JPH02101134A - Heat-resistant coated material - Google Patents

Heat-resistant coated material

Info

Publication number
JPH02101134A
JPH02101134A JP25117088A JP25117088A JPH02101134A JP H02101134 A JPH02101134 A JP H02101134A JP 25117088 A JP25117088 A JP 25117088A JP 25117088 A JP25117088 A JP 25117088A JP H02101134 A JPH02101134 A JP H02101134A
Authority
JP
Japan
Prior art keywords
weight
heat
intermetallic compound
strength
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25117088A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimizu
哲也 清水
Tomohito Iikubo
知人 飯久保
Susumu Isobe
磯部 晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25117088A priority Critical patent/JPH02101134A/en
Publication of JPH02101134A publication Critical patent/JPH02101134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain the title material of high specific strength which is lightweight, having required strength and toughness and having excellent heat resistance and oxidation resistance by coating a TiAl intermetallic compound having specific compsn. with a Cr-base coating material. CONSTITUTION:A TiAl intermetallic compound contg., by weight, 30 to 42% Al, furthermore contg., at need, one or more kinds among 0.05 to 3.0% Ni, 0.05 to 3.0% Si, 0.05 to 3.0% Mn and 0.005 to 0.5% B and the balance substantial Ti is coated with a Cr-base coating material. As the Cr-base material, pure Cr and the one of which other components are added to pure Cr according to necessary are used. As the coating method, any of hot dipping, thermal spraying, vapor deposition or the like is used. Furthermore, the coating thickness is suitably regulated to several mum to several hundred mum. In this way, the heat-resistant coated material of high specific strength which is lightweight, having excellent heat resistance and oxidation resistance and having strength and toughness required as a constitutional material can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、軽量であって慣性重量が小さくしかも耐熱性
や靭性に優れていることが要求される例えばエンジンバ
ルブ、ピストン、ロッカーアームなどの往復運動部品の
素材として好適に利用され、また、軽量であって応答性
に優れしかも耐熱性および靭性にも優れていることが要
求される例えばターボチャージャーロータやタービンブ
レードなどの回転運動部品の素材として好適に利用され
る軽量な耐熱複合材料に関するものである。 (従来の技術) 従来、上述した各種往復運動部品や回転運動部品におい
ては、例えば、ピストンの素材として鋳造用アルミニウ
ム合金が使用され、またエンジンバルブの素材として耐
熱鋼が使用され、ロッカーアームの素材として鋳鉄が使
用され、ターボチャージャーロータやタービンブレード
の素材としてNi基耐熱合金が使用されていた。 しかしながら、例えば、アルミニウム系合金の場合には
軽量であるものの耐熱性に劣り、耐熱鋼、鋳鉄などの鉄
系材料やNi基合金では耐熱性が良好であるものの重量
が大であり、例えば、ターボチャージャーロータにおけ
る応答性の向上、エンジンバルブやロッカーアームにお
ける慣性重量の減少による高速化(エンジンの高回転化
)に限界を有しているという問題点があった。 そこで、このような問題点を解消するために。 セラミックス材料の開発もなされており、なかにはTi
A、l系金属間化合物を軽量な耐熱材料として活用する
試みもなされている。 (発明が解決しようとする課題) しかしながら、このようなT i A l系金属間化合
物は、700℃以上において温度の上昇とともに酸化が
進行するので、とくに高温での耐熱性が要求される部品
、例えば、ターボチャージャーロータ、ニゲソーストバ
ルブ、タービンブレードなどの素材としての適用が困難
であるという課題を有していた。 (発明の目的) 本発明は、上述した従来の課題にかんがみてなされたも
ので、軽量であって構造体としての必要な強度および靭
性(延性)を有しているとともに、高温酸化雰囲気中例
えば高温大気雰囲気中での酸化が著しく少なく耐熱・耐
酸化性に優れた高比強度の耐熱複合材料を提供すること
を目的としている。
(Industrial Application Field) The present invention is suitable as a material for reciprocating parts such as engine valves, pistons, and rocker arms, which are required to be lightweight and have a small inertial weight and have excellent heat resistance and toughness. It is also suitable for use as a material for rotating parts such as turbocharger rotors and turbine blades, which are required to be lightweight and have excellent responsiveness as well as heat resistance and toughness. The present invention relates to heat-resistant composite materials. (Prior Art) Conventionally, in the various reciprocating motion parts and rotary motion parts mentioned above, for example, casting aluminum alloy has been used as the material for the piston, heat-resistant steel has been used as the material for the engine valve, and material for the rocker arm has been used. Cast iron was used as a material for turbocharger rotors and turbine blades, and Ni-based heat-resistant alloys were used as materials for turbocharger rotors and turbine blades. However, for example, aluminum-based alloys are lightweight but have poor heat resistance, while heat-resistant steel, iron-based materials such as cast iron, and Ni-based alloys have good heat resistance but are heavy. There is a problem in that there is a limit to the ability to increase the speed (high engine speed) by improving the response of the charger rotor and reducing the inertial weight of the engine valves and rocker arms. Therefore, in order to solve such problems. Ceramic materials are also being developed, some of which include Ti.
Attempts have also been made to utilize A, l-based intermetallic compounds as lightweight heat-resistant materials. (Problems to be Solved by the Invention) However, such TiAl-based intermetallic compounds undergo oxidation as the temperature rises above 700°C. For example, there has been a problem in that it is difficult to apply it as a material for turbocharger rotors, exhaust valves, turbine blades, etc. (Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and is lightweight and has the necessary strength and toughness (ductility) as a structure. The purpose of the present invention is to provide a heat-resistant composite material with high specific strength, which is extremely resistant to oxidation in high-temperature atmospheric environments, and has excellent heat and oxidation resistance.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明の第1請求項に係る耐熱複合材料は、AfLを3
0〜42重量%含み、残部実質的にTiからなるTiA
Jl系金属間他金属間化合物たは全部に、Cr基被被覆
材被覆してなる構成としたことを特徴としており、本発
明の第2請求項に係る耐熱複合材料は、Auを30〜4
2重量%含み、さらにNi:0.05〜3.0重量1%
、Si:0.05〜3.0重量%、Mn:0.05〜3
.0重量%、B:0.005〜0.5重量%のうちから
選ばれる1種または2種以上の元素を含み、残部実質的
にTiからなるTiAJl系金属間他金属間化合物たは
全部に、Cr基被被覆材被覆してなる構成としたことを
特徴としており、このような耐熱複合材料の構成を上述
した従来の課題を解決するための手段としている。 本発明に係る耐熱複合材料においては、Auを30〜4
2重量%含み、必要に応じてさらにNi:0.05〜3
.0重量%、Si:0.05〜3.0重量%、Mn :
 0 、05〜3 、0重量%。 B:0.005〜0.5重量%のうちから選ばれる1種
または2種以上の元素を含み、残部実質的にTiからな
るTiAu系金属間化合物を基材として用いているが、
この場合、Ti中に添加するAllはTiAJL系金属
間他金属間化合物るのに必要な元素であって、TiAu
系金属間化合物を形成させるためには30〜42重量%
の範囲とするのが望ましく、30重量%未満ではTi3
AM系金属間化合物が多くなって基材の延性が低下し、
42重量%超過ではTiA皇3系金属間化合物が析出し
てこれもまた基材の延性が低下するので好ましくない。 また、必要に応じて添加するNi、SiM n 、 B
はいずれも基材の延性を向上させるのに有効な元素群で
あり、これらのうちNi、Si。 MnはTiAJL系金属間他金属間化合物相中て基材の
延性を向上させる効果があり、Siは基材の耐酸化性を
向上させ不効果もあり、このような効果を得るために添
加する場合はNiを0.05重量%以上、Stも0.0
5重量%以上、Mnも0.05重量%以上のうちの1種
または2種以上とするのがよい。しかし、添加量が多す
ぎると未固溶部分が発生して基材の延性が低下するので
、添加するとしてもNiを3.0重量%以下、Siも3
.0重量%以下、Mnも3.0重量%以下とするのがよ
い。また、BはT i A l系金属間化合物の粒界を
強化して基材の延性を向上させるとともに結晶粒を微細
化して基材の強度を向上させるのに有効な元素であり、
このような効果を得るために添加する場合は0.005
重量%以上とするのがよい。しかし、0.5重量%より
も多く添加すると脆いほう化物相が生成されて基地の延
性の低下をまねくので、添加するとしても0.5重量%
以下とするのがよい。 このような組成をもつTiAl系金属間化合物は、鋳造
、@9造、粉末焼結のいずれによっても製造することが
可能であり、製法については特に限定されない。 そして、このような組成をもつT i A l系金属間
化合物の一部または全部にCr基被被覆材被覆すること
によって1本発明に係る耐熱複合材料となるが、この場
合のCr基被被覆材しては純クロムを用いることができ
、その他必要に応じてCrに他の成分を添加したものを
用いることもできる。そして、このCr基被被覆材Ti
Al系金属間化合物の一部または全部に被覆するに際し
ては、溶融めっきや、火炎、プラズマ、爆裂などによる
溶射被覆や、物理的蒸着(PVD)、化学的蒸着(CV
D)などの手法が採用され、とくに限定はされない。そ
して、このTiAl系金属間化合物へのCr基被被覆材
被覆厚さは数gm〜数百pLm程度であり、TiAu系
金属間化合物の特徴である低比重、すなわち軽量性を損
うものではない。 (実施例) プラズマアークを熱源とし、水冷銅るつぼを備えたスカ
ル炉を用いてArガス雰囲気中で第1表に示す化学成分
のTiAl系合金を溶製し、各々Lkgの鋳塊とした。 次いで、各鋳塊に対し1250°Cで5時間加熱後炉冷
する熱処理を施したのち、3 mmX 10 mmX 
25 mmの試験片を切り出した。 次に、前記試験片の表面にCrめっきを施すことによっ
て厚さ10〜35ルmの範囲で同じく第1表に示すそれ
ぞれの厚さのCrめっき層を被覆して各々耐熱複合材料
を得た。 次いで、酸化増量試験(I)として、露点20°Cの合
成空気中において900°Cで96時間加熱し、加熱後
の酸化増量を調べ、また、酸化増量試験(IT)として
、露点20°Cの合成空気中において第1図に示すパタ
ーンでの加熱冷却を192サイクルくり返し行い、この
くり返し加熱冷却後の酸化増量を調べた。これらの結果
を同じく第1表に示す。 また、各複合材料からなる引張試験片を用いて室温にお
ける引張試験を行うことにより引張強さおよび延性(伸
び)を調べたところ、同じく第1表に示す結果であった
。 第1表に示すように、発明例No、1−10の耐熱複合
材料では、酸化増量がかなり少ないと共に、延性にも優
れたものとなっており、耐熱耐酸化性および靭性に優れ
ていることが要求される回転運動部品や往復運動部品の
素材として好適な軽量の耐熱耐酸化材料であることが認
められた。 これに対して、TiAJl系金属間他金属間化合物Cr
被覆を施していない比較例No、11=14の材料では
、酸化増量がかなり多いものとなっており、耐熱耐酸化
材料としてあまり適していないものであった。また、A
n量が少なすぎる比較例No、15の材料では、Ti3
AJ1全3AJ合物が多くなっているため、伸びが低く
延性に劣るものとなっており、An量が多すぎる比較例
No、16の材料では、TiAJJ:+金属間化合物が
析出しているため、伸びが低く延性に劣るものとなって
いた。
(Means for Solving the Problems) The heat-resistant composite material according to the first claim of the present invention has an AfL of 3
TiA containing 0 to 42% by weight, with the remainder consisting essentially of Ti
The heat-resistant composite material according to the second aspect of the present invention is characterized by having a structure in which a Jl-based intermetallic compound or other intermetallic compound is coated with a Cr-based coating material, and the heat-resistant composite material according to the second claim of the present invention contains Au in an amount of 30 to 4
Contains 2% by weight, further Ni: 0.05-3.0% by weight
, Si: 0.05-3.0% by weight, Mn: 0.05-3
.. 0% by weight, B: 0.005 to 0.5% by weight, containing one or more elements selected from 0.005 to 0.5% by weight, and the remainder substantially consisting of TiAJl-based intermetallic and other intermetallic compounds or all , is characterized by having a structure coated with a Cr-based coating material, and the structure of such a heat-resistant composite material is a means for solving the above-mentioned conventional problems. In the heat-resistant composite material according to the present invention, the Au content is 30 to 4
Contains 2% by weight, and if necessary further contains Ni: 0.05-3
.. 0% by weight, Si: 0.05-3.0% by weight, Mn:
0.05-3.0% by weight. B: A TiAu-based intermetallic compound containing one or more elements selected from 0.005 to 0.5% by weight, with the remainder substantially consisting of Ti, is used as a base material,
In this case, All added to Ti is an element necessary for forming TiAJL-based intermetallic and other intermetallic compounds, and TiAu
30 to 42% by weight to form a series intermetallic compound
It is desirable that Ti3 be within the range of 30% by weight.
The amount of AM-based intermetallic compounds increases and the ductility of the base material decreases,
If it exceeds 42% by weight, a TiA tri-based intermetallic compound will precipitate, which also reduces the ductility of the base material, which is not preferable. In addition, Ni, SiM n , B added as necessary
All are effective element groups for improving the ductility of the base material, and among these, Ni and Si. Mn has the effect of improving the ductility of the base material in the TiAJL-based intermetallic and other intermetallic compound phases, and Si has the effect of improving the oxidation resistance of the base material, but it also has the ineffective effect, so it is added to obtain such an effect. In this case, Ni is 0.05% by weight or more and St is 0.0
The content of Mn is preferably 5% by weight or more, and Mn is preferably 0.05% by weight or more. However, if the amount added is too large, an undissolved portion will occur and the ductility of the base material will decrease.
.. It is preferable that Mn be 0% by weight or less, and Mn be 3.0% by weight or less. In addition, B is an effective element for strengthening the grain boundaries of the TiAl-based intermetallic compound and improving the ductility of the base material, as well as refining the crystal grains and improving the strength of the base material,
