JPS63303017A - Production of w-ti alloy target - Google Patents

Production of w-ti alloy target

Info

Publication number
JPS63303017A
JPS63303017A JP13771087A JP13771087A JPS63303017A JP S63303017 A JPS63303017 A JP S63303017A JP 13771087 A JP13771087 A JP 13771087A JP 13771087 A JP13771087 A JP 13771087A JP S63303017 A JPS63303017 A JP S63303017A
Authority
JP
Japan
Prior art keywords
powder
oxygen content
alloy target
titanium
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13771087A
Other languages
Japanese (ja)
Other versions
JPH05452B2 (en
Inventor
Susumu Sawada
沢田 進
Yoshitaka Sumiya
角谷 嘉隆
Yoshiharu Kato
義春 加藤
Osamu Kanano
治 叶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP13771087A priority Critical patent/JPS63303017A/en
Publication of JPS63303017A publication Critical patent/JPS63303017A/en
Publication of JPH05452B2 publication Critical patent/JPH05452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a W-Ti alloy target reducing oxygen content by mixing high purity W powder and TiH2 powder produced from high purity Ti and after that, hot-pressing after or while de-hydrogenizing. CONSTITUTION:The W powder and the TiH2 powder are mixed at the prescribed ratio. The above W powder is suitable to use high purity one having >=about 5N of about 200ppm level of oxygen content. On the other hand, the TiH2 powder is desirable to produce, by cutting an ingot obtd. by melting a high purity sponge titanium with electron beam with a lathe and crushing the obtd. turnings after hydrogenized under heating at about 300-500 deg.C in Ar+H2 gas stream. These produced mixing materials are hot-pressed after or while de-hydrogenizing t about 600-700 deg.C. By this method, the W-Ti alloy target having 350-800ppm oxygen content and preventing obstacle at the time of spattering, is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、W−T1合金ターゲットに関するものであシ
、特には酸素含有1tを低減した半導体デバイス用W−
T1合金ターゲットに関する。本ターゲツ)Kよって、
ICデバイスにおける絶縁バリアーとして使用されるW
−T1合金皮膜の形成が、従来よシ酸素含有量を低減し
たターゲットを使用して作製可能となり、ICデバイス
の信頼性を高めることが出来る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a W-T1 alloy target, particularly a W-T1 alloy target with a reduced oxygen content of 1t for semiconductor devices.
Regarding T1 alloy target. This target) According to K,
W used as insulation barrier in IC devices
The -T1 alloy film can be formed using a target with a lower oxygen content than in the past, and the reliability of IC devices can be improved.

従来技術とその問題点 ICデバイスにおける絶縁バリアーとしてW−T1  
合金製皮膜を使用することは知られている。
Conventional technology and its problems W-T1 as an insulation barrier in IC devices
It is known to use alloy coatings.

例えば、W−10wt*T1合金ターゲットを用いてN
鵞  雰囲気での反応性スパッタリングを利用して絶縁
バリアーを形成することが報告されている。
For example, using a W-10wt*T1 alloy target, N
It has been reported that reactive sputtering in an atmosphere can be used to form an insulating barrier.

ζうしたW−T1合金ターゲットは、W粉末とT1粉末
とを混合して、粉末冶金法によ〕、即ち冷間プレス後焼
結するか或いは熱間プレスすることにより製造されてい
る。出発原料となる市販T1粉末は酸素含有量が高い。
The W-T1 alloy target is manufactured by mixing W powder and T1 powder and performing cold pressing and sintering, or hot pressing. The commercially available T1 powder used as the starting material has a high oxygen content.

これは、T1は非常に活性であるため酸化し易く、表面
に不可避的に酸化膜ができるためであシ、*m+積の大
きな粉末の場合には総酸素量はきわめて高くなる0この
ような高酸素T1粉末を原料粉末として用い粉末冶金法
によジターゲットを生成する場合、ターゲットもやはシ
酸素含有量の多いものしかできない0酸素含有量の多い
ターゲットを用いてスパッタリングを行うと、酸素の放
離によ)、ターゲットの割れ、生成皮膜の酸化、皮膜品
質のバラツキ等が生じて好ましくない。
This is because T1 is very active and easily oxidized, which inevitably forms an oxide film on the surface. If the powder has a large *m+ product, the total oxygen content will be extremely high. When a ditarget is produced by powder metallurgy using high oxygen T1 powder as a raw material powder, the target has a high oxygen content.If sputtering is performed using a target with a high oxygen content, release), cracking of the target, oxidation of the formed film, variation in film quality, etc. occur, which is undesirable.

例えば、現在市販されているw−’riり〒ゲットは最
低限で、も1240 ppmの酸素を含み、多くは25
00 ppm乃至それ以上の酸素を含み、これでは高品
質の絶縁バリアー等の作成はできない。
For example, currently commercially available w-'ri rigets contain a minimum of 1240 ppm of oxygen, and many contain 25 ppm of oxygen.
It contains 0.00 ppm or more of oxygen, and with this it is impossible to create a high quality insulation barrier.

発明の概要 とうし九斯界の実情KI!み、本発明者は、酸素含有量
を低減したW−Ti合金ターゲットの製造を目的として
、新たな製造方法の開発に取組んだ。
Outline of the invention The actual situation in the Toushi Kyushu world KI! Therefore, the present inventor worked on the development of a new manufacturing method for the purpose of manufacturing a W-Ti alloy target with reduced oxygen content.

前述した通シ、TIは、非常に活性であるなめ、T1 
 粉末を調製する粉砕等の工程でまたW粉末と混合して
成形−焼結する工程で酸素を多量にピックアップする。
As previously mentioned, TI is highly active, T1
A large amount of oxygen is picked up during the pulverization process for preparing the powder, and during the molding and sintering process after mixing with the W powder.

そこで、本発明者等は、T1源として水素化チタン(T
I H,)粉末を用い、後に脱水素することを想到した
0水素化チタンを用いることのメリットは、酸化防止に
効果的であるのみならず、その喪好な粉砕性によシ酸素
ピックアップ量が減することにある。更に、脱水素の過
程で粉末の活性化効果も得られる。試行の結果、従来品
よシ酸素含有量の大巾な低減に成功した。
Therefore, the present inventors investigated titanium hydride (T) as a T1 source.
The advantage of using 0-hydrogenated titanium, which is designed to be dehydrogenated later, is that it is not only effective in preventing oxidation, but also reduces the amount of oxygen pick-up due to its favorable grindability. is to decrease. Furthermore, an activation effect of the powder can be obtained during the dehydrogenation process. As a result of trials, we succeeded in significantly reducing the oxygen content compared to conventional products.

上記の知見に基いて、本発明は、タングステン(W)と
水素化チタン(TIHs)粉末とを混合し、生成混合粉
を脱水素後或いは脱水素しつつホットプレスすることを
特徴とするタングステン(W)−チタン(TI)合金タ
ーゲットの製造方法及び低酸素含有量(s 50〜80
0 ppm)のW−T1合金ターゲットを提供する。
Based on the above findings, the present invention provides tungsten (W) and titanium hydride (TIHs) powder, which is characterized by mixing tungsten (W) and titanium hydride (TIHs) powder, and hot pressing the resulting mixed powder after or while dehydrogenating. W)-Titanium (TI) alloy target manufacturing method and low oxygen content (s 50-80
0 ppm) W-T1 alloy target.

発明の詳細な説明 W−Ti合金ターゲットは、T1を10〜20vrtチ
含有するW−T1合金製の、スパッタリング目的のター
ゲットである。ICデバイスの絶縁バリアー皮膜形成目
的で上記T1含有量をとシうるが、代表的には10wt
’j 前後の’rI t−含有するW−’l’1合金が
使用されている。
DETAILED DESCRIPTION OF THE INVENTION A W-Ti alloy target is a target made of a W-T1 alloy containing 10 to 20 vrt of T1 for sputtering purposes. The above T1 content can be reduced for the purpose of forming an insulation barrier film for IC devices, but typically it is 10wt.
A W-'l'1 alloy containing 'rI t- around 'j' is used.

本発明は、高純度W粉末と高純度TIM、粉末の混合粉
を使用することを基本とする。
The present invention is based on the use of a mixed powder of high-purity W powder, high-purity TIM powder, and powder.

TI H,粉末は高純度TI粉を水素化するととKよシ
生成される。高純度TI扮を得る好ましい方法の一つは
、純度99.9?wt−以上のスポンジチタンをエレク
トロンビーム(EB)溶解し、生成EBインゴットから
切削によってT1切粉を生成し、これを酸洗等によシ表
面浄化することである。
TI H powder is produced when high purity TI powder is hydrogenated. One of the preferred methods to obtain high purity TI filtrate is purity 99.9? The method involves melting sponge titanium of wt- or higher using electron beam (EB), cutting the produced EB ingot to produce T1 chips, and surface-purifying the chips by pickling or the like.

この方法によシ400〜500 ppm酸素含有量の高
純度Ti切粉が入手しうる(F・< 10 ppm )
By this method, high purity Ti chips with an oxygen content of 400-500 ppm can be obtained (F < 10 ppm).
.

切削は、ボール盤、セーバー、旋盤等の工作機械の任意
のものを用いて為しうるが、生産性、切粉の厚みの均−
性等の観点から旋盤の使用が好ましい。切粉の厚さは、
酸素量をなるたけ増さずに後の水素化工程が適度に進行
しうるよう2m以下とするのが好ましい。更に、厚さが
大きすぎると切粉を切削しにくくなることも厚さを2−
以下とする別の理由である。厚さの下限は、かさ密度増
加、による取扱い体積の増加を考慮して(105■厚程
度とすることが推奨される。好ましい態様は、a1■±
40’1g程度に厚さを揃えることである。
Cutting can be done using any machine tool such as a drill press, saver, lathe, etc., but productivity and uniformity of the thickness of the chips are important.
It is preferable to use a lathe from the viewpoint of performance etc. The thickness of the chips is
The length is preferably 2 m or less so that the subsequent hydrogenation step can proceed appropriately without increasing the amount of oxygen. Furthermore, if the thickness is too large, it will be difficult to cut chips.
This is another reason as follows. The lower limit of the thickness is recommended to be about 105cm thick, considering the increase in handling volume due to the increase in bulk density.The preferred embodiment is a1cm±
The thickness should be about 40'1g.

表面浄化は、切削時のF・汚染、酸化汚染等を除くため
塩酸、硫酸等の好ましくはBLB等級以上の@を用いて
の酸洗や脱脂によシもたらされる。
Surface purification is achieved by pickling and degreasing using hydrochloric acid, sulfuric acid, etc., preferably BLB grade or higher, to remove F contamination, oxidation contamination, etc. during cutting.

陶、EB溶解後のインゴットは、Mg%CI等の不純物
は除去精製されるが、Fe及び0意品位はほとんど変化
しないので、なるたけ高純度のスポンジチタンを使うこ
とが肝要である。
The ingot after melting the ceramic and EB is purified to remove impurities such as Mg%CI, but the Fe and O2 grades hardly change, so it is important to use sponge titanium with as high purity as possible.

出発チタン粉末は、上記のようなEB溶解−切削方法に
限定されるものでないことは云うまでも危く、例えばス
ポンジチタンの精製及びその粉砕、市販チタン粉末の精
製といった方法も採用しうる。
It goes without saying that the starting titanium powder is not limited to the EB melting-cutting method as described above; for example, methods such as refining and pulverizing titanium sponge or refining commercially available titanium powder may also be employed.

こうして得られた高純度Tl粉末(切粉)の水素化はA
r + H漏気流中で300〜500℃の昇温下で適宜
の時間、例えば1〜5時間保持することによりもたらさ
れる。水素化は急激な水素吸収のため炉内が負圧となっ
て危険であシ、注意?:要するが、不活性ガス、%K 
Ar + H!気流を流すことによシ急激な反応が有効
に防止できて好都合である。
Hydrogenation of the high-purity Tl powder (cuttings) obtained in this way is A.
by holding at an elevated temperature of 300-500° C. for a suitable period of time, for example 1-5 hours, in an r + H leakage stream. Hydrogenation is dangerous because of the sudden hydrogen absorption, which creates negative pressure inside the furnace, so be careful! : Required, inert gas, %K
Ar+H! It is advantageous that a sudden reaction can be effectively prevented by flowing an air current.

30〜60チAr + 40〜70 % H!気流が使
用できる。生成する切粉状のTiH,l不活性雰囲気(
人r)中で粉砕することによ)所15i 07L H,
粉末が得られる。粉砕は、F・及び0!汚染を抑制する
ためAr中Moライニングボールミルを使用して実施す
ることが推奨される。別様にはArグラブボックス内で
Mo製の乳棒及び乳鉢を用いて行なわれる。粉砕容器も
非汚染性2イニングを施したものを使用すべきである。
30-60 Chi Ar + 40-70% H! Airflow is available. The generated chips of TiH, l inert atmosphere (
15i 07L H,
A powder is obtained. Grinding is F and 0! It is recommended to use a Mo-lined ball mill in Ar to reduce contamination. Alternatively, it is carried out using a Mo pestle and mortar in an Ar glove box. The crushing container should also be treated with two innings of non-contaminating material.

粉砕工程を比較的活性の少ない且つ粉砕性の良好なTi
 H,を用いて実施することが酸素ピックアップを最小
限とする点で大きなメリットを与える。
The grinding process is carried out using Ti, which has relatively little activity and has good grindability.
Practicing with H, provides a significant advantage in minimizing oxygen pickup.

他方、W粉末は、最近アルカリ金属含有率が100 p
pb以下そして放射性元素含有率が1ppb以下の5N
以上の高純度のものf:v!4製する技術が確立されて
いる。これは、従来からの一般市販W或いはその化合物
音溶解して水溶it−生成し、該水溶液を精製した後W
結晶を晶出させ、該結晶を固液分離、洗浄及び乾燥した
後に加熱還元することによって高純度W粉末を調製する
ものである。
On the other hand, W powder has recently been developed with an alkali metal content of 100 p.
5N with pb or less and radioactive element content less than 1 ppb
Those with higher purity f:v! 4 technology has been established. This is a conventional general commercially available W or its compound sonodissolved to form a water-soluble it- solution, and after the aqueous solution is purified, W
High-purity W powder is prepared by crystallizing crystals, solid-liquid separation, washing, drying, and then heating reduction.

更に、これら粉末に再溶解等の精製処理を施すことによ
って更に高純度のW粉末を得ることができる。酸素含有
量は200 ppmの水準にある。
Further, by subjecting these powders to purification treatment such as re-dissolution, even higher purity W powder can be obtained. The oxygen content is at the level of 200 ppm.

以上のようなTi H,粉末とW粉末とが、目標ターゲ
ット組成に応じた然るべき比率で混合される。
The TiH powder and W powder as described above are mixed in an appropriate ratio depending on the target target composition.

混合は例えばV形ミキサを用いることによシ実施される
6 Arのような不活性ガス雰囲気中で行うことが望ま
しい。しかし、若干の酸素ピックアップが起ることは避
けられない。
Mixing is preferably carried out in an inert gas atmosphere such as 6 Ar, for example by using a V-mixer. However, it is inevitable that some oxygen pickup will occur.

混合物線次いで脱水素処理される。これは、Ti as
→Tl+H意の反応に基く〇一般に600〜700℃の
温度において真空中又は不活性ガス中で脱水素処理は実
施される。発生する水素は、粉末表面に還元作用を及は
し、表面の活性化に寄与する。脱水素すると、0!含有
量が400〜600ppm (W−10wt% Tlの
場合)1でどうしても増大する@ 脱水素後の混合粉はホットプレスによシ成形され高密度
化される。ホットプレス条件は例えば次の通シである: 温度:1200〜1500℃、好ましくは1200〜1
400 ℃ 温度が低いと密度が上らず、逆に温度が高いと酸素量が
増加する。
The mixture line is then dehydrogenated. This is Ti as
→Based on the reaction Tl+H 〇 Dehydrogenation treatment is generally carried out at a temperature of 600 to 700°C in vacuum or in an inert gas. The generated hydrogen exerts a reducing action on the powder surface and contributes to surface activation. When dehydrogenated, 0! The content inevitably increases when the content is 400 to 600 ppm (in the case of W-10 wt% Tl) @ The mixed powder after dehydrogenation is molded by hot press and densified. Hot press conditions are, for example, as follows: Temperature: 1200-1500°C, preferably 1200-1
400°C If the temperature is low, the density does not increase, and conversely, if the temperature is high, the amount of oxygen increases.

圧カニ 250 K17cm”以上 プレス圧は使用するダイスの耐力によって決定され、高
耐力のものが使用しうる場合には高いプレス圧を採用す
る。
Pressure crab 250 K17cm" or more The press pressure is determined by the proof strength of the die used, and if a die with high proof strength can be used, a high press pressure is adopted.

