JP4353489B2 - Manufacturing method of iron-nickel magnetic alloy products - Google Patents

Manufacturing method of iron-nickel magnetic alloy products Download PDF

Info

Publication number
JP4353489B2
JP4353489B2 JP2000026017A JP2000026017A JP4353489B2 JP 4353489 B2 JP4353489 B2 JP 4353489B2 JP 2000026017 A JP2000026017 A JP 2000026017A JP 2000026017 A JP2000026017 A JP 2000026017A JP 4353489 B2 JP4353489 B2 JP 4353489B2
Authority
JP
Japan
Prior art keywords
heat treatment
iron
hours
magnetic alloy
hydrogen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000026017A
Other languages
Japanese (ja)
Other versions
JP2001220601A (en
Inventor
政和 藤田
隆二 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000026017A priority Critical patent/JP4353489B2/en
Publication of JP2001220601A publication Critical patent/JP2001220601A/en
Application granted granted Critical
Publication of JP4353489B2 publication Critical patent/JP4353489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は鉄ニッケル磁性合金製品の製造方法に関し、より詳しくは、出発原料として鉄ニッケル磁性合金粉末を用いて、磁気特性、特に最大透磁率に優れた鉄ニッケル磁性合金製品を製造する方法に関する。
【0002】
【従来の技術】
従来、磁性体製品は磁性金属の溶融体の流し込み、磁性金属体の切削加工、プレス加工等の種々の方法によって製造されている。また、磁性金属体粉末を用いた粉末冶金法又は金属粉末射出成形(Metal Injection Molding 、MIM)法によって磁性体製品を製造することも提案されている。例えば、特開平6−136404号公報には金属粉末射出成形法を利用した鉄系軟磁性材料焼結体の製造方法が開示されている。また鉄ニッケル磁性合金の磁気特性を改善するために高温の水素雰囲気中で熱処理することも公知である。
【0003】
粉末冶金法及び金属粉末射出成形法による製品の製造方法は一般的には経済性及び量産性に優れていると言える。しかしながら、出発原料として鉄ニッケル磁性合金粉末を用い、粉末冶金法又は金属粉末射出成形法によって作製した焼結体は、高温の水素中で熱処理したとしても、磁性合金製品の用途によっては磁気特性、特に最大透磁率の点で必ずしも満足できるものではなく、それで一層高い最大透磁率の磁性合金製品が求められている。
【0004】
【発明が解決しようとする課題】
本発明は、出発原料として鉄ニッケル磁性合金粉末を用い、粉末冶金法又は金属粉末射出成形法を採用しても、一層高い最大透磁率の磁性合金製品を製造することのできる製造方法を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明者等は上記の課題を達成するために種々検討を重ねた結果、高温の水素中での熱処理を温度を変えて2段階で実施することにより、磁気特性、特に最大透磁率に優れた鉄ニッケル磁性合金製品が得られることを見出し、本発明を完成した。
【0006】
即ち、本発明の第一の態様の鉄ニッケル磁性合金製品の製造方法は、鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理して得られるグリーン成形体、又は鉄ニッケル磁性合金粉末を圧縮成形して得られるグリーン成形体を、水素雰囲気中、1100〜1350℃で2〜5時間焼結し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする。
【0007】
また、本発明の第二の態様の鉄ニッケル磁性合金製品の製造方法は、鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理し、焼結して得られる焼結体、又は鉄ニッケル磁性合金粉末を圧縮成形して成形体を形成し、該圧縮成形体を焼結して得られる焼結体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする。
【0008】
更に、本発明の第三の態様の鉄ニッケル磁性合金製品の製造方法は、鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理し、焼結して焼結体を得、該焼結体を加工して得られる加工体、又は鉄ニッケル磁性合金粉末を圧縮成形して成形体を形成し、該圧縮成形体を焼結して焼結体を得、該焼結体を加工して得られる加工体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする。
【0009】
【発明の実施の形態】
以下に、本発明の鉄ニッケル磁性合金製品の製造方法について具体的に説明する。
本発明の製造方法で用いる鉄ニッケル磁性合金はパーマロイと総称されているFe−Ni系合金であり、一般的にはNiを35〜85%程度含むものである。本発明の製造方法においてはこの鉄ニッケル磁性合金を、平均粒径が好ましくは0.5〜25μm程度、一層好ましくは2〜8μm程度の粉末として用いる。
【0010】
本発明の製造方法を金属粉末射出成形法を採用して実施する場合には、金属粉末射出成形法で一般的に用いられている有機バインダーは何れも用いることができ、そのような有機バインダーとしてはパラフィンワックスや、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー等を挙げることができる。
【0011】
鉄ニッケル磁性合金粉末と有機バインダーとの加熱混練も金属粉末射出成形法で一般的に用いられている条件下で実施することができ、その加熱温度は有機バインダーの融点によって決まる温度であり、混練方法は均一に混練できればいかなる方法、装置でもよく、それらは当業者には容易に決定できる事項である。
【0012】
鉄ニッケル磁性合金粉末と有機バインダーとの加熱混練物の射出成形も金属粉末射出成形法で一般的に用いられている条件下で実施することができ、基本的にはプラスチックの射出成形技術と同じであるが、緻密な射出成形体が得られるように、射出温度、射出速度、射出圧力、金型温度等を適切に設定することが望ましい。
【0013】
本発明の製造方法を金属粉末射出成形法を採用して実施する場合の脱バインダー処理は、用いた有機バインダーの種類に関連するが、一般的には加熱分解法(常圧、減圧、真空、加圧)や、溶解法(溶媒抽出、加熱溶解、超臨界法)等で実施することができる。どのような脱バインダー処理を採用すればよいかは、当業者には容易に決定できる事項である。このような脱バインダー処理によってグリーン成形体が得られる。
【0014】
本発明の製造方法を粉末冶金法を採用して実施する場合には、粉末冶金法で一般的に用いられている条件下で、例えば、鉄ニッケル磁性合金粉末を必要に応じて潤滑剤等と混合し、圧縮成形する。この圧縮成形においては、例えば、鉄ニッケル磁性合金粉末を金型に充填し、上下のポンチで加圧してグリーン成形体を得る。
【0015】
本発明の第一の態様の製造方法においては、上記のように金属粉末射出成形法又は粉末冶金法を採用して得られたグリーン成形体を水素雰囲気中、1100〜1350℃、好ましくは1250〜1340℃で2〜5時間焼結して、焼結と第一熱処理段階とを同時に実施する。次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理する。このように熱処理を2段階で実施することにより本発明で目的としている最大透磁率に優れた鉄ニッケル磁性合金製品を製造することができる。なお、このような2段階の熱処理が終了した後、必要に応じて、表面を滑らかにするために又は寸法精度を上げるために研磨処理を施してもよい。
【0016】
本発明の第二の態様の製造方法においては、上記のようにして得られたグリーン成形体を焼結して焼結体を得る。この焼結は、従来の金属粉末射出成形法又は粉末冶金法と同様に、不活性あるいは還元性の雰囲気中で、又は真空雰囲気中で実施することができる。この焼結の際の温度、時間の条件は用いている鉄ニッケル磁性合金粉末の種類、平均粒径等によって異なるが、当業者には容易に決定できる事項である。なお、本発明の第二の態様又は第三の態様の製造方法においては、脱バインダー処理と焼結とを同一の炉内で実施することもできる。
【0017】
本発明の第二の態様の製造方法においては、上記のように焼結して得た焼結体を、第一熱処理段階として水素雰囲気中、1100〜1350℃、好ましくは1250〜1340℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理する。このように熱処理を2段階で実施することにより本発明で目的としている最大透磁率に優れた鉄ニッケル磁性合金製品を製造することができる。なお、このような2段階の熱処理を実施する前に又は2段階の熱処理が終了した後、必要に応じて、表面を滑らかにするために又は寸法精度を上げるために研磨処理を施してもよい。
【0018】
また、本発明の第三の態様の製造方法においては、上記のように焼結して得た焼結体を所望に応じて加工し、このようにして得られた加工体を、第一熱処理段階として水素雰囲気中、1100〜1350℃、好ましくは1250〜1340℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理する。なお、ここで言う加工はプレス加工、曲げ加工、切削加工等を含むものであり、加工によっては内部応力が発生するので、そのような場合には内部応力を除去するために第一熱処理段階を焼鈍で行うことが好ましい。このように熱処理を2段階で実施することにより本発明で目的としている最大透磁率に優れた鉄ニッケル磁性合金製品を製造することができる。なお、このような2段階の熱処理を実施する前に又は2段階の熱処理が終了した後、必要に応じて、表面を滑らかにするために又は寸法精度を上げるために研磨処理を施してもよい。
【0019】
本発明の製造方法においては、第一段階の熱処理及び第二段階の熱処理における処理温度及び処理時間が上記の範囲内にあることが好ましい。各段階の熱処理温度が上記の温度範囲よりも高くても低くても本発明で目的としている効果が得られず、また各段階の熱処理時間が上記の時間範囲よりも短い場合には本発明で目的としている効果が得られず、またそれよりも長くてもそれに見合った効果は得られない。
【0020】
本発明の製造方法においては、第一段階の熱処理及び第二段階の熱処理の後の冷却は炉を開放して炉内で自然冷却させても、炉内で徐冷しても、炉外に出して大気中で放置冷却しても、あるいは急冷してもよい。また、第一段階の熱処理温度まで上昇させた後、所定時間の間その温度に維持し、その後第二段階の熱処理温度まで降下させ、所定時間の間その温度に維持し、その後室温まで降下させることがエネルギー効率の面で好ましいが、第一段階の熱処理温度まで上昇させた後、所定時間の間その温度に維持し、その後室温まで冷却させ、その後同じ場所又は別の場所で第二段階の熱処理温度まで上昇させ、所定時間の間その温度に維持し、その後室温まで降下させても、本発明で目的としている効果を得ることができる。
【0021】
【実施例】
以下に、実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1及び比較例1
50%Ni−50%Feからなる平均粒径5μmの鉄ニッケル磁性合金粉末とパラフィンワックスからなる有機バインダーとを加熱混練し、射出成形して厚さ2mm、外径45mm、内径33mmのリングを形成した。このリングを高温、減圧下で脱バインダー処理してグリーン成形体を得た。このグリーン成形体を水素雰囲気の炉内で1300℃で3時間焼結し且つ熱処理し、次いで炉内の温度を500℃に降下させ、水素雰囲気を維持したままで500℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、30000であった。なお、水素雰囲気の炉内で1300℃で3時間焼結し且つ熱処理し、その後室温まで放冷した(即ち、水素雰囲気中、500℃で1.5時間の熱処理を実施しなかった)リングについて最大透磁率(μm )を測定したところ、10000であった。
【0022】
実施例2
粉末冶金法に従って、50%Ni−50%Feからなる平均粒径5μmの鉄ニッケル磁性合金粉末から圧縮成形によって実施例1と同じ形状のリングを形成し、実施例1と同じ条件下で焼結し且つ2段階で熱処理した。得られたリングについて最大透磁率(μm )を測定したところ、31000であった。
【0023】
実施例3及び比較例2
50%Ni−50%Feからなる平均粒径5μmの鉄ニッケル磁性合金粉末とパラフィンワックスからなる有機バインダーとを加熱混練し、射出成形して厚さ2mm、外径45mm、内径33mmのリングを形成した。このリングを高温、減圧下で脱バインダー処理してグリーン成形体を得た。このグリーン成形体を真空雰囲気下1320℃で焼結させ、冷却して焼結体を得た。この焼結体を水素雰囲気の炉内で1300℃で3時間熱処理し、次いで炉内の温度を500℃に降下させ、水素雰囲気を維持したままで500℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、30000であった。なお、水素雰囲気の炉内で1300℃で3時間熱処理し、その後室温まで放冷した(即ち、水素雰囲気中、500℃で1.5時間の熱処理を実施しなかった)リングについて最大透磁率(μm )を測定したところ、10000であった。
【0024】
実施例4
実施例3の場合と同様にして焼結体を作製し、この焼結体を水素雰囲気の炉内で1300℃で3時間熱処理し、次いで炉内の温度を600℃に降下させ、水素雰囲気を維持したままで600℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、30000であった。
【0025】
比較例3
実施例3の場合と同様にして焼結体を作製し、この焼結体を水素雰囲気の炉内で1300℃で3時間熱処理し、次いで炉内の温度を400℃に降下させ、水素雰囲気を維持したままで400℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、10000であった。
【0026】
比較例4
実施例3の場合と同様にして焼結体を作製し、この焼結体を水素雰囲気の炉内で1300℃で3時間熱処理し、次いで炉内の温度を700℃に降下させ、水素雰囲気を維持したままで700℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、23000であった。
【0027】
実施例5
粉末冶金法に従って、50%Ni−50%Feからなる平均粒径5μmの鉄ニッケル磁性合金粉末から圧縮成形によって実施例3と同じ形状のリングを形成し、実施例3と同じ条件下で焼結し、更に実施例3と同じ条件下で2段階で熱処理した。得られたリングについて最大透磁率(μm )を測定したところ、31000であった。
【0028】
実施例6
50%Ni−50%Feからなる平均粒径5μmの鉄ニッケル磁性合金粉末とパラフィンワックスからなる有機バインダーとを加熱混練し、射出成形して厚さ3mmで、45mm×45mmの直方体を形成した。この直方体を高温、減圧下で脱バインダー処理してグリーン成形体を得た。このグリーン成形体を真空雰囲気下1320℃で焼結させ、冷却して焼結体を得た。この焼結体をプレスして厚さを2mmとし、打ち抜きによって厚さ2mm、外径45mm、内径33mmのリングを形成した。このリングを水素雰囲気の炉内で1300℃で3時間熱処理し、次いで炉内の温度を500℃に降下させ、水素雰囲気を維持したままで500℃で1.5時間熱処理した。このリングについて最大透磁率(μm )を測定したところ、30000であった。なお、水素雰囲気の炉内で1300℃で3時間熱処理し、その後室温まで放冷した(即ち、水素雰囲気中、500℃で1.5時間の熱処理を実施しなかった)リングについて最大透磁率(μm )を測定したところ、10000であった。
【0029】
【発明の効果】
本発明の製造方法により、出発原料として鉄ニッケル磁性合金粉末を用い、粉末冶金法又は金属粉末射出成形法を採用して、一層高い最大透磁率の鉄ニッケル磁性合金製品を製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an iron-nickel magnetic alloy product, and more particularly to a method for producing an iron-nickel magnetic alloy product excellent in magnetic properties, particularly maximum permeability, using an iron-nickel magnetic alloy powder as a starting material.
