processability at temperatures lower than 400 ° C, and may coarsen particles at temperatures lower than 1000 ° C.

열간 압축 성형에 있어서, 제1도(c)에서와 같이, 등방성 성형체(16)와 중공형 튜브(15)를 함께 열간가공한다. 연간가공은 400℃ 내지 1000℃, 바람직하기로는 700 내지 800℃ 온도에서, 예를 들면 약 2 톤/㎤ 의 압력을 등방성 성형체(16) 및 튜브(15)에 가한다. 이 과정중에 등방성 성형체(16)는 소성변형되어 그 높이가 감소되고, 소성변형에 의해 등방성 성형체(16)는 자기적 이방성을 갖게 된다.In hot compression molding, the isotropic molded body 16 and the hollow tube 15 are hot worked together as in FIG. 1 (c). The annual machining is applied to the isotropic molded body 16 and the tube 15 at a temperature of 400 ° C. to 1000 ° C., preferably 700 to 800 ° C., for example about 2 tons / cm 3. During this process, the isotropic molded body 16 is plastically deformed and its height is reduced, and the isotropic molded body 16 has magnetic anisotropy by plastic deformation.

이와 같이 얻어진 이방성 성형체(17)는, 제1도(d) 및 (e)에 도시된 바와 같이 중공형 튜브(15)를 제거한 후, 분쇄함으로써 이방성 파우더(18)로 만들어지고, 이어서 이방성 파우더(18)에 수지를 믹싱하여 제1도(f)에서와 같이 통상의 열간압축장치(20)로 압축 성형 한다. 이때 압축 성형과 동시에 자장을 걸어줌으로써 제1도(g)에 도시된 바와 같은 이방성 수지 영구자석을 제조한다.The anisotropic molded body 17 thus obtained is made of anisotropic powder 18 by pulverizing and removing the hollow tube 15 as shown in Figs. 1 (d) and (e), and then anisotropic powder ( 18) and the resin is mixed and compression-molded by the usual hot compression device 20 as shown in FIG. At this time, the anisotropic resin permanent magnet as shown in FIG.

이상에서와 같이 본 발명에 따른 영구자석 제조방법에 의하면, 간단한 구조의 열간압축 금형 및 다이업셋 금형을 사용하여 이방성 수지자석 분말을 제조한 후 사출 및 압축 성형으로 이방성 수지 영구자석이 제조되는 산업상 유용한 발명인 것이다.As described above, according to the method of manufacturing permanent magnets according to the present invention, anisotropic resin magnet powder is manufactured by using a hot compression mold and a die-up die mold having a simple structure, and then an anisotropic resin permanent magnet is manufactured by injection and compression molding. It is a useful invention.

Claims (1)

자성분말을 튜브형 부재내에 넣는 단계와, 400 내지 1000℃ 의 온도에서 가압 부재를 작용시켜 상기 튜브형 부재와 함께 자성분말을 열간압축하여 고밀도의 등방성 성형체를 얻는 단계와, 상기 등방성 성형체가 자기 이방성을 갖도록 400 내지 1000℃의 온도에서 가압부재를 작용시켜 상기 튜브형 부재와 함께 성형체를 열간가공하는 단계와, 상기 이방화된 성형체를 튜브와 분리한후 분쇄하여 이방성 파우더를 만드는 단계와, 상기 이방성 파우더에 수지를 믹싱한후 자장중에 성형하는 단계를 포함하는 영구자석 제조방법.Placing the magnetic powder into the tubular member, and acting a press member at a temperature of 400 to 1000 ° C. to hot compress the magnetic powder together with the tubular member to obtain a high-density isotropic molded body, wherein the isotropic molded body has magnetic anisotropy. Hot working the molded body together with the tubular member by acting a pressure member at a temperature of 400 to 1000 ° C, separating the anisotropic molded body from the tube and pulverizing to form an anisotropic powder, and resin to the anisotropic powder Permanent magnet manufacturing method comprising the step of molding in the magnetic field after mixing.
KR1019950016210A 1995-06-19 1995-06-19 Method for manufacturing a magnet made from anisotropic rare earth KR0159651B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950016210A KR0159651B1 (en) 1995-06-19 1995-06-19 Method for manufacturing a magnet made from anisotropic rare earth
CN96100326A CN1138735A (en) 1995-06-19 1996-01-10 Method of manufacturing magnets
JP8019408A JP2816130B2 (en) 1995-06-19 1996-01-10 Permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950016210A KR0159651B1 (en) 1995-06-19 1995-06-19 Method for manufacturing a magnet made from anisotropic rare earth

Publications (2)

Publication Number Publication Date
KR970003294A KR970003294A (en) 1997-01-28
KR0159651B1 true KR0159651B1 (en) 1998-12-15

Family

ID=19417448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950016210A KR0159651B1 (en) 1995-06-19 1995-06-19 Method for manufacturing a magnet made from anisotropic rare earth

Country Status (3)

Country Link
JP (1) JP2816130B2 (en)
KR (1) KR0159651B1 (en)
CN (1) CN1138735A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786708B2 (en) * 2011-12-28 2015-09-30 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6213402B2 (en) * 2014-07-08 2017-10-18 トヨタ自動車株式会社 Method for manufacturing sintered body
TWI615859B (en) * 2016-10-14 2018-02-21 財團法人金屬工業研究發展中心 Anisotropic magnet manufacturing method and magnet manufacturing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263947A (en) * 1986-05-12 1987-11-16 Inoue Japax Res Inc Manufacture of magnet
JPH01175207A (en) * 1987-12-28 1989-07-11 Seiko Epson Corp Manufacture of permanent magnet
JPH01248503A (en) * 1988-03-29 1989-10-04 Daido Steel Co Ltd Manufacture of r-fe-b family anisotropy magnet
JPH0444301A (en) * 1990-06-12 1992-02-14 Seiko Epson Corp Manufacture of rare-earth permanent magnet
JPH06105504A (en) * 1992-09-21 1994-04-15 Honda Motor Co Ltd Manufacture of permanent magnet member for motor

Also Published As

Publication number Publication date
JP2816130B2 (en) 1998-10-27
JPH097871A (en) 1997-01-10
KR970003294A (en) 1997-01-28
CN1138735A (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US3915699A (en) Method for producing metal dies or molds containing cooling channels by sintering powdered metals
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
US5091022A (en) Manufacturing process for sintered fe-p alloy product having soft magnetic characteristics
KR0159651B1 (en) Method for manufacturing a magnet made from anisotropic rare earth
US5516371A (en) Method of manufacturing magnets
KR100424142B1 (en) A fabrication method of rare earth magnets
KR0140468B1 (en) Permanent Magnet Manufacturing Method
EP0565363B1 (en) Method for producing anisotropic rare earth magnet
KR100201695B1 (en) Apparatus of manufacturing anisotropic permanent magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
JP3399056B2 (en) Manufacturing method of anisotropic magnet
JP4353489B2 (en) Manufacturing method of iron-nickel magnetic alloy products
KR100198361B1 (en) Method for manufacturing permanent magnet in rare earth system and apparatus of the same
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH03290906A (en) Warm-worked magnet and its manufacture
JPH04198402A (en) Production and apparatus for magnet element
KR19990048620A (en) Rare earth permanent magnet manufacturing method and apparatus
KR19980043534A (en) Anisotropic Permanent Magnet Manufacturing Method
JPH0362507A (en) Manufacture of anisotropic rare earth magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
KR20000014044A (en) method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
JPH0478699B2 (en)
KR20000026124A (en) Punch structure used in manufacturing preform for die offset of rare-earth permanent magnet

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee