JPH06172810A - Production of tungsten alloy sintered compact - Google Patents

Production of tungsten alloy sintered compact

Info

Publication number
JPH06172810A
JPH06172810A JP5106607A JP10660793A JPH06172810A JP H06172810 A JPH06172810 A JP H06172810A JP 5106607 A JP5106607 A JP 5106607A JP 10660793 A JP10660793 A JP 10660793A JP H06172810 A JPH06172810 A JP H06172810A
Authority
JP
Japan
Prior art keywords
less
sintering
powder
powders
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106607A
Other languages
Japanese (ja)
Inventor
Hideo Suzuki
日出夫 鈴木
Hiroshi Otsubo
宏 大坪
Mitsuhiro Kuga
光広 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5106607A priority Critical patent/JPH06172810A/en
Publication of JPH06172810A publication Critical patent/JPH06172810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a W alloy sintered compact high in density and toughness by mixing the powders of W, Ni, Cu, etc., in specified conditions, injection- molding the mixture and specifying a C-to-O molar ratio after degreasing and before sintering and the pressure in sintering. CONSTITUTION:Powders contg. >=80wt.% of the W powder having <=10mum average grain diameter and the balance Ni powder having <=30mum average grain diameter are mixed with powders having <=30mum average grain diameter and consisting of one or >=2 kinds of powders among the powders of Cu, Mo and Co, the mixture is further mixed with a binder, and the mixture is injection- molded, dewaxing and sintered to produce a W alloy sintered compact. At this time, the C-to-O molar ratio is adjusted to <=1.0 after dewaxing and before sintering, and the compact is sintered at <=0.1 Torr below the liq. phase generating temp. and sintered in a nonoxidizing atmosphere above the temp. range. A W heavy metal sintered compact having an intricate shape is mass-produced in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度と高靱性を兼ね
備え、自動巻き時計用の回転重錘や精密機器のウェイト
バランサー等に利用されるタングステン(W)合金焼結
体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tungsten (W) alloy sintered body which has both high density and high toughness and is used for a rotary weight for an automatic winding timepiece, a weight balancer for precision equipment and the like. It is a thing.

【0002】[0002]

【従来の技術】WとNi、Cu、Fe等の合金相の2相からな
るW合金焼結体は、密度が18g/cm3前後と高く、かつ
靱性に富むため、自動巻き時計用の回転重錘、精密機器
のウェイトバランサー、砲弾、放射線遮蔽材等に利用さ
れている。また、一方、特に精密機器、時計部品等につ
いては、最近は小型で複雑形状を有する部品の要求が出
てきている。
2. Description of the Related Art A W alloy sintered body consisting of W and two alloy phases of Ni, Cu, Fe, etc. has a high density of around 18 g / cm 3 and is rich in toughness. Used for weights, weight balancers for precision equipment, shells, radiation shielding materials, etc. On the other hand, particularly for precision instruments, timepiece parts, etc., recently, there has been a demand for small parts having complicated shapes.

【0003】しかし、一般的な粉末冶金法で製造される
W合金焼結体は各種原料粉末の混合後、圧粉成形し、成
形体を水素雰囲気で焼結することにより製造されてい
る。その焼結は、液相焼結であるため、焼結過程でW表
面の酸化膜を十分還元する必要があり、そのため、焼結
雰囲気として、水素が使用されている。また、射出成形
法による製造方法が、The International journal of P
owderMetallurgy.vol24,No.4,1988 p327 に開示されて
いるが、この方法でも従来技術と同様に、水素雰囲気で
1500℃で焼結している。
However, a W alloy sintered body produced by a general powder metallurgy method is produced by mixing various raw material powders, compacting the mixture, and sintering the compact in a hydrogen atmosphere. Since the sintering is liquid phase sintering, it is necessary to sufficiently reduce the oxide film on the W surface during the sintering process, and therefore hydrogen is used as the sintering atmosphere. In addition, the manufacturing method by injection molding is the International journal of P
owderMetallurgy.vol24, No.4,1988 p327, but in this method as well as in the prior art, in a hydrogen atmosphere.
Sintered at 1500 ℃.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、一般の
圧粉成形では、3次元的な複雑形状を有する部品の製造
は困難であった。また、水素雰囲気中での1400℃以上の
高温焼結のためには、Moヒーターや耐熱ケース等が必要
となる。従って、焼結炉とその付帯設備が高価であっ
た。また安全上も細心の注意が必要であった。
However, it has been difficult to manufacture a part having a three-dimensionally complicated shape by general powder compacting. Further, for high temperature sintering at 1400 ° C. or higher in a hydrogen atmosphere, a Mo heater, heat resistant case, etc. are required. Therefore, the sintering furnace and its associated equipment are expensive. Also, it was necessary to pay close attention to safety.