[0002]
[Prior art]
Conventionally, magnetic products are manufactured by various methods such as pouring a melt of a magnetic metal, cutting of the magnetic metal, and pressing. It has also been proposed to produce magnetic products by powder metallurgy using magnetic metal powder or metal injection molding (MIM). For example, Japanese Patent Application Laid-Open No. 6-136404 discloses a method for producing an iron-based soft magnetic material sintered body using a metal powder injection molding method. It is also known to perform heat treatment in a high-temperature hydrogen atmosphere in order to improve the magnetic properties of the iron-nickel magnetic alloy.
[0003]
It can be said that the manufacturing method of the product by the powder metallurgy method and the metal powder injection molding method is generally excellent in economy and mass productivity. However, the sintered body produced by powder metallurgy method or metal powder injection molding method using iron-nickel magnetic alloy powder as a starting material, even if heat-treated in high-temperature hydrogen, depending on the application of the magnetic alloy product, In particular, it is not always satisfactory in terms of the maximum magnetic permeability, and thus there is a demand for magnetic alloy products having a higher maximum magnetic permeability.
[0004]
[Problems to be solved by the invention]
The present invention provides a production method capable of producing a magnetic alloy product having a higher maximum magnetic permeability even when a powder metallurgy method or a metal powder injection molding method is employed using iron nickel magnetic alloy powder as a starting material. It is an issue.
[0005]
[Means for Solving the Problems]
As a result of various investigations to achieve the above-mentioned problems, the present inventors have carried out heat treatment in high-temperature hydrogen in two stages by changing the temperature, and thus have excellent magnetic properties, particularly maximum permeability. The present invention has been completed by finding that an iron-nickel magnetic alloy product can be obtained.
[0006]
That is, in the method for producing an iron-nickel magnetic alloy product according to the first aspect of the present invention, an iron-nickel magnetic alloy powder and an organic binder are heated and kneaded and injection molded to form a molded body, and the injection molded body is removed. The green molded body obtained by the binder treatment or the green molded body obtained by compression molding the iron nickel magnetic alloy powder is sintered at 1100 to 1350 ° C. for 2 to 5 hours in a hydrogen atmosphere, and then the second heat treatment stage The heat treatment is performed at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere.
[0007]
The method for producing an iron-nickel magnetic alloy product according to the second aspect of the present invention comprises heating and kneading iron-nickel magnetic alloy powder and an organic binder, injection molding to form a molded body, and removing the injection molded body. and a binder treatment, the sintered body obtained by sintering, or the iron-nickel magnetic alloy powder compression molding to form a molded body, a sintered body obtained by sintering the compression molded body, a first heat treatment Heat treatment is performed at 1100 to 1350 ° C. for 2 to 5 hours in a hydrogen atmosphere as a step, and then heat treatment is performed at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step.
[0008]
Furthermore, the method for producing an iron-nickel magnetic alloy product according to the third aspect of the present invention comprises heating and kneading an iron-nickel magnetic alloy powder and an organic binder, injection molding to form a molded body, and removing the injection molded body. and a binder treatment, sintering to obtain a sintered body, processed body obtained by processing the sintered body, or the iron-nickel magnetic alloy powder compression molding to form a molded body, sintering the compacts sintered to obtain a sintered body, the processed body obtained by processing the sintered body in a hydrogen atmosphere as a first thermal treatment step, heat treatment 2-5 hours at 1100 to 1350 ° C., and then as a second heat treatment step Heat treatment is performed at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the iron nickel magnetic alloy product of this invention is demonstrated concretely.
The iron-nickel magnetic alloy used in the production method of the present invention is an Fe—Ni alloy generically called permalloy, and generally contains about 35 to 85% Ni. In the production method of the present invention, this iron-nickel magnetic alloy is used as a powder having an average particle size of preferably about 0.5 to 25 μm, more preferably about 2 to 8 μm.
[0010]
When the manufacturing method of the present invention is carried out by adopting a metal powder injection molding method, any organic binder generally used in the metal powder injection molding method can be used, and as such an organic binder Can include paraffin wax and polyolefin polymers such as polyethylene and polypropylene.