When added to obtain such an effect, 0.005
It is preferable that the amount is at least % by weight. However, if more than 0.5% by weight is added, a brittle boride phase is generated and the ductility of the matrix is reduced, so even if added, 0.5% by weight is
The following should be used. A TiAl-based intermetallic compound having such a composition can be manufactured by any of casting, @9 molding, and powder sintering, and the manufacturing method is not particularly limited. A heat-resistant composite material according to the present invention is obtained by coating a part or all of the T i Al intermetallic compound having such a composition with a Cr-based coating material. Pure chromium can be used as the material, and Cr with other components added can also be used if necessary. Then, this Cr-based coating material Ti
When coating part or all of the Al-based intermetallic compound, hot-dip plating, thermal spray coating using flame, plasma, explosion, etc., physical vapor deposition (PVD), chemical vapor deposition (CVD), etc.
Methods such as D) are adopted, and there are no particular limitations. The coating thickness of the Cr-based coating material on this TiAl-based intermetallic compound is approximately several gm to several hundred pLm, which does not impair the low specific gravity, that is, the light weight, which is a characteristic of the TiAu-based intermetallic compound. . (Example) Using a plasma arc as a heat source and a skull furnace equipped with a water-cooled copper crucible, TiAl-based alloys having the chemical components shown in Table 1 were melted in an Ar gas atmosphere to form ingots of L kg each. Next, each ingot was heat treated at 1250°C for 5 hours and then cooled in a furnace, and then 3 mm x 10 mm x
A 25 mm test piece was cut out. Next, the surface of the test piece was coated with a Cr plating layer having a thickness of 10 to 35 m as shown in Table 1 to obtain each heat-resistant composite material. . Next, as an oxidation weight gain test (I), heating was performed at 900°C for 96 hours in synthetic air with a dew point of 20°C to examine the oxidation weight gain after heating. Heating and cooling in the pattern shown in FIG. 1 was repeated for 192 cycles in synthetic air, and the oxidation weight gain after repeated heating and cooling was investigated. These results are also shown in Table 1. Furthermore, tensile strength and ductility (elongation) were investigated by conducting a tensile test at room temperature using tensile test pieces made of each composite material, and the results were also shown in Table 1. As shown in Table 1, the heat-resistant composite material of Invention Example No. 1-10 has considerably less oxidation weight gain and has excellent ductility, and has excellent heat resistance, oxidation resistance, and toughness. It has been recognized that this is a lightweight, heat-resistant and oxidation-resistant material suitable as a material for rotating and reciprocating parts that require On the other hand, TiAJl-based intermetallic and other intermetallic compounds Cr
The material of Comparative Example No. 11=14, which was not coated, had a considerably large amount of weight gain due to oxidation, and was not very suitable as a heat-resistant and oxidation-resistant material. Also, A
In the material of Comparative Example No. 15 where the amount of n is too small, Ti3
Since the AJ1 total 3AJ compound is large, the elongation is low and the ductility is poor, and in the material of Comparative Example No. 16, which has too much An, TiAJJ: + intermetallic compound is precipitated. , the elongation was low and the ductility was poor.

【発明の効果】【Effect of the invention】

本発明に係る耐熱複合材料は、Anを30〜42屯量%
含み、必要に応じてさらにNi:0.05〜3.0重量
%、Si:0.05〜3.0重量%、Mn:0.05〜
3.0重量%。 B:0.005〜0.5重量%のうちから選ばれる1種
または2種以上の元素を含み、残部実質的にTiからな
るT i A l系金属間化合物にCr基被被覆材被覆
してなる構成を有するものであるから、高温酸化雰囲気
中、例えば高温大気雰囲気中での酸化が少なく、耐熱φ
耐酸化性に著しく優れたものであり、軽量であってしか
も構造物品として必要な強度および靭性(延性)を有し
ている高比強度の耐熱複合材料であるといえる。それゆ
え、この耐熱複合材料は、軽量であって慣性重量が小さ
くしかも耐熱性や、靭性に優れていることが要求される
例えばエンジンバルブ、ピストン。 ロッカーアームなどの往復運動部品の素材として好適な
ものであり、かつまた軽量であって応答性に役れしかも
耐熱性および靭性にも優れていることが要求される例え
ばターボチャージャーロータやタービンブレードなどの
回転運動部品の素材として好適なものであるという一1
1常に優れた効果がもたらされる。
The heat-resistant composite material according to the present invention contains 30 to 42 tons of An.
Ni: 0.05-3.0% by weight, Si: 0.05-3.0% by weight, Mn: 0.05-3.0% by weight.
3.0% by weight. B: Cr-based coating material coated on a TiAl-based intermetallic compound containing one or more elements selected from 0.005 to 0.5% by weight, with the remainder substantially consisting of Ti. Because it has a structure of
It can be said to be a heat-resistant composite material with extremely high oxidation resistance, light weight, and high specific strength that has the strength and toughness (ductility) necessary for structural articles. Therefore, this heat-resistant composite material is required to be lightweight, have a small inertial weight, and have excellent heat resistance and toughness, such as engine valves and pistons. It is suitable as a material for reciprocating parts such as rocker arms, and it is also required to be lightweight and responsive, as well as having excellent heat resistance and toughness, such as turbocharger rotors and turbine blades. It is said that it is suitable as a material for rotating motion parts of
1. Always provides excellent results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化増量試験 (II) において用いた1 サイクルの加熱冷却パターンを示す説明図である。 Figure 1 shows oxidation weight gain test (II) 1 used in It is an explanatory view showing a heating and cooling pattern of a cycle.

Claims (2)

【特許請求の範囲】[Claims] (1)Alを30〜42重量%含み、残部実質的にTi
からなるTiAl系金属間化合物にCr基被覆材を被覆
してなることを特徴とする耐熱複合材料。
(1) Contains 30 to 42% by weight of Al, with the remainder being substantially Ti
A heat-resistant composite material comprising a TiAl-based intermetallic compound consisting of a TiAl-based intermetallic compound coated with a Cr-based coating material.
(2)Alを30〜42重量%含み、さらにNi:0.
05〜3.0重量%、Si:0.05〜3.0重量%、
Mn:0.05〜3.0重量%、B:0.005〜0.
5重量%のうちから選ばれる1種または2種以上の元素
を含み、残部実質的にTiからなるTiAl系金属間化
合物にCr基被覆材を被覆してなることを特徴とする耐
熱複合材料。
(2) Contains 30 to 42% by weight of Al, and further contains 0.
05 to 3.0% by weight, Si: 0.05 to 3.0% by weight,
Mn: 0.05-3.0% by weight, B: 0.005-0.
1. A heat-resistant composite material comprising a TiAl-based intermetallic compound containing one or more elements selected from 5% by weight, the remainder being substantially Ti, and coated with a Cr-based coating material.
JP25117088A 1988-10-05 1988-10-05 Heat-resistant coated material Pending JPH02101134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25117088A JPH02101134A (en) 1988-10-05 1988-10-05 Heat-resistant coated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25117088A JPH02101134A (en) 1988-10-05 1988-10-05 Heat-resistant coated material

Publications (1)

Publication Number Publication Date
JPH02101134A true JPH02101134A (en) 1990-04-12

Family

ID=17218720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25117088A Pending JPH02101134A (en) 1988-10-05 1988-10-05 Heat-resistant coated material

Country Status (1)

Country Link
JP (1) JPH02101134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641661A (en) * 1991-05-01 1994-02-15 Natl Res Inst For Metals Ti/al intermetallic compound matwerial and working method therefore
CN110643853A (en) * 2019-10-23 2020-01-03 太原理工大学 Preparation method of TiAl-Ni alloy plate with high strength, toughness and stability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270531A (en) * 1985-09-24 1987-04-01 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member
JPS63111152A (en) * 1986-10-30 1988-05-16 Natl Res Inst For Metals Si-added intermetallic compound tia1-base heat-resisting alloy
JPS63114930A (en) * 1986-10-31 1988-05-19 Daido Steel Co Ltd Ti-al powder metallurgical alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270531A (en) * 1985-09-24 1987-04-01 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member
JPS63111152A (en) * 1986-10-30 1988-05-16 Natl Res Inst For Metals Si-added intermetallic compound tia1-base heat-resisting alloy
JPS63114930A (en) * 1986-10-31 1988-05-19 Daido Steel Co Ltd Ti-al powder metallurgical alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641661A (en) * 1991-05-01 1994-02-15 Natl Res Inst For Metals Ti/al intermetallic compound matwerial and working method therefore
CN110643853A (en) * 2019-10-23 2020-01-03 太原理工大学 Preparation method of TiAl-Ni alloy plate with high strength, toughness and stability

Similar Documents

Publication Publication Date Title
Sivakumar et al. High temperature coatings for gas turbine blades: a review
US4339509A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
EP0024802B1 (en) A method of forming a corrosion resistant coating on a metal article
US4313760A (en) Superalloy coating composition
US5858558A (en) Nickel-base sigma-gamma in-situ intermetallic matrix composite
US5196162A (en) Ti-Al type lightweight heat-resistant materials containing Nb, Cr and Si
US4849168A (en) Ti-Al intermetallics containing boron for enhanced ductility
US4615864A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
Tang et al. Development of oxidation resistant coatings for γ-TiAl based alloys
JPS623221B2 (en)
US5281484A (en) High stress capability, intermetallic phase titanium aluminide coated components
Kear et al. Aircraft gas turbine materials and processes
Shimizu et al. Cyclic oxidation resistance of an intermetallic compound TiAl
GB2202235A (en) Corrosion-resistant nickel alloy
US5503798A (en) High-temperature creep-resistant material
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH03257130A (en) Heat resistant material of ti-al system
JPH02101134A (en) Heat-resistant coated material
JPH02101133A (en) Ti3al/tial composite material
EP1257680B1 (en) Iron base high temperature alloy
Singheiser et al. Fundamental considerations for the development of oxidation-resistant alloys and coatings based on γ-TiAl
JP2510141B2 (en) Ti-Al lightweight heat resistant material
JP2926886B2 (en) Composite material and method for producing the same
JP2592440B2 (en) Ti-Al lightweight heat and oxidation resistant material
JPS63125634A (en) Ti-al alloy