時間:30分〜2時間 プレス温度及び圧力に応じて適宜決定されるが、プレス
変位がなくなることが一つのめやすである。その後、ホ
ールドしてもよい0 雰囲気:真空(↑0−’ Torr )別法として、上
記のように脱水素とホットプレスとを別々に行なう替D
K、同時に同じ設備を使用しても実施可能である。先ず
、W + Ti Hs混合金粉末ダイケースに充填し、
10−’ Torr  水準にまで真空引きして昇温す
る。600〜700℃で発生水素のために真空圧力が上
昇する。発生水素を完全に排気するよう排気に充分時間
をかけることが必要である。ダイス内から水素の抜出し
を助成する為、ガス抜き口等の配備も可能である。圧力
が再び10”’ Tqrr  の水準に復帰してから通
常のホットプレス操作を行なう。
Time: 30 minutes to 2 hours It is determined as appropriate depending on the press temperature and pressure, but one guideline is that there is no press displacement. After that, it may be held.0 Atmosphere: Vacuum (↑0-' Torr) Alternatively, dehydrogenation and hot pressing may be performed separately as described above.
K. It is possible to carry out the same process at the same time using the same equipment. First, W + Ti Hs mixed gold powder was filled into a die case,
Evacuate to a level of 10-' Torr and raise the temperature. At 600-700°C the vacuum pressure increases due to the hydrogen generated. It is necessary to allow sufficient time for exhaust to completely exhaust the generated hydrogen. It is also possible to provide a gas vent, etc. to assist in extracting hydrogen from within the die. After the pressure has returned to a level of 10"' Tqrr, a normal hot pressing operation is carried out.

後者の同時法の方が01含有量を一層低減しうるが、反
面水素に伴う危険性が潜在するので注意を要する。ヒー
タもH,との反志性を考慮してグツファイトヒータ等を
採用せねばならない。
The latter simultaneous method can further reduce the 01 content, but caution is required since there is a potential danger associated with hydrogen. As for the heater, it is necessary to adopt a gutsphite heater or the like, taking into account the anti-resistance with H.

こうして、W−10wt%TI  合金の場合、脱水素
とホットプレスを別々に行なう場合で500〜700 
ppm 01含有量そして同時に行なう場合で200〜
400 ppm O!含有量のホットプレス焼結体が得
られる。これを適宜機械加工することによジターゲット
が得られる。
Thus, in the case of W-10 wt% TI alloy, when dehydrogenation and hot pressing are performed separately,
ppm 01 content and 200~ when done simultaneously
400 ppm O! A hot-pressed sintered body with a high content is obtained. By appropriately machining this, a ditarget can be obtained.

本方法によるターゲットは、1240〜2500ppm
の酸素含有量を有する従来ターゲットに較べ、800 
ppm以下、代表的に350〜700 ppmへと大巾
に低減された酸素含有量のものである。
The target according to this method is 1240 to 2500 ppm.
Compared to a conventional target with an oxygen content of 800
The oxygen content is greatly reduced below ppm, typically 350-700 ppm.

発明の効果 W−T1合金ターゲットの酸素含有量の低減化に成功し
、酸素に伴うスパッタリング時の障害を軽減若しくは排
除し、高品質の皮!iXを高い信頼性の下で形成するこ
とを可能ならしめる。
Effects of the invention We succeeded in reducing the oxygen content of the W-T1 alloy target, reducing or eliminating oxygen-related obstacles during sputtering, and producing high-quality skin! It is possible to form iX with high reliability.

実施例 エレクトロンビーム溶解T1インゴットを旋盤によりQ
l−厚さに切削して得られ九Tl切粉をAr50%+H
*50%気流中400℃で3 hr 保持し、生成Ti
 H,切粉f:Ar中で粉砕してTi H,粉末全生成
した。
Example Electron beam melted T1 ingot was Q
Ar50%+H
*Holded at 400℃ in 50% air flow for 3 hr to generate Ti
H, chips f: Grinded in Ar to produce TiH powder.

上記Ti H,粉末1040fとW粉末9000fをV
型混合器で混合し、混合粉末を真空加熱炉へ装入した。
The above TiH powder 1040f and W powder 9000f are
The mixture was mixed in a mold mixer, and the mixed powder was charged into a vacuum heating furnace.