[0011]
The heat-kneading of the iron-nickel magnetic alloy powder and the organic binder can also be performed under the conditions generally used in metal powder injection molding, and the heating temperature is determined by the melting point of the organic binder. Any method and apparatus may be used as long as they can be uniformly kneaded, and these are matters that can be easily determined by those skilled in the art.
[0012]
Injection molding of heat-kneaded material of iron-nickel magnetic alloy powder and organic binder can also be performed under the conditions generally used in metal powder injection molding, basically the same as plastic injection molding technology However, it is desirable to appropriately set the injection temperature, the injection speed, the injection pressure, the mold temperature and the like so that a dense injection molded body can be obtained.
[0013]
The binder removal treatment in the case where the production method of the present invention is carried out using a metal powder injection molding method is related to the type of the organic binder used, but in general, a thermal decomposition method (normal pressure, reduced pressure, vacuum, Pressurization) or dissolution method (solvent extraction, heat dissolution, supercritical method) or the like. What debinding process should be adopted is a matter that can be easily determined by those skilled in the art. A green molded body is obtained by such a binder removal treatment.
[0014]
When the production method of the present invention is carried out by employing a powder metallurgy method, for example, an iron-nickel magnetic alloy powder may be used as a lubricant or the like under conditions generally used in the powder metallurgy method. Mix and compression mold. In this compression molding, for example, iron-nickel magnetic alloy powder is filled in a mold and pressed with upper and lower punches to obtain a green molded body.
[0015]
In the production method of the first aspect of the present invention, the green molded body obtained by adopting the metal powder injection molding method or the powder metallurgy method as described above is 1100 to 1350 ° C. in a hydrogen atmosphere, preferably 1250. Sintering is performed at 1340 ° C. for 2 to 5 hours, and the sintering and the first heat treatment stage are simultaneously performed. Next, as a second heat treatment step, heat treatment is performed in a hydrogen atmosphere at 500 to 600 ° C. for 1 to 5 hours. By carrying out the heat treatment in two stages as described above, an iron-nickel magnetic alloy product excellent in maximum magnetic permeability, which is the object of the present invention, can be produced. In addition, after such a two-step heat treatment is completed, a polishing treatment may be performed to smooth the surface or increase the dimensional accuracy as necessary.
[0016]
In the production method of the second aspect of the present invention to obtain a sintered body by sintering the resulting green compact as described above. This sintering can be carried out in an inert or reducing atmosphere or in a vacuum atmosphere as in the conventional metal powder injection molding method or powder metallurgy method. The temperature and time conditions during sintering vary depending on the type of iron-nickel magnetic alloy powder used, the average particle size, and the like, but can be easily determined by those skilled in the art. In addition, in the manufacturing method of the 2nd aspect or 3rd aspect of this invention, a binder removal process and sintering can also be implemented in the same furnace.
[0017]
In the production method according to the second aspect of the present invention, the sintered body obtained by sintering as described above is heated at 1100 to 1350 ° C., preferably 1250 to 1340 ° C. in a hydrogen atmosphere as the first heat treatment stage. Heat treatment for ˜5 hours, and then heat treatment at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step. By carrying out the heat treatment in two stages as described above, an iron-nickel magnetic alloy product excellent in maximum magnetic permeability, which is the object of the present invention, can be produced. In addition, before performing such a two-stage heat treatment or after the completion of the two-stage heat treatment, if necessary, a polishing treatment may be performed to smooth the surface or increase the dimensional accuracy. .
[0018]
Further, in the manufacturing method of the third aspect of the present invention, the sintered body obtained by sintering as described above is processed as desired, and the processed body thus obtained is subjected to the first heat treatment. As a step, heat treatment is performed in a hydrogen atmosphere at 1100 to 1350 ° C., preferably 1250 to 1340 ° C. for 2 to 5 hours, and then as a second heat treatment step, heat treatment is performed in a hydrogen atmosphere at 500 to 600 ° C. for 1 to 5 hours. In addition, the processing mentioned here includes press processing, bending processing, cutting processing, etc., and internal stress is generated depending on the processing. In such a case, the first heat treatment stage is performed in order to remove the internal stress. It is preferable to carry out by annealing. By carrying out the heat treatment in two stages in this way, it is possible to produce an iron-nickel magnetic alloy product excellent in maximum magnetic permeability, which is the object of the present invention. In addition, before performing such a two-stage heat treatment or after the completion of the two-stage heat treatment, if necessary, a polishing treatment may be performed to smooth the surface or increase the dimensional accuracy. .