【0005】本発明は、これらの問題点を解決すべく、
金属粉末射出成形法をもちいて、複雑形状焼結部品の製
造を可能とし、特に高温での水素焼結を行わずに、高密
度で高靱性W合金の焼結体の製造方法を提供することを
目的とする。
The present invention has been made to solve these problems.
To provide a method for producing a sintered body of a high-density and high-toughness W alloy, which enables the production of a complex-shaped sintered part by using a metal powder injection molding method and does not particularly perform hydrogen sintering at a high temperature. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明は、平均粒径10μ
m以下のタングステン粉末を80wt%以上含み、残部が平
均粒径30μm以下のNi粉末と平均粒径が30μm以下のC
u、Fe、MoおよびCo粉末の1種又は2種以上からなる粉
末を混合後、結合材とさらに混合し、次いで射出成形
し、その成形体に脱脂処理を施し、焼結してなる焼結体
の製造方法であって、脱脂処理後焼結前の成形体のC/
Oモル比を 1.0以下に調整した後、0.1torr以下の減圧
下で焼結することを特徴とするタングステン合金焼結体
の製造方法であり、C/Oモル比の調整は湿潤水素中ま
たは酸素を含む雰囲気にて熱処理してもよく、あるいは
W、Ni、Cu、Fe、MoおよびCoの酸化物を1種又は2種以
上、Wは平均粒径10μm以下の酸化物粉末、Ni、Cu、F
e、MoおよびCoは平均粒径30μm以下の酸化物粉末とし
て添加混合することにより行うこともできる。また本発
明は、上述の脱脂処理後焼結前の成形体のC/Oモル比
を 1.0以下に調整した後、液相発生温度以下までを0.1t
orr 以下の減圧化で、それ以上の温度域を非酸化性雰囲
気で焼結するタングステン合金焼結体の製造方法であ
る。
The present invention has an average particle size of 10 μm.
Ni powder with an average particle size of 30 μm or less and the balance of C containing an average particle size of 30 μm or less
Sintering by mixing powders of one or more of u, Fe, Mo and Co powders, further mixing with a binder, then injection molding, degreasing the molded body, and sintering. C / of a molded body after degreasing and before sintering
A method for producing a tungsten alloy sintered body, which comprises: sintering under a reduced pressure of 0.1 torr or less after adjusting the O molar ratio to 1.0 or less. The C / O molar ratio is adjusted in wet hydrogen or oxygen. May be heat-treated in an atmosphere containing, or one or more oxides of W, Ni, Cu, Fe, Mo and Co, W is an oxide powder having an average particle size of 10 μm or less, Ni, Cu, F
It is also possible to add and mix e, Mo and Co as oxide powders having an average particle size of 30 μm or less. Further, according to the present invention, after adjusting the C / O molar ratio of the molded body after degreasing treatment and before sintering to 1.0 or less, the temperature below the liquidus generation temperature is 0.1 t.
This is a method for producing a tungsten alloy sintered body, which comprises sintering in a non-oxidizing atmosphere in a temperature range higher than orr by reducing the pressure below orr.

【0007】[0007]

【作用】まず、本発明で使用するW粉末は平均粒径10μ
m以下とする。10μmを超えると焼結時、液相の流動に
よるW粒子の再配列が進まず、高密度が得られない。N
i、Cu、Fe、Mo、Co粉末は平均粒径が30μmを超えると
射出成形が困難となる。一般的にはNi粉としてはカーボ
ニルNi粉、Fe粉としてはアトマイズ粉、カーボニルFe
粉、Cu粉としては電解銅粉などが適当である。また酸化
物としてWはWO3 、NiはNiO、CuはCuO、 Cu2O、Fe
は Fe34 、Fe2 3 、FeO、MoはMoO2 、MoO3 、Co
はCoO3 、CoOが適当である。Wの含有率が80%に満た
ない場合、本合金の目的に必要な密度が得られない。
First, the W powder used in the present invention has an average particle size of 10 μm.
m or less. If it exceeds 10 μm, the rearrangement of W particles due to the flow of the liquid phase does not proceed during sintering, and a high density cannot be obtained. N
If the average particle size of i, Cu, Fe, Mo and Co powders exceeds 30 μm, injection molding becomes difficult. Generally, Ni powder is carbonyl Ni powder, Fe powder is atomized powder, carbonyl Fe.
As the powder and Cu powder, electrolytic copper powder and the like are suitable. As oxides, W is WO 3 , Ni is NiO, Cu is CuO, Cu 2 O, Fe.
Is Fe 3 O 4 , Fe 2 O 3 , FeO, Mo is MoO 2 , MoO 3 , Co
Is preferably CoO 3 or CoO. If the W content is less than 80%, the density required for the purpose of the present alloy cannot be obtained.

【0008】これらの粉末を混合後、有機バインダーで
ある結合材と混練し、射出成形用原料とする。混合方法
は、V型混合機、ポールミル等の一般の粉末混合に用い
られる混合機を用いる。また、ここで用いる結合材は一
般の粉末射出成形用の結合材であれば、特に問題はな
い。混練には加圧ニーダ、連続混練機等を用いる。混練
により得られたコンパウンドを射出成形により所定の形
状に成形したのち、結合材を除去し、焼結を行う。焼結
は、高密度材料とするため、液相焼結となるが、液相が
発生する前にW粒子表面のC、Oを十分低減する必要が
ある。W酸化物は真空雰囲気の加熱により還元可能であ
るが、結合材及び原料粉末に含まれるCが残留する。こ
れを防止するため、焼結前のC/Oのモル比を 1.0以下
とする。 1.0を超えると、焼結体にCが残留し、高密度
が得られない。
After mixing these powders, they are kneaded with a binder which is an organic binder to prepare a raw material for injection molding. As the mixing method, a mixer used for general powder mixing such as a V-type mixer and a pole mill is used. There is no particular problem as long as the binder used here is a binder for general powder injection molding. A pressure kneader, a continuous kneader, or the like is used for kneading. The compound obtained by kneading is molded into a predetermined shape by injection molding, the binder is removed, and the compound is sintered. Since sintering is a high-density material, it is liquid phase sintering, but it is necessary to sufficiently reduce C and O on the surface of W particles before the liquid phase is generated. The W oxide can be reduced by heating in a vacuum atmosphere, but C contained in the binder and the raw material powder remains. In order to prevent this, the C / O molar ratio before sintering is set to 1.0 or less. If it exceeds 1.0, C remains in the sintered body and a high density cannot be obtained.

【0009】焼結前のC/Oのモル比を 1.0以下とする
方法としては、W、Ni、Cu、Fe、MoおよびCoの酸化物を
1種又は2種以上添加混合する方法、又は結合材を一部
除去した、すなわち脱脂処理した成形体(以後、脱脂体
と呼ぶ)を湿潤水素あるいは、酸素を含む雰囲気等で熱
処理する。これにより成形体が酸化され、C/Oのモル
比を 1.0以下とすることができる。この脱脂体を少なく
とも液相が発生する温度以下まで、0.1torr 以下の減圧
下で焼結することにより、C、Oが十分低減し、液相焼
結が進み、高密度の焼結体が得られる。雰囲気圧力が0.
1torr を超えると、C、Oが十分に低減しない。
As a method for setting the C / O molar ratio before sintering to 1.0 or less, a method of adding and mixing one or more oxides of W, Ni, Cu, Fe, Mo and Co, or bonding The molded body from which the material has been partially removed, that is, degreased (hereinafter referred to as degreased body) is heat-treated in an atmosphere containing wet hydrogen or oxygen. As a result, the molded body is oxidized and the molar ratio of C / O can be 1.0 or less. By sintering this degreased body under a reduced pressure of 0.1 torr or less to at least a temperature at which a liquid phase is generated, C and O are sufficiently reduced, liquid phase sintering proceeds, and a high-density sintered body is obtained. To be Atmospheric pressure is 0.
When it exceeds 1 torr, C and O are not sufficiently reduced.

【0010】[0010]

【実施例】【Example】

実施例1 表1に示す重量比の金属粉末をV型混合機にて混合後、
アクリル系樹脂、エチレン系樹脂、ワックス、可塑材か
らなるバインダーと加圧ニーダで混練し(表1にバイン
ダ体積率を示す)、射出成形用コンパウンドを得た。こ
のコンパウンドを原料とし、射出成形機にて、50mm×10
mm×3mmの板状試験片を成形した。この成形体を窒素雰
囲気で10℃/hrの加熱速度で 400℃〜600 ℃の温度に加
熱し、脱脂体を得た。脱脂体のC、O量を表2、表3に
示す。また、これらの脱脂体を表2、表3に示す条件で
酸化熱処理し、その後焼結した。焼結体密度と焼結条件
を、表2に合わせて示す。
Example 1 After mixing the metal powders having the weight ratios shown in Table 1 with a V-type mixer,
A binder made of an acrylic resin, an ethylene resin, a wax, and a plasticizer was kneaded with a pressure kneader (the binder volume ratio is shown in Table 1) to obtain an injection molding compound. Using this compound as a raw material, 50 mm × 10 with an injection molding machine
mm × 3 mm plate-shaped test pieces were molded. This molded body was heated in a nitrogen atmosphere at a heating rate of 10 ° C / hr to a temperature of 400 ° C to 600 ° C to obtain a degreased body. Tables 2 and 3 show the amounts of C and O in the defatted body. Further, these degreased bodies were subjected to oxidative heat treatment under the conditions shown in Tables 2 and 3 and then sintered. The sintered body density and sintering conditions are also shown in Table 2.

【0011】表2、表3より、本発明の範囲では96%以
上の相対密度の焼結体が得られた。これに対し、焼結前
のC/Oモル比が1を超える場合、また、W粉末平均粒
径が10μmを超える場合、相対密度が90%以下と低くな
ることがわかる。また合金No.11 はNi粉末の平均粒径が
35μmと大きいため、射出成形ができなかった。
From Tables 2 and 3, a sintered body having a relative density of 96% or more was obtained within the range of the present invention. On the other hand, when the C / O molar ratio before sintering exceeds 1, and when the W powder average particle diameter exceeds 10 μm, the relative density is as low as 90% or less. Alloy No. 11 has an average particle size of Ni powder
Since it was as large as 35 μm, injection molding could not be performed.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】実施例2 表1に示す重量比の金属粉末(No.1〜No.5) をV型混合
機にて混合後、アクリル系樹脂、エチレン樹脂、ワック
ス、可塑材からなるバインダーと加圧ニーダで混練し
(表1にバインダ体積率を示す)、射出成形用コンパウ
ンドを得た。このコンパウンドを原料とし、射出成形機
にて、50mm×10mm×3mmの板状試験片を成形した。この
成形体を窒素雰囲気で10℃/hrの加熱速度で 400℃〜60
0 ℃の温度に加熱し、脱脂体のC、O量を表4に示す。
また、これらの脱脂体を表4に示す条件で熱処理し、そ
の後焼結した。焼結は液相が出始める迄の温度域を10-5
torrの減圧雰囲気で、それ以上の温度域をAr雰囲気(1
気圧)でおこなった。焼結体の相対密度と焼結条件を、
表4に合わせて示す。表より、本発明の範囲では96%以
上の密度の焼結体が得られた。
Example 2 Metal powders (No. 1 to No. 5) having the weight ratios shown in Table 1 were mixed in a V-type mixer and then added with a binder composed of acrylic resin, ethylene resin, wax and plasticizer. The mixture was kneaded with a pressure kneader (the binder volume ratio is shown in Table 1) to obtain an injection molding compound. Using this compound as a raw material, a plate-shaped test piece of 50 mm × 10 mm × 3 mm was molded by an injection molding machine. This molded body is heated in a nitrogen atmosphere at a heating rate of 10 ℃ / hr from 400 ℃ to 60 ℃.
Table 4 shows the amounts of C and O in the degreased body after heating to a temperature of 0 ° C.
Further, these degreased bodies were heat-treated under the conditions shown in Table 4 and then sintered. For sintering, the temperature range until the liquid phase begins to appear is 10 -5.
A decompressed atmosphere of torr and an Ar atmosphere (1
(Atmospheric pressure). The relative density of the sintered body and the sintering conditions
It is also shown in Table 4. From the table, a sintered body having a density of 96% or more was obtained within the range of the present invention.

【0016】[0016]

【表4】 [Table 4]

【0017】実施例3 表5に示す重量比の金属粉末をV型混合機にて混合後、
アクリル系樹脂、エチレン系樹脂、ワックス、可塑材か
らなるバインダーと加圧ニーダで混練し(バインダ体積
率40%)、射出成形用コンパウンドを得た。このコンパ
ウンド を原料とし、射出成形機にて、50mm×10mm×3
mmの板状試験片を成形した。この成形体を窒素雰囲気で
10℃/hrの加熱速度で 400℃〜600 ℃の温度に加熱し、
脱脂体を得た。脱脂体のC、O量を表6に示す。また、
これらの脱脂体を表6に示す条件で焼結した。焼結体密
度を表6に合わせて示す。
Example 3 Metal powders having the weight ratios shown in Table 5 were mixed in a V-type mixer,
A binder consisting of acrylic resin, ethylene resin, wax, and plasticizer was kneaded with a pressure kneader (binder volume ratio 40%) to obtain an injection molding compound. Using this compound as a raw material, in an injection molding machine, 50 mm × 10 mm × 3
mm plate-shaped test pieces were molded. This molded body in a nitrogen atmosphere
Heat to a temperature of 400 ℃ ~ 600 ℃ at a heating rate of 10 ℃ / hr,
A defatted body was obtained. Table 6 shows the amounts of C and O in the defatted body. Also,
These degreased bodies were sintered under the conditions shown in Table 6. The sintered body density is also shown in Table 6.

【0018】表6より、本発明の範囲では96%以上の相
対密度の焼結体が得られた。これに対し、焼結前のC/
Oモル比が1を超える場合、相対密度が90%以下と低く
なることがわかる。
From Table 6, in the range of the present invention, a sintered body having a relative density of 96% or more was obtained. On the other hand, C /
It can be seen that when the O molar ratio exceeds 1, the relative density becomes as low as 90% or less.

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】なお、いずれの実施例の焼結体も従来と遜
色のない高靱性を有していた。またなお、いずれの実施
例でもグラファイトヒーターを備えた焼結炉を用いた。
以上のように、本発明により水素雰囲気を用いなくと
も、高密度の焼結体を得ることができた。このように、
高価な水素焼結炉の必要が無くなる。また、安全性も向
上する。
The sintered bodies of all the examples had high toughness comparable to conventional ones. Furthermore, in all of the examples, a sintering furnace equipped with a graphite heater was used.
As described above, according to the present invention, a high density sintered body could be obtained without using a hydrogen atmosphere. in this way,
Eliminates the need for expensive hydrogen sintering furnaces. Also, safety is improved.

【0022】[0022]

【発明の効果】本発明により、複雑形状のタングステン
ヘビーメタル焼結体の大量生産が可能となる。
According to the present invention, it is possible to mass-produce a tungsten heavy metal sintered body having a complicated shape.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径10μm以下のタングステン粉末
を80wt%以上含み、残部が平均粒径30μm以下のNi粉末
と平均粒径が30μm以下のCu、Fe、MoおよびCo粉末の1
種又は2種以上からなる粉末を混合後、結合材とさらに
混合し、次いで射出成形し、その成形体に脱脂処理を施
し、焼結してなる焼結体の製造方法であって、脱脂処理
後焼結前の成形体のC/Oモル比を 1.0以下に調整した
後、0.1torr 以下の減圧下で焼結することを特徴とする
タングステン合金焼結体の製造方法。
1. A Ni powder containing 80 wt% or more of a tungsten powder having an average particle size of 10 μm or less, the balance being a Ni powder having an average particle size of 30 μm or less and Cu, Fe, Mo and Co powders having an average particle size of 30 μm or less.
A method for producing a sintered body, comprising mixing powders of one kind or two or more kinds, further mixing with a binder, then injection molding, and subjecting the molded body to degreasing and sintering, which is a degreasing treatment. A method for producing a tungsten alloy sintered body, which comprises adjusting the C / O molar ratio of the green body before post-sintering to 1.0 or less and then sintering it under a reduced pressure of 0.1 torr or less.
【請求項2】 脱脂処理後焼結前の成形体を湿潤水素中
または酸素を含む雰囲気にて熱処理し成形体のC/Oモ
ル比を 1.0以下に調整した後、液相発生温度以下までを
0.1torr 以下の減圧下で、それ以上の温度域を非酸化性
雰囲気で焼結することを特徴とする請求項1記載のタン
グステン合金焼結体の製造方法。
2. After the degreasing treatment and before sintering, the molded body is heat-treated in wet hydrogen or an atmosphere containing oxygen to adjust the C / O molar ratio of the molded body to 1.0 or less, and then to a temperature below the liquid phase generation temperature.
The method for producing a tungsten alloy sintered body according to claim 1, wherein sintering is performed in a non-oxidizing atmosphere in a temperature range higher than 0.1 torr under a reduced pressure of 0.1 torr or less.
【請求項3】 請求項1又は2記載のタングステン合金
焼結体を構成するW、Ni、Cu、Fe、MoおよびCoの酸化物
を1種又は2種以上、Wは平均粒径10μm以下の酸化物
粉末、Ni、Cu、Fe、MoおよびCoは平均粒径30μm以下の
酸化物粉末として添加混合することを特徴とするタング
ステン合金焼結体の製造方法。
3. One or more oxides of W, Ni, Cu, Fe, Mo and Co constituting the tungsten alloy sintered body according to claim 1 or 2, wherein W has an average particle size of 10 μm or less. A method for producing a tungsten alloy sintered body, characterized in that oxide powder, Ni, Cu, Fe, Mo and Co are added and mixed as oxide powder having an average particle diameter of 30 μm or less.
JP5106607A 1992-10-08 1993-05-07 Production of tungsten alloy sintered compact Pending JPH06172810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106607A JPH06172810A (en) 1992-10-08 1993-05-07 Production of tungsten alloy sintered compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27043392 1992-10-08
JP4-270433 1992-10-08
JP5106607A JPH06172810A (en) 1992-10-08 1993-05-07 Production of tungsten alloy sintered compact

Publications (1)

Publication Number Publication Date
JPH06172810A true JPH06172810A (en) 1994-06-21

Family

ID=26446733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106607A Pending JPH06172810A (en) 1992-10-08 1993-05-07 Production of tungsten alloy sintered compact

Country Status (1)

Country Link
JP (1) JPH06172810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988543A (en) * 2017-11-30 2018-05-04 西北有色金属研究院 A kind of high-copper W-Ni-Cu alloy materials and preparation method thereof
CN109837441A (en) * 2019-02-25 2019-06-04 横店集团东磁股份有限公司 A kind of New Tungsten nickel cobalt material and preparation method thereof
CN113862541A (en) * 2021-09-28 2021-12-31 广西晨天恒源金属制品有限公司 Tungsten alloy and preparation method thereof
CN114653948A (en) * 2022-03-29 2022-06-24 西安华山钨制品有限公司 Preparation method of tungsten alloy beads

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPH0254733A (en) * 1988-08-20 1990-02-23 Kawasaki Steel Corp Manufacture of ti sintered material
JPH02290901A (en) * 1989-05-01 1990-11-30 Kawasaki Steel Corp Metal fine powder for compacting and manufacture of sintered body thereof
JPH0364402A (en) * 1989-07-31 1991-03-19 Komatsu Ltd Method for controlling carbon content of metallic injection molding
JPH03173702A (en) * 1989-11-30 1991-07-29 Kawasaki Steel Corp Production of sintered body
JPH04176802A (en) * 1990-11-13 1992-06-24 Sumitomo Cement Co Ltd Production of high density sintered body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPH0254733A (en) * 1988-08-20 1990-02-23 Kawasaki Steel Corp Manufacture of ti sintered material
JPH02290901A (en) * 1989-05-01 1990-11-30 Kawasaki Steel Corp Metal fine powder for compacting and manufacture of sintered body thereof
JPH0364402A (en) * 1989-07-31 1991-03-19 Komatsu Ltd Method for controlling carbon content of metallic injection molding
JPH03173702A (en) * 1989-11-30 1991-07-29 Kawasaki Steel Corp Production of sintered body
JPH04176802A (en) * 1990-11-13 1992-06-24 Sumitomo Cement Co Ltd Production of high density sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988543A (en) * 2017-11-30 2018-05-04 西北有色金属研究院 A kind of high-copper W-Ni-Cu alloy materials and preparation method thereof
CN109837441A (en) * 2019-02-25 2019-06-04 横店集团东磁股份有限公司 A kind of New Tungsten nickel cobalt material and preparation method thereof
CN109837441B (en) * 2019-02-25 2020-08-11 横店集团东磁股份有限公司 Novel tungsten nickel cobalt material and preparation method thereof
CN113862541A (en) * 2021-09-28 2021-12-31 广西晨天恒源金属制品有限公司 Tungsten alloy and preparation method thereof
CN114653948A (en) * 2022-03-29 2022-06-24 西安华山钨制品有限公司 Preparation method of tungsten alloy beads
CN114653948B (en) * 2022-03-29 2024-04-05 西安华山钨制品有限公司 Preparation method of tungsten alloy beads

Similar Documents

Publication Publication Date Title
MX2013007653A (en) Iron based powders for powder injection molding.
JP2008524447A (en) Diffusion bonded nickel-copper powder metallurgy powder
JPH06172810A (en) Production of tungsten alloy sintered compact
CN109680217B (en) Method for manufacturing nonmagnetic powder metallurgy part and application
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH059509A (en) Sintered body of high-alloy tool steel and production thereof
JPS61127848A (en) Manufacture of sintered alnico magnet
JPS6312133B2 (en)
JPH0827536A (en) Production of sintered compact of stainless steel
JPS59126602A (en) Manufacture of permanent magnet
JPH01212702A (en) Manufacture of magnetic material
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JPH05148590A (en) Low thermal expansion alloy powder and composition thereof
JPH01212706A (en) Manufacture of magnetic material
JPH01212705A (en) Manufacture of magnetic material
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH0681004A (en) Method for powder metallurgy
JP2639812B2 (en) Magnetic alloy powder for sintering
JPH01136308A (en) Sintered body of magnetic alloy and manufacturing thereof
JPH07188801A (en) Production of titanium sintered compact
KR850000618B1 (en) Sintered powdered titanium alloy of method