10”” Torr  台まで真空排気後加熱したとこ
ろ400℃程度から炉内圧力は2 Torr  まで高
くなったが680℃で2.5hr  保持すると再び炉
内は10”’ Torr  台まで低くなった。冷却後
炉から取シ出し、粉末8721ft内径2.86φのダ
イスに充填し、1250℃X 300 K4/ex” 
Xα5 hr  の条件でホットプレスした。でき上っ
たターゲットは、密度99.9%、酸素含有i 700
ppmであった0 比較例 市販の〒1粉末1000fとW粉末9000fをV型混
合器で混合し、ホットプレス用ダイスに充填した。ホッ
トプレスの条件111250℃×S OOKp15@I
 Xα5 hr  と来施例と同様とした。
When the furnace was evacuated to the 10'' Torr level and then heated, the pressure inside the furnace rose to 2 Torr from around 400°C, but after being held at 680°C for 2.5 hours, the pressure in the furnace dropped to the 10'' Torr level again. Cooling. Take out the powder from the after-furnace, fill it into a die with 8721ft of powder and an inner diameter of 2.86φ, and heat it at 1250°C x 300 K4/ex”
Hot pressing was carried out under the conditions of Xα5 hr. The finished target has a density of 99.9% and an oxygen content of 700
ppm was 0.Comparative Example 1000f of commercially available 〒1 powder and 9000f of W powder were mixed in a V-type mixer and filled into a hot press die. Hot press conditions 111250℃×S OOKp15@I
Xα5 hr was the same as in the next example.

密度は99.9チであったが酸素含有量は1500pp
mであったO 同  風間弘志゛3 ゛・ヲ
The density was 99.9 inches, but the oxygen content was 1500pp.
M was O Same Hiroshi Kazama゛゛3 ゛・wo

Claims (1)

【特許請求の範囲】 1)タングステン(W)粉末と水素化チタン(TiH_
2)粉末とを混合し、生成混合粉を脱水素後或いは脱水
素しつつホットプレスすることを特徴とするタングステ
ン(W)−チタン(Ti)合金ターゲットの製造方法。 2)水素化チタン粉末が高純度チタンのエレクトロンビ
ーム溶解インゴットを切削して得られる切粉を(Ar+
H_2)気流中で加熱して水素化しその後粉砕すること
により生成される特許請求の範囲第1項記載の方法。 3)酸素含有量が350〜800ppmであることを特
徴とするタングステン(W)−チタン(Ti)合金ター
ゲット。
[Claims] 1) Tungsten (W) powder and titanium hydride (TiH_
2) A method for producing a tungsten (W)-titanium (Ti) alloy target, which comprises mixing the tungsten (W)-titanium (Ti) alloy target with powder and hot pressing the resulting mixed powder after dehydrogenating or while dehydrogenating. 2) Titanium hydride powder cuts chips obtained by cutting an electron beam melted ingot of high purity titanium (Ar+
H_2) The method according to claim 1, which is produced by heating in an air stream to hydrogenate and then pulverizing. 3) A tungsten (W)-titanium (Ti) alloy target characterized by having an oxygen content of 350 to 800 ppm.
JP13771087A 1987-06-02 1987-06-02 Production of w-ti alloy target Granted JPS63303017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13771087A JPS63303017A (en) 1987-06-02 1987-06-02 Production of w-ti alloy target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13771087A JPS63303017A (en) 1987-06-02 1987-06-02 Production of w-ti alloy target

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5317470A Division JP2610575B2 (en) 1993-11-25 1993-11-25 W-Ti alloy target
JP32088093A Division JPH0711434A (en) 1993-11-29 1993-11-29 W-ti alloy target

Publications (2)

Publication Number Publication Date
JPS63303017A true JPS63303017A (en) 1988-12-09
JPH05452B2 JPH05452B2 (en) 1993-01-06

Family

ID=15205013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13771087A Granted JPS63303017A (en) 1987-06-02 1987-06-02 Production of w-ti alloy target

Country Status (1)

Country Link
JP (1) JPS63303017A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264640A (en) * 1990-03-13 1991-11-25 Hitachi Metals Ltd Ti-w target material and production thereof
JPH04232260A (en) * 1990-12-28 1992-08-20 Nikko Kyodo Co Ltd W-ti alloy target and its manufacture
US5160534A (en) * 1990-06-15 1992-11-03 Hitachi Metals Ltd. Titanium-tungsten target material for sputtering and manufacturing method therefor
US5298338A (en) * 1990-06-15 1994-03-29 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
US5306569A (en) * 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
JP2002339031A (en) * 2001-05-16 2002-11-27 Allied Material Corp Molybdenum sputtering target and manufacturing method
CN102366833A (en) * 2011-11-21 2012-03-07 宁波江丰电子材料有限公司 Production method of tungsten-titanium target blank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103810A (en) * 1973-02-07 1974-10-01
JPS5027706A (en) * 1973-07-13 1975-03-22
JPS5249915A (en) * 1975-10-20 1977-04-21 Hitachi Metals Ltd Production process of sintered alloy containing titanium
US4331476A (en) * 1980-01-31 1982-05-25 Tektronix, Inc. Sputtering targets with low mobile ion contamination
JPS6066425A (en) * 1983-09-22 1985-04-16 Nippon Telegr & Teleph Corp <Ntt> High-purity molybdenum target and high-purity molybdenum silicide target for lsi electrode and manufacture thereof
JPS6158866A (en) * 1984-08-30 1986-03-26 三菱マテリアル株式会社 Manufacture of high melting point metal silicate base composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103810A (en) * 1973-02-07 1974-10-01
JPS5027706A (en) * 1973-07-13 1975-03-22
JPS5249915A (en) * 1975-10-20 1977-04-21 Hitachi Metals Ltd Production process of sintered alloy containing titanium
US4331476A (en) * 1980-01-31 1982-05-25 Tektronix, Inc. Sputtering targets with low mobile ion contamination
JPS6066425A (en) * 1983-09-22 1985-04-16 Nippon Telegr & Teleph Corp <Ntt> High-purity molybdenum target and high-purity molybdenum silicide target for lsi electrode and manufacture thereof
JPS6158866A (en) * 1984-08-30 1986-03-26 三菱マテリアル株式会社 Manufacture of high melting point metal silicate base composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264640A (en) * 1990-03-13 1991-11-25 Hitachi Metals Ltd Ti-w target material and production thereof
US5160534A (en) * 1990-06-15 1992-11-03 Hitachi Metals Ltd. Titanium-tungsten target material for sputtering and manufacturing method therefor
US5298338A (en) * 1990-06-15 1994-03-29 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
US5306569A (en) * 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
JPH04232260A (en) * 1990-12-28 1992-08-20 Nikko Kyodo Co Ltd W-ti alloy target and its manufacture
JP2002339031A (en) * 2001-05-16 2002-11-27 Allied Material Corp Molybdenum sputtering target and manufacturing method
CN102366833A (en) * 2011-11-21 2012-03-07 宁波江丰电子材料有限公司 Production method of tungsten-titanium target blank

Also Published As

Publication number Publication date
JPH05452B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
EP1329526B1 (en) Method for producing high-purity zirconium and hafnium for sputtering targets
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP2757287B2 (en) Manufacturing method of tungsten target
JPH0261521B2 (en)
JPS63303017A (en) Production of w-ti alloy target
JPH03122205A (en) Manufacture of ti powder
JPS63227771A (en) High purity titanium silicide target for sputtering and production thereof
JP2606946B2 (en) Ti-W target material and method of manufacturing the same
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH03107453A (en) Ti-w target and production thereof
JP2610575B2 (en) W-Ti alloy target
JPS619533A (en) Manufacture of rare earth metal
JPH04116161A (en) Titanium target material and production thereof
JPS63259075A (en) Titanium nitride target and its production
JPH06264233A (en) Sputtering target for producing tft
JP2002206103A (en) Method for manufacturing high-purity zirconium or hafnium powder
JP3735060B2 (en) Method for producing low-oxygen titanium material
JPH0711434A (en) W-ti alloy target
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JP3792535B2 (en) Manufacturing method of high purity ruthenium target
JPH0688104A (en) Production of titanium powder
JP3878432B2 (en) High-purity ruthenium target and method for producing the target
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPH02166276A (en) Target made of refractory metal silicide and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080106

Year of fee payment: 15