[0019]
In the production method of the present invention, it is preferable that the treatment temperature and the treatment time in the first stage heat treatment and the second stage heat treatment are in the above ranges. If the heat treatment temperature at each stage is higher or lower than the above temperature range, the intended effect of the present invention cannot be obtained, and if the heat treatment time at each stage is shorter than the above time range, The intended effect cannot be obtained, and even if it is longer than that, an effect commensurate with it cannot be obtained.
[0020]
In the production method of the present invention, the cooling after the first-stage heat treatment and the second-stage heat treatment can be performed by opening the furnace and letting it cool naturally in the furnace, gradually cooling in the furnace, It may be taken out and allowed to cool in the atmosphere or may be cooled rapidly. Also, after raising the temperature to the heat treatment temperature of the first stage, the temperature is maintained for a predetermined time, and then lowered to the heat treatment temperature of the second stage, maintained at the temperature for a predetermined time, and then lowered to room temperature. It is preferable in terms of energy efficiency, but after raising to the heat treatment temperature of the first stage, it is maintained at that temperature for a predetermined time, then cooled to room temperature, and then the second stage at the same place or another place. Even if the temperature is raised to the heat treatment temperature, maintained at that temperature for a predetermined time, and then lowered to room temperature, the intended effect of the present invention can be obtained.
[0021]
【Example】
Hereinafter, the present invention will be described in detail based on examples and comparative examples.
Example 1 and Comparative Example 1
An iron-nickel magnetic alloy powder having an average particle diameter of 5 μm made of 50% Ni-50% Fe and an organic binder made of paraffin wax are heat-kneaded and injection-molded to form a ring having a thickness of 2 mm, an outer diameter of 45 mm, and an inner diameter of 33 mm. did. This ring was subjected to binder removal treatment at high temperature and reduced pressure to obtain a green molded body. The green compact was sintered and heat treated at 1300 ° C. for 3 hours in a hydrogen atmosphere furnace, then the furnace temperature was lowered to 500 ° C., and the heat treatment was performed at 500 ° C. for 1.5 hours while maintaining the hydrogen atmosphere. did. The maximum magnetic permeability (μm) of this ring was measured and found to be 30000. Regarding a ring that was sintered in a hydrogen atmosphere furnace at 1300 ° C. for 3 hours and heat-treated, and then allowed to cool to room temperature (that is, heat treatment was not performed at 500 ° C. for 1.5 hours in a hydrogen atmosphere). The maximum magnetic permeability (μm) was measured and found to be 10,000.
[0022]
Example 2
According to the powder metallurgy method, a ring having the same shape as that of Example 1 is formed by compression molding from iron nickel magnetic alloy powder having an average particle diameter of 5 μm made of 50% Ni-50% Fe, and sintered under the same conditions as in Example 1. And heat-treated in two stages. When the maximum permeability (μm) of the obtained ring was measured, it was 31000.
[0023]
Example 3 and Comparative Example 2
An iron-nickel magnetic alloy powder having an average particle diameter of 5 μm made of 50% Ni-50% Fe and an organic binder made of paraffin wax are heat-kneaded and injection-molded to form a ring having a thickness of 2 mm, an outer diameter of 45 mm, and an inner diameter of 33 mm. did. This ring was subjected to binder removal treatment at high temperature and reduced pressure to obtain a green molded body. The green molded body was sintered at 1320 ° C. in a vacuum atmosphere and cooled to obtain a sintered body. This sintered body was heat-treated at 1300 ° C. for 3 hours in a furnace in a hydrogen atmosphere, then the temperature in the furnace was lowered to 500 ° C. and heat-treated at 500 ° C. for 1.5 hours while maintaining the hydrogen atmosphere. Measurement of the maximum magnetic permeability (mu m) of this ring, was 30,000. It should be noted that the maximum magnetic permeability (for a ring that was heat-treated at 1300 ° C. for 3 hours in a furnace in a hydrogen atmosphere and then allowed to cool to room temperature (that is, heat treatment was not performed for 1.5 hours at 500 ° C. in a hydrogen atmosphere) μ m ) was measured and found to be 10,000.
[0024]
Example 4
A sintered body was produced in the same manner as in Example 3, and this sintered body was heat-treated in a hydrogen atmosphere furnace at 1300 ° C. for 3 hours, and then the furnace temperature was lowered to 600 ° C. While being maintained, heat treatment was performed at 600 ° C. for 1.5 hours. Measurement of the maximum magnetic permeability (mu m) of this ring, was 30,000.
[0025]
Comparative Example 3
A sintered body was produced in the same manner as in Example 3, and this sintered body was heat-treated at 1300 ° C. for 3 hours in a hydrogen atmosphere furnace, and then the temperature in the furnace was lowered to 400 ° C. While maintaining, heat treatment was performed at 400 ° C. for 1.5 hours. Measurement of the maximum permeability (μ m) for this ring, was 10,000.
[0026]
Comparative Example 4
A sintered body was produced in the same manner as in Example 3, and this sintered body was heat-treated at 1300 ° C. for 3 hours in a hydrogen atmosphere furnace, and then the temperature in the furnace was lowered to 700 ° C. While being maintained, heat treatment was performed at 700 ° C. for 1.5 hours. Measurement of the maximum magnetic permeability (mu m) of this ring, 23,000.
[0027]
Example 5
According to the powder metallurgy method, a ring having the same shape as in Example 3 is formed from iron-nickel magnetic alloy powder composed of 50% Ni-50% Fe and having an average particle diameter of 5 μm by compression molding, and sintered under the same conditions as in Example 3. Further, heat treatment was performed in two stages under the same conditions as in Example 3. When the maximum permeability (μm) of the obtained ring was measured, it was 31000.
[0028]
Example 6
An iron-nickel magnetic alloy powder having an average particle diameter of 5 μm made of 50% Ni-50% Fe and an organic binder made of paraffin wax were heat-kneaded and injection molded to form a rectangular parallelepiped having a thickness of 3 mm and a size of 45 mm × 45 mm. The cuboid was debindered at high temperature and reduced pressure to obtain a green molded body. The green molded body was sintered at 1320 ° C. in a vacuum atmosphere and cooled to obtain a sintered body. The sintered body was pressed to a thickness of 2 mm, and a ring having a thickness of 2 mm, an outer diameter of 45 mm, and an inner diameter of 33 mm was formed by punching. This ring was heat-treated at 1300 ° C. for 3 hours in a furnace in a hydrogen atmosphere, and then the temperature in the furnace was lowered to 500 ° C. and heat-treated at 500 ° C. for 1.5 hours while maintaining the hydrogen atmosphere. Measurement of the maximum magnetic permeability (mu m) of this ring, was 30,000. It should be noted that the maximum magnetic permeability (for a ring that was heat-treated at 1300 ° C. for 3 hours in a furnace in a hydrogen atmosphere and then allowed to cool to room temperature (that is, heat treatment was not performed for 1.5 hours at 500 ° C. in a hydrogen atmosphere) μ m ) was measured and found to be 10,000.
[0029]
【The invention's effect】
According to the production method of the present invention, an iron nickel magnetic alloy powder having a higher maximum magnetic permeability can be produced by using iron nickel magnetic alloy powder as a starting material and employing a powder metallurgy method or a metal powder injection molding method.

Claims (8)

鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理して得られるグリーン成形体を水素雰囲気中、1100〜1350℃で2〜5時間焼結し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。An iron-nickel magnetic alloy powder and an organic binder are heated and kneaded, injection molded to form a molded body, and the green molded body obtained by debinding the injection molded body is heated at 1100 to 1350 ° C. in a hydrogen atmosphere. A method for producing an iron-nickel magnetic alloy product comprising: sintering for -5 hours, and then heat-treating in a hydrogen atmosphere at 500-600 ° C. for 1-5 hours as a second heat treatment step. 鉄ニッケル磁性合金粉末を圧縮成形して得られるグリーン成形体を水素雰囲気中、1100〜1350℃で2〜5時間焼結し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。A green molded body obtained by compression-molding iron-nickel magnetic alloy powder is sintered in a hydrogen atmosphere at 1100 to 1350 ° C. for 2 to 5 hours, and then as a second heat treatment step in a hydrogen atmosphere at 500 to 600 ° C. A method for producing an iron-nickel magnetic alloy product characterized by heat-treating for 5 hours. グリーン成形体を水素雰囲気中、1250〜1340℃で2〜5時間焼結することを特徴とする請求項1又は2記載の鉄ニッケル磁性合金製品の製造方法。The method for producing an iron-nickel magnetic alloy product according to claim 1 or 2, wherein the green compact is sintered at 1250 to 1340 ° C for 2 to 5 hours in a hydrogen atmosphere. 鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理し、焼結して得られる焼結体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。The iron-nickel magnetic alloy powder and an organic binder by heating and kneading, injection molded to form a molded body, and debinding the injection-molded body, a sintered body obtained by sintering, as a first heat treatment step Heat treatment at 1100 to 1350 ° C. for 2 to 5 hours in a hydrogen atmosphere, and then heat treatment at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step . 鉄ニッケル磁性合金粉末を圧縮成形して成形体を形成し、該圧縮成形体を焼結して得られる焼結体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。An iron-nickel magnetic alloy powder is compression-molded to form a compact, and the sintered compact obtained by sintering the compact is subjected to a first heat treatment stage in a hydrogen atmosphere at 1100 to 1350 ° C. for 2 to 5 hours. A method for producing an iron-nickel magnetic alloy product comprising heat-treating and then heat-treating at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step. 鉄ニッケル磁性合金粉末と有機バインダーとを加熱混練し、射出成形して成形体を形成し、該射出成形体を脱バインダー処理し、焼結して焼結体を得、該焼結体を加工して得られる加工体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。The iron-nickel magnetic alloy powder and an organic binder by heating and kneading, injection molded to form a molded body, and debinding the injection-molded article to obtain a sintered body by sintering, machining the sintered body The processed body is heat-treated at 1100 to 1350 ° C. for 2 to 5 hours in a hydrogen atmosphere as a first heat treatment step, and then heat treated at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step. A method for producing an iron-nickel magnetic alloy product. 鉄ニッケル磁性合金粉末を圧縮成形して成形体を形成し、該圧縮成形体を焼結して焼結体を得、該焼結体を加工して得られる加工体を、第一熱処理段階として水素雰囲気中、1100〜1350℃で2〜5時間熱処理し、次いで第二熱処理段階として水素雰囲気中、500〜600℃で1〜5時間熱処理することを特徴とする鉄ニッケル磁性合金製品の製造方法。The iron-nickel magnetic alloy powder compression molding to form a molded body, the compression molded body was sintered to obtain a sintered body, the processed body obtained by processing the sintered body, as the first heat treatment step Heat treatment at 1100 to 1350 ° C. for 2 to 5 hours in a hydrogen atmosphere, and then heat treatment at 500 to 600 ° C. for 1 to 5 hours in a hydrogen atmosphere as a second heat treatment step . 第一熱処理段階として水素雰囲気中、1250〜1340℃で2〜5時間熱処理することを特徴とする請求項4〜7の何れかに記載の鉄ニッケル磁性合金製品の製造方法。  The method for producing an iron-nickel magnetic alloy product according to any one of claims 4 to 7, wherein heat treatment is performed in a hydrogen atmosphere at 1250 to 1340 ° C for 2 to 5 hours as a first heat treatment step.
JP2000026017A 2000-02-03 2000-02-03 Manufacturing method of iron-nickel magnetic alloy products Expired - Fee Related JP4353489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026017A JP4353489B2 (en) 2000-02-03 2000-02-03 Manufacturing method of iron-nickel magnetic alloy products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026017A JP4353489B2 (en) 2000-02-03 2000-02-03 Manufacturing method of iron-nickel magnetic alloy products

Publications (2)

Publication Number Publication Date
JP2001220601A JP2001220601A (en) 2001-08-14
JP4353489B2 true JP4353489B2 (en) 2009-10-28

Family

ID=18551798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026017A Expired - Fee Related JP4353489B2 (en) 2000-02-03 2000-02-03 Manufacturing method of iron-nickel magnetic alloy products

Country Status (1)

Country Link
JP (1) JP4353489B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101661602B1 (en) * 2015-04-30 2016-09-30 (주)창성 Method for manufacturing soft magnetic yoke
KR101661604B1 (en) * 2015-04-30 2016-09-30 (주)창성 Soft magnetic yoke
CN110459398A (en) * 2019-08-27 2019-11-15 江苏精研科技股份有限公司 A kind of MIM- iron nickel magnetic property of soft magnetic material treatment process

Also Published As

Publication number Publication date
JP2001220601A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP4134111B2 (en) Method for producing insulating soft magnetic metal powder compact
US20080075619A1 (en) Method for making molybdenum parts using metal injection molding
CN106964777A (en) The method and apparatus for producing heat distortion magnet
JP4353489B2 (en) Manufacturing method of iron-nickel magnetic alloy products
JP6472640B2 (en) Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof
CN105312574A (en) Manufacturing method for sintered compact
JP6463852B2 (en) Mold and method for forming permanent magnet with preform, and thermal deformation system
CN113560573A (en) Surface treatment method for metal powder injection molding pre-sintering blank
KR0159651B1 (en) Method for manufacturing a magnet made from anisotropic rare earth
JPH0892605A (en) Core for injection-molding sintered article and production of sintered article using the core
CN105525260A (en) Production methods of Mo target blank and Mo target material
EP2981977A1 (en) Method of production rare-earth magnet
JPH07242916A (en) Production of sintered body
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH046811A (en) Device for manufacturing rare earth element magnet
KR100477941B1 (en) Fabrication method of chrome carbide based ceramics
JP2588008B2 (en) Manufacturing method of mold material for mold
JP4127599B2 (en) Sintered body manufacturing method and sintered body and magnetostrictive material manufactured thereby
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JP2005002427A (en) Method of producing soft magnetic material
KR20090050160A (en) Process for producing cobalt-based sintered materials
CN108242334A (en) The manufacturing method of rare-earth magnet
JPH0362507A (en) Manufacture of anisotropic rare earth magnet
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees