JP2004149813A - High density material, and production method therefor - Google Patents

High density material, and production method therefor Download PDF

Info

Publication number
JP2004149813A
JP2004149813A JP2002312986A JP2002312986A JP2004149813A JP 2004149813 A JP2004149813 A JP 2004149813A JP 2002312986 A JP2002312986 A JP 2002312986A JP 2002312986 A JP2002312986 A JP 2002312986A JP 2004149813 A JP2004149813 A JP 2004149813A
Authority
JP
Japan
Prior art keywords
weight
density
sintering
high density
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002312986A
Other languages
Japanese (ja)
Inventor
Shuichi Teramoto
修一 寺本
Nobushi Goto
信志 後藤
Kazunori Daiho
和則 大穂
Yasunao Kai
安直 甲斐
Shigeya Sakaguchi
茂也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2002312986A priority Critical patent/JP2004149813A/en
Publication of JP2004149813A publication Critical patent/JP2004149813A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high density material which has a density of ≥18.6 g/cm<SP>3</SP>, and to provide a low-cost production method therefor in which a sintering temperature is ≤1,500°C, and pressurization working is not required after sintering. <P>SOLUTION: By weight, ≥98 wt.% tungsten powder, the powder of two or three kinds of metals selected from Ni, Co and Fe by ≥0.1%, respectively, and by 0.2 to 1.8% in total, the powder of one or more kinds of metals selected from Cu and Al by 0.1 to 1.5% in total, and an organic binder are mixed in a mixer, and the powdery mixture is compacted, is thereafter degreased, and is sintering at ≤1,500°C in an H<SB>2</SB>atmosphere to obtain the high density material. The material having denseness and high density can be obtained at a temperature lower than that in the conventional case by using the method for producing the high density material. Further, operating properties more satisfactory than those of the conventional material and free from deterioration can be obtained when the high density material is used for the oscillator of a portable telephone, the weight means of a self-winding watch and a self-winding power generation mechanism, a radiation shielding material or the like. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、放射線遮蔽材、携帯電話用等の着信、お知らせ用バイブレータに用いる振動子、自動発電用時計等の重錘、航空機・ヘリコプター等のバランスウエイト等に使用される高密度材料とその製造方法に関する。
【0002】
【従来の技術】
従来より、タングステンを主成分とした部材は粉末冶金法、金属粉末射出成形(以下MIM法と記載する)等にて製造され、その高密度特性により放射線遮蔽材、携帯電話用等の着信、お知らせ用バイブレータに用いる振動子、自動発電用時計等の重錘、航空機・ヘリコプター等のバランスウエイト等に使用されている。また、タングステンの持つ高温域での優れた機械的特性により電極材、ダイカスト金型等にも使用されている。
これらのタングステン基材料は主に、タングステンを80〜97重量%含有したW−Ni−Fe系、W−Ni−Cu系、W−Mo−Ni−Fe系からなる材料が提案されており、現在前記用途に実際に使用されている。これらの方法によれば、密度は通常18.4g/cm程度まで上げることができるが、それ以上の密度を得ることは困難である。例として特開平4−36437号公報や特開平5−263164号公報に示される高密度金属についての発明がこれにあたるが、そのいずれも実施例中の材料の密度は18.4g/cm程度であり、それ以上の密度は得られていない。
前記用途に使用する材料は密度が高ければ高いほど好ましい。タングステンを主成分とする材料ではタングステン量を増やし、タングステン以外の成分(Cu、Fe等のより低密度の金属成分)を減らすことにより密度を上げることができる。
【0003】
しかしながら、従来の製法ではタングステンが98重量%を超えると、バインダー相であるNi−Fe相やNi−Cu相の絶対量が減少し、焼結が促進せず、緻密化が困難となってしまう。そのため、焼結温度を1600℃以上に上げるか、タングステンの製造方法と同様に焼結後の鍛造等の加圧加工により緻密化を促進させる必要があった。
【0004】
しかし前者は、焼結温度上昇による電力消費や焼結治具等の消耗が激しく、製造工程上効率的でなく、また後者は焼結後に加工が必要となるためにニアネットシェイプを特徴とする粉末冶金法としては採用できないという問題があった。
【0005】
【発明が解決しようとする課題】
前記問題を達成するために、焼結温度が1500℃以下であり、焼結後の加圧加工を必要とせずに、密度が18.6g/cm以上の高密度材料を得ることを本発明の取り組むべき課題とした。
【0006】
【課題を解決するための手段】
請求項1に記載の本発明は、タングステンを98重量%以上、Ni、Co、Feのうち2種または3種を各0.1重量%以上で合計0.2〜1.8重量%含み、かつ、Cu、Alのうち1種または2種を計0.1〜1.5重量%含み、密度が18.6g/cm以上であることを特徴とする高密度材料である。
添加される金属のNi、Co、Fe、Cu、Alは、いずれも融点が600〜1600℃の間にあり、焼結時の高温下ではタングステン粒子とバインダー粒子の間で粒成長現象が起こり、その焼結温度を1500℃以下の低温にて行うことができる。
本発明の要件は、まずタングステンにNi、Co、Feのうち2種またはを3種を各0.1重量%以上添加することである。Ni、Co、Feは1200℃程度の温度からタングステンと拡散し、タングステン自体の焼結を促進する働きがある。そのために、ある程度(数10ミクロン)の大きさまで比較的容易にタングステンは結晶粒子成長をさせる働きがある。この際に添加する金属が1種のみであれば、タングステン量が98重量%以上の場合、タングステン成分のバインダー相への拡散及びバインダー成分のタングステン相への拡散が不十分なために、十分な効果が現れず焼結温度を1500℃以下の低温とすることができない。そのために、本発明のように2種または3種添加する必要がある。また、その量については各0.1重量%以上で合計0.1〜1.8重量%が好ましい。バインダー成分は複数の金属成分を含むことによりそれらの合金が生成され、その融点が低くなる。例えば、Fe単体の融点は約1535℃程度であるが、これにNiを20重量%程度添加すれば1500℃以下までその融点は下がる。融点が下がれば、焼結温度もそれに伴い下げることができる。焼結温度を効果的に下げ、添加金属を少なくして密度を上げるためにには少なくとも各0.1重量%が必要である。各添加元素が0.1重量%より少ない場合は合金として融点を下げることができずに、十分な効果が得られない。また、バインダー相の融点を下げる働きは2種の添加よりも3種添加する方が顕著に現れより好ましい。
また、Fe、Ni、Coの添加量の合計については、最低0.1重量%の添加が必要であるが、1.8重量%を越えた量添加すると、理論密度で18.6g/cmを超える焼結体が得られない。
また、Cu、Alのうち1種または2種を0.1〜1.5重量%それぞれ含む必要がある。Cu、Al等の低融点金属を含有する事で、1100℃以下で液相が出現し低温からの液相焼結が可能となる。Cu、Alを添加することにより、低融点の液層を1000℃程度にて生成し、成長したタングステン粒子同士を効率よく結合させ、密度を上げることができる。その量については0.1重量%未満であれば液相の量が少なく十分に焼結が進まず、また1.5重量%を越えれば理論密度で18.6g/cmを超える焼結体が得られない。そのためにCu、Alの添加量は計0.1〜1.5重量%とする必要がある。
また、前記Ni、Co、Feのうち2種または3種とCu、Alのうち1種または2種のいずれも添加する必要がある。
Ni、Co、Feは1200℃程度の温度からタングステンと拡散し、タングステン自体の焼結を促進する働きがある。そのために、ある程度(数10ミクロン)の大きさまでは比較的容易にタングステンは粒成長する。ところが、これらにより発生する液層の発生温度は1500℃程度と比較的高いために、1500℃を超える温度まで昇温をしなければ成長したタングステン粒子同士の結合が行われない。
また、Cu、Alのみを添加した場合はそれらによる液層は1000℃程度で発生するが、これらの金属にはタングステンの焼結を促進させる効果はほとんどない。そのためにタングステンにCu、Alのみを添加してもタングステン粒子そのものの焼結が進まずに、十分に緻密化させるためにはCu、Alを10重量%程度以上添加する必要が生じる。しかしながらCu、Alは密度が低いために、1.5重量%以上添加すれば求める密度は得られない。
以上の理由により、Ni、Co、Feのうち2種または3種かつCu、Alのうち1種または2種をいずれも添加する必要がある。
【0007】
請求項2に記載の本発明は、請求項1の高密度材料からなることを特徴とする放射線遮蔽材である。放射線遮蔽能力は材料の密度と比例関係にある。そのために、密度は高ければ高いほどよい。本発明の遮蔽材は、密度が18.6g/cm以上と高いために、同じ体積を有す他の材料と比較して遮蔽能力が高い。また、例えば単体のタングステンなどと比較した場合、その製造コストは著しく安価に製造することができる。
【0008】
請求項3に記載の本発明は、請求項1の高密度材料からなることを特徴とするバランスウェイトである。バランスウェイトとしての能力は材料の密度と比例関係にある。そのために、密度は高ければ高いほどよい。本発明のバランスウェイトは、密度が18.6g/cm以上と高いために、同じ体積を有す他の材料と比較して占める体積を小さくし、機械などの設計をコンパクトにすることができる。また、自動車用のタイヤホイールなどの回転体に使用する場合は、体積を小さくすることが可能なためにその外観を損なわない。また、例えば単体のタングステンなどと比較した場合、著しく安価に製造することができる。また、生体や環境に無害であるために万一はずれたり、破損があった場合でも環境に影響を与えない。
【0009】
請求項4に記載の本発明は、請求項1記載の高密度材料からなることを特徴とする回転重錘である。特に自動巻時計や自動巻発電機構を有す時計に用いる回転重錘は限られた空間の中で重錘を回転させ、効率的にゼンマイを巻きあげたり、または発電する必要がある。そのために、回転重錘は密度が高く、変形してはならないので剛性が高く、精密加工性がよい材料が求められる。本発明の材料はいずれの特性も有しており、回転重錘として使用する材料に好適である。
【0010】
請求項5に記載の本発明は、請求項1記載の高密度材料からなることを特徴とする振動子である。特に携帯電話用等の着信、お知らせ用バイブレータに用いる振動子として優れている。携帯電話の振動子は、通常一辺が4〜7mm程度の大きさのタングステン合金であるが、本発明の振動子はより小型化が可能であり、無害なために使用後の処理も容易である。
【0011】
請求項6に記載の本発明は、タングステン粉末を98重量%以上、Ni、Co、Feのうち2種または3種の粉末を各0.1重量%以上で合計0.2〜1.8重量%、かつ、Cu、Alのうち1種または2種の粉末を計0.1〜1.5重量%と有機物バインダーを混合機にて混合し、成形後に脱脂を行い、焼結をH雰囲気中にて1500℃以下にて行って得ることを特徴とする密度が18.6g/cm以上の高密度材料の製造方法である。焼結温度が1500℃を越えると、温度上昇による電力消費や焼結治具等の消耗が激しく、製造工程上非効率的であるために焼結温度はできるだけ低い方が好ましい。本発明の方法では水素ガスなどを用いた還元雰囲気中にて1500℃以下で焼結するために、電力消費や焼結治具、炉を占有する時間やヒーターの寿命など様々な面でのメリットがある。焼結温度が1500℃を越えると、前記電力消費量が増加し、また、ヒーター寿命は著しく低下する。
【0012】
【発明の実施の形態】
本発明の高密度材料は以下の方法により得ることができる。
すなわち、平均粒径1μm〜10μm程度のタングステン粉末を98重量%以上、平均粒径1μm〜10μm程度のNi、Co、Niのうち2種または3種を合計0.1〜1.8重量%、Cu、Alのうち1種または2種を計0.1〜1.5重量%の各種粉末をボールミルやライカイ機、Vブレンダー混合機、乾式ミキサー等にて混合する。使用する各種粉末は比較的安価に入手できる平均粒径2〜10μmのものが好ましい。
得られた混合粉末にポリエチレングリコール、パラフィン、セチルアルコール等のアルコール系ワックス等などの成形性をよくするための有機物を混合粉末重量に対して1〜3重量%混合し、その後、1〜10ton/cmの圧力で金型プレスを行い成形する。
また、これらの工程については最終製品に対するコストを考慮し、特に形状が複雑で量産の場合にはMIM法にて成形することが好ましい。
次に、不活性雰囲気中又は還元性雰囲気中の400〜1000℃で脱脂処理および予備焼結を行い、その後不活性雰囲気中又は還元性雰囲気中の1200℃〜1500℃にて焼結を行う。これらの予備焼結、脱脂と焼結は同時に行っても良い。
得られた焼結体を必要に応じて機械加工、電気加工などを行うことによって所望の形状を得る。
【0013】
以上の方法にて本発明の高密度材料を得ることができる。以下実施例にてより詳細に説明する。
【0014】
【実施例】
(実施例1)
平均粒径4μmのタングステン粉末を98.0重量%、平均粒径2μmのNi粉末を1.5重量%、平均粒径2μmのFe粉末を0.2重量%、平均粒径5μmのCu粉末を0.3重量%を乾式ミキサーにて混合した。
この混合粉末に平均分子量20000である粉末状ポリエチレングリコールをタングステン、Ni、Fe、Cuの粉末の総重量に対して1.5重量%加えて更に混合し、メタノールを加えた後に湿式スプレードライヤーにて造粒した。得られた造粒粉を1ton/cmの圧力にて金型プレスを行った。プレスサイズは5mm×40mm×4mmであった。
その後、H(水素ガス)雰囲気中にて室温から800℃まで50℃/時間の速度で昇温し、800℃にて1時間保持し、その後炉冷するという脱脂および予備焼結を行った。その後焼結工程として再び焼結炉に投入し、H雰囲気中にて室温から1000℃まで100℃/時間、1000℃から1430℃まで50℃/時間の速度にて昇温し、1430℃にて1時間保持しその後炉冷した。
焼結後、表面の付着物を除去するために、バレル研磨加工を行い表面の付着物やバリ等を除去した。
得られた焼結体を、アルキメデス法にて密度測定したところ密度は18.79g/cmを示した。また、得られた焼結体の物理的特性はロックウェルBスケールにて硬度107、3点曲げ曲げ強度は1400MPa、ヤング率は330GPaであった。
以上の工程にて得られた試料を試料No.1とし、表1の物性表に示した。
次に、各粉末の組成を表1中の試料No.2〜試料No.7に示すように変え、それぞれの組成について最も高い密度が得られる焼結温度を調査し、その時の焼結温度と得られた密度および物性を表1に示した。
表1の結果から、本発明の範囲内の試料はすべて密度が18.6g/cm以上であり、チッピングや割れなどのない良好な焼結体が得られた。
これに対し、Fe、Co、Niを1種しか含まない試料No.11〜試料No.13の試料は十分な密度を得ることができなかった。また、試料No.14および試料No.15の試料の結果から、Fe、Co、Niを2種以上含んでいても、その総量が0.1〜1.8重量%の範囲外の試料は同様に密度が得られないか、または得られたとしても高い焼結温度が必要であり、製造工程としては適当でない。
また、試料No.16〜試料No.18の試料の結果から、Cu、Alの添加量についても密度や他の特性を得るために本発明の範囲0.1〜1.5重量%必要であることがわかった。
1500℃以下の焼結温度にて18.6g/cmの密度を出すためには本発明の範囲の組成が必要であった。
【0015】
【表1】

Figure 2004149813
表1中*の付いた試料No.の試料は本発明の範囲外の比較例である
【0016】
(実施例2)
平均粒径4μmのW粉末を98.0重量%と、平均粒径2μmのNi粉末を1.5重量%と、平均粒径2μmのFe粉末を0.2重量%と平均粒径5μmのCu粉末0.3重量%とを乾式ミキサーで混合した。
この後、この混合粉末にパラフィン、ポリエチレングリコール、エチレン−酢酸ビニル共重合体を3:1:1の割合で4外部重量%添加して混練し、ペレットを得た。
このペレットをノズル温度110℃、射出圧力800kg/cmの条件で射出成形して5mm×10mm×30mmの成形体を得た。
この成形体をまず、大気中160℃で10H保持後、引き続きH雰囲気中で800℃まで50℃/時間の速度で昇温し、800℃で5時間保持し、その後炉冷するという脱脂および予備焼結を行った。その後再び焼結炉に投入し、H雰囲気中にて室温から1000℃まで100℃/時間、1000℃から1450℃まで50℃/時間の速度にて昇温し、1450℃にて1時間保持し、その後炉冷するという焼結を行った。
得られた焼結体を、アルキメデス法にて比重測定したところ、相対密度は99.2%である18.79(g/cm)値を示した。また、得られた焼結体の物理的特性は硬度HRB(ロックウェルBスケール)で105、3点曲げ試験抗折力測定により測定した抗折力は1350MPa、ヤング率は320GPaであり、いずれも良好な特性を示した。
【0017】
(実施例3)
実施例1または実施例2にて作製した、試料No.1〜試料No.7の本発明の高密度材料を携帯電話用等の着信、お知らせ用バイブレータに用いる振動子として用いたところ、その密度のために振幅、エネルギーの大きい振動が得られた。また、長時間使用しても使用時のチッピング、割れ、変色などの不具合は発生しなかった。
【0018】
(実施例4)
つぎに、前記材料を用いて自動車のタイヤホイール用バランスウェイトを製作したところ、例として従来の鉛剤では40gのウェイトの場合は50mm×8mm程度の部分が露出していたが、本発明のウェイトの場合は50mm×3mm程度にとどめることができ、タイヤホイールの外観が損なわれず、また、空力抵抗も向上した。
【0019】
(実施例5)
また、前記材料を腕の動きによる振動でローターを回転させゼンマイを巻き上げるいわゆる「自動巻き時計」や、腕の動きによる振動で発電・充電して時計駆動に必要な電気エネルギーを生み出す「自動巻き発電機構」を有す時計の回転重錘として用いたところ、腕の動きに同調して良好な回転が得られ、発電性能が向上した。また、長期間使用しても使用時のチッピング、割れ、変色、腐食等は発生しなかった。これらの回転重錘は、その時計の外径に制限を受けるために外径の小さい女性用の時計や、形状が円形ではなく大きい内接円が取れない、たとえば長方形の時計では充分な直径が取れずに実用化は難しかった。本発明の回転重錘を用いることにより外径が18mm程度の小型の時計や内接円が15mm程度の長方形の時計に使用した場合でも十分使用することができた。
【0020】
(実施例6)
さらに、前記材料を板形状として原子炉圧力容器内の遮蔽材として使用したところ、タングステン板と同等の遮蔽能力を示した。
【効果】
本発明の高密度材料を得ることにより密度18.6g/cm以上の高密度材料を得ることができる。また、本発明の高密度材料の製造方法を用いることにより、従来より低温で緻密で高密度の材料を得ることができる。さらに本発明の高密度材料を携帯電話の振動子や、自動巻時計や自動巻発電機構の重錘、放射線遮蔽材などに使用すると従来の材料より良好で劣化のない動作特性が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to high-density materials used for radiation shielding materials, vibrators used for incoming calls for mobile phones, notification vibrators, weights for automatic power generation watches, etc., balance weights for aircraft, helicopters, etc., and their production. About the method.
[0002]
[Prior art]
Conventionally, components containing tungsten as a main component have been manufactured by powder metallurgy, metal powder injection molding (hereinafter referred to as MIM method), etc., and due to their high density characteristics, radiation shielding materials, incoming calls for mobile phones, etc. Used for vibrators, weights for automatic power generation clocks, etc., and balance weights for aircraft, helicopters, etc. Also, due to the excellent mechanical properties of tungsten in the high temperature range, it is also used for electrode materials, die casting dies, and the like.
As these tungsten-based materials, materials composed of W-Ni-Fe-based, W-Ni-Cu-based, and W-Mo-Ni-Fe-based materials containing 80 to 97% by weight of tungsten have been proposed. It is actually used for the above purpose. According to these methods, the density can usually be increased to about 18.4 g / cm 3 , but it is difficult to obtain a higher density. As examples, the inventions relating to high-density metals disclosed in JP-A-4-36437 and JP-A-5-263164 correspond to the invention. In any case, the density of the material in the examples is about 18.4 g / cm 3 . Yes, no higher density was obtained.
The higher the density of the material used for the above application, the better. In a material containing tungsten as a main component, the density can be increased by increasing the amount of tungsten and reducing components other than tungsten (lower-density metal components such as Cu and Fe).
[0003]
However, in the conventional production method, when tungsten exceeds 98% by weight, the absolute amount of the Ni—Fe phase or Ni—Cu phase as the binder phase decreases, sintering is not accelerated, and densification becomes difficult. . For this reason, it is necessary to increase the sintering temperature to 1600 ° C. or higher, or to promote densification by pressure processing such as forging after sintering in the same manner as in the method for producing tungsten.
[0004]
However, the former is inefficient in the manufacturing process due to severe consumption of power and sintering jigs due to a rise in sintering temperature, and the latter is characterized by a near net shape because processing is required after sintering. There is a problem that it cannot be adopted as a powder metallurgy method.
[0005]
[Problems to be solved by the invention]
In order to achieve the above-mentioned problem, it is an object of the present invention to obtain a high-density material having a density of 18.6 g / cm 3 or more without a sintering temperature of 1500 ° C. or lower, and without the need for press working after sintering. It was an issue to be addressed.
[0006]
[Means for Solving the Problems]
The present invention according to claim 1 includes 98% by weight or more of tungsten, 0.1% by weight or more of each of two or three types of Ni, Co, and Fe in a total of 0.2 to 1.8% by weight, Further, it is a high-density material containing one or two of Cu and Al in a total amount of 0.1 to 1.5% by weight and having a density of 18.6 g / cm 3 or more.
The added metals Ni, Co, Fe, Cu and Al all have a melting point of between 600 and 1600 ° C., and at high temperatures during sintering, a grain growth phenomenon occurs between the tungsten particles and the binder particles, The sintering can be performed at a low temperature of 1500 ° C. or less.
The requirement of the present invention is that, first, two or three of Ni, Co, and Fe are added to tungsten by 0.1% by weight or more. Ni, Co, and Fe diffuse from tungsten at a temperature of about 1200 ° C. and have a function of promoting sintering of tungsten itself. For this reason, tungsten has the function of relatively easily growing crystal grains to a certain size (several tens of microns). If only one kind of metal is added at this time, if the amount of tungsten is 98% by weight or more, the diffusion of the tungsten component into the binder phase and the diffusion of the binder component into the tungsten phase are insufficient. No effect is exhibited, and the sintering temperature cannot be lowered to 1500 ° C. or lower. Therefore, it is necessary to add two or three kinds as in the present invention. Further, the amount is preferably 0.1% by weight or more and 0.1 to 1.8% by weight in total. Since the binder component contains a plurality of metal components, an alloy thereof is formed, and its melting point is lowered. For example, the melting point of Fe alone is about 1535 ° C., and if about 20% by weight of Ni is added thereto, the melting point can be lowered to 1500 ° C. or less. If the melting point is lowered, the sintering temperature can be lowered accordingly. In order to effectively lower the sintering temperature and increase the density with less added metal, at least 0.1% by weight is required for each. If each additive element is less than 0.1% by weight, the melting point cannot be lowered as an alloy, and a sufficient effect cannot be obtained. In addition, the function of lowering the melting point of the binder phase is more remarkable when three types are added than two types, and is more preferable.
Further, with respect to the total amount of Fe, Ni and Co added, it is necessary to add at least 0.1% by weight. However, if the amount exceeds 1.8% by weight, the theoretical density is 18.6 g / cm 3. Cannot be obtained.
Further, it is necessary to contain one or two of Cu and Al in an amount of 0.1 to 1.5% by weight, respectively. By containing a low melting point metal such as Cu or Al, a liquid phase appears at 1100 ° C. or lower, and liquid phase sintering from a low temperature becomes possible. By adding Cu and Al, a liquid layer having a low melting point is generated at about 1000 ° C., and the grown tungsten particles can be efficiently bonded to each other to increase the density. If the amount is less than 0.1% by weight, the amount of the liquid phase is small and sintering does not proceed sufficiently, and if it exceeds 1.5% by weight, the sintered body exceeds 18.6 g / cm 3 in theoretical density. Can not be obtained. Therefore, the added amount of Cu and Al needs to be 0.1 to 1.5% by weight in total.
Also, it is necessary to add two or three of Ni, Co, and Fe and one or two of Cu and Al.
Ni, Co, and Fe diffuse from tungsten at a temperature of about 1200 ° C. and have a function of promoting sintering of tungsten itself. Therefore, tungsten grows relatively easily in a certain size (several tens of microns). However, the temperature at which the liquid layer is generated is relatively high at about 1500 ° C., so that the grown tungsten particles are not bonded to each other unless the temperature is raised to a temperature exceeding 1500 ° C.
When only Cu and Al are added, a liquid layer due to them is generated at about 1000 ° C., but these metals have almost no effect of promoting sintering of tungsten. Therefore, even if only Cu and Al are added to tungsten, sintering of the tungsten particles themselves does not proceed, and it is necessary to add about 10% by weight or more of Cu and Al in order to sufficiently densify. However, since Cu and Al have low densities, the desired density cannot be obtained if 1.5% by weight or more is added.
For the above reasons, it is necessary to add two or three of Ni, Co, and Fe and one or two of Cu and Al.
[0007]
According to a second aspect of the present invention, there is provided a radiation shielding material comprising the high-density material of the first aspect. Radiation shielding capacity is proportional to the density of the material. Therefore, the higher the density, the better. The shielding material of the present invention has a high density of 18.6 g / cm 3 or more, and therefore has a higher shielding ability than other materials having the same volume. Further, when compared with, for example, tungsten alone, the manufacturing cost can be significantly reduced.
[0008]
According to a third aspect of the present invention, there is provided a balance weight comprising the high-density material of the first aspect. The ability as a balance weight is proportional to the density of the material. Therefore, the higher the density, the better. Since the balance weight of the present invention has a high density of 18.6 g / cm 3 or more, it can occupy less volume than other materials having the same volume, and can make the design of a machine or the like compact. . Further, when used for a rotating body such as an automobile tire wheel, the volume can be reduced, so that its appearance is not impaired. In addition, when compared with, for example, tungsten alone, it can be manufactured at extremely low cost. Further, since it is harmless to living organisms and the environment, even if it comes off or is damaged, it does not affect the environment.
[0009]
According to a fourth aspect of the present invention, there is provided a rotary weight comprising the high-density material according to the first aspect. In particular, a rotating weight used for a self-winding timepiece or a timepiece having a self-winding power generation mechanism needs to rotate the weight in a limited space to efficiently wind the spring or generate power. Therefore, since the rotating weight has high density and must not be deformed, a material having high rigidity and good precision workability is required. The material of the present invention has both properties and is suitable for a material used as a rotary weight.
[0010]
According to a fifth aspect of the present invention, there is provided a vibrator made of the high-density material according to the first aspect. In particular, it is excellent as a vibrator used for a vibrator for incoming calls and notifications for mobile phones and the like. The vibrator of a mobile phone is usually a tungsten alloy having a size of about 4 to 7 mm on a side, but the vibrator of the present invention can be made more compact and harmless, so that it can be easily processed after use. .
[0011]
According to a sixth aspect of the present invention, the tungsten powder is 98% by weight or more, and two or three kinds of powders of Ni, Co, and Fe are each 0.1% by weight or more in a total of 0.2 to 1.8% by weight. %, And a total of 0.1 to 1.5% by weight of one or two kinds of powders of Cu and Al and an organic binder are mixed by a mixer, and after molding, degreasing is performed and sintering is performed in an H 2 atmosphere. A method for producing a high-density material having a density of 18.6 g / cm 3 or more, wherein the method is performed at 1500 ° C. or lower in a medium. If the sintering temperature exceeds 1500 ° C., power consumption due to the temperature rise and sintering jigs and the like are severely consumed, and the sintering temperature is inefficient in the manufacturing process. In the method of the present invention, since sintering is performed at 1500 ° C. or less in a reducing atmosphere using hydrogen gas or the like, advantages in various aspects such as power consumption, sintering jig, time for occupying the furnace, and life of the heater are provided. There is. When the sintering temperature exceeds 1500 ° C., the power consumption increases, and the life of the heater is significantly reduced.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The high-density material of the present invention can be obtained by the following method.
That is, 98% by weight or more of tungsten powder having an average particle diameter of about 1 μm to 10 μm, and two or three kinds of Ni, Co, and Ni having an average particle diameter of about 1 μm to 10 μm are 0.1 to 1.8% by weight in total. One or two of Cu and Al are mixed with a total of 0.1 to 1.5% by weight of various powders by a ball mill, a raikai machine, a V blender mixer, a dry mixer, or the like. The various powders to be used are preferably those having an average particle size of 2 to 10 μm which can be obtained at relatively low cost.
An organic substance such as polyethylene glycol, paraffin, or an alcohol wax such as cetyl alcohol for improving the moldability is mixed with the obtained mixed powder in an amount of 1 to 3% by weight based on the weight of the mixed powder, and then 1 to 10 ton / Molding is performed by pressing a mold at a pressure of cm 3 .
In addition, these steps are preferably formed by the MIM method in consideration of the cost for the final product, particularly when the shape is complicated and mass production is performed.
Next, degreasing and preliminary sintering are performed at 400 to 1000 ° C. in an inert atmosphere or a reducing atmosphere, and then sintering is performed at 1200 to 1500 ° C. in an inert atmosphere or a reducing atmosphere. These preliminary sintering, degreasing and sintering may be performed simultaneously.
The desired shape is obtained by subjecting the obtained sintered body to machining, electric machining, or the like as necessary.
[0013]
The high-density material of the present invention can be obtained by the above method. Hereinafter, the present invention will be described in more detail with reference to Examples.
[0014]
【Example】
(Example 1)
98.0 wt% of tungsten powder having an average particle diameter of 4 μm, 1.5 wt% of Ni powder having an average particle diameter of 2 μm, 0.2 wt% of Fe powder having an average particle diameter of 2 μm, and Cu powder having an average particle diameter of 5 μm. 0.3% by weight was mixed with a dry mixer.
To this mixed powder, powdered polyethylene glycol having an average molecular weight of 20,000 was added in an amount of 1.5% by weight based on the total weight of the tungsten, Ni, Fe, and Cu powders, further mixed, and methanol was added thereto, followed by a wet spray drier. Granulated. The obtained granulated powder was subjected to mold pressing at a pressure of 1 ton / cm 2 . The press size was 5 mm x 40 mm x 4 mm.
Thereafter, in a H 2 (hydrogen gas) atmosphere, the temperature was raised from room temperature to 800 ° C. at a rate of 50 ° C./hour, held at 800 ° C. for 1 hour, and then subjected to degreasing and preliminary sintering by furnace cooling. . Thereafter, as a sintering step, it is again put into a sintering furnace, and the temperature is raised from room temperature to 1000 ° C. at a rate of 100 ° C./hour and from 1000 ° C. to 1430 ° C. at a rate of 50 ° C./hour in an H 2 atmosphere. For 1 hour and then cooled in the furnace.
After sintering, in order to remove the deposits on the surface, barrel polishing was performed to remove deposits and burrs on the surface.
When the density of the obtained sintered body was measured by the Archimedes method, the density was 18.79 g / cm 3 . The physical properties of the obtained sintered body were a hardness of 107 on a Rockwell B scale, a three-point bending strength of 1400 MPa, and a Young's modulus of 330 GPa.
The sample obtained in the above steps was designated as Sample No. 1 and shown in the physical properties table of Table 1.
Next, the composition of each of the powders was changed to the sample No. in Table 1. No. 2 to sample no. 7, the sintering temperature at which the highest density was obtained for each composition was investigated, and the sintering temperature, the obtained density, and the physical properties at that time are shown in Table 1.
From the results in Table 1, all the samples within the range of the present invention had a density of 18.6 g / cm 3 or more, and a good sintered body without chipping or cracking was obtained.
On the other hand, Sample No. containing only one type of Fe, Co, and Ni was used. 11 to Sample No. Thirteen samples could not obtain sufficient density. Further, the sample No. 14 and sample no. From the results of the fifteen samples, even if two or more types of Fe, Co, and Ni are contained, a sample whose total amount is out of the range of 0.1 to 1.8% by weight does not similarly obtain the density or obtains the density. Even if it is performed, a high sintering temperature is required, which is not suitable as a manufacturing process.
Further, the sample No. 16 to sample no. From the results of the 18 samples, it was found that the addition amount of Cu and Al required the range of 0.1 to 1.5% by weight of the present invention to obtain the density and other characteristics.
To obtain a density of 18.6 g / cm 3 at a sintering temperature of 1500 ° C. or less, a composition within the scope of the present invention was required.
[0015]
[Table 1]
Figure 2004149813
Sample No. marked with * in Table 1. Is a comparative example outside the scope of the present invention.
(Example 2)
98.0% by weight of W powder having an average particle size of 4 μm, 1.5% by weight of Ni powder having an average particle size of 2 μm, 0.2% by weight of Fe powder having an average particle size of 2 μm, and Cu having an average particle size of 5 μm. 0.3% by weight of the powder was mixed with a dry mixer.
Thereafter, paraffin, polyethylene glycol, and ethylene-vinyl acetate copolymer were added at a ratio of 3: 1: 1 to 4% by weight of external weight, and kneaded to obtain a pellet.
The pellets were injection molded under the conditions of a nozzle temperature of 110 ° C. and an injection pressure of 800 kg / cm 2 to obtain a molded body of 5 mm × 10 mm × 30 mm.
The molded body is first kept in the atmosphere at 160 ° C. for 10 hours, then heated in an H 2 atmosphere to 800 ° C. at a rate of 50 ° C./hour, kept at 800 ° C. for 5 hours, and then cooled in a furnace. Pre-sintering was performed. Thereafter, it is again put into the sintering furnace, and heated in a H 2 atmosphere from room temperature to 1000 ° C. at a rate of 100 ° C./hour and from 1000 ° C. to 1450 ° C. at a rate of 50 ° C./hour, and kept at 1450 ° C. for 1 hour. Then, sintering was performed by furnace cooling.
When the specific gravity of the obtained sintered body was measured by the Archimedes method, the relative density showed a value of 18.79 (g / cm 3 ) of 99.2%. The physical characteristics of the obtained sintered body were 105 in hardness HRB (Rockwell B scale), the bending strength measured by bending strength measurement in a three-point bending test was 1350 MPa, and the Young's modulus was 320 GPa. Good characteristics were shown.
[0017]
(Example 3)
The sample No. manufactured in Example 1 or 2 was used. No. 1 to No. 1 When the high-density material of the present invention No. 7 was used as a vibrator used for a vibrator for incoming calls and notifications for mobile phones and the like, a vibration having a large amplitude and energy was obtained because of its density. In addition, problems such as chipping, cracking and discoloration during use did not occur even when used for a long time.
[0018]
(Example 4)
Next, when a balance weight for an automobile tire wheel was manufactured using the above-mentioned material, a portion of about 50 mm × 8 mm was exposed in the case of a conventional lead agent with a weight of 40 g as an example. In the case of (1), it was possible to keep the size to about 50 mm × 3 mm, the appearance of the tire wheel was not impaired, and the aerodynamic resistance was improved.
[0019]
(Example 5)
In addition, the so-called "automatic winding clock" that rotates the rotor by the vibration of the arm to wind the mainspring, and the "automatic winding power generation" that generates and charges the electric energy required for clock driving by generating and charging the vibration by the movement of the arm. When used as a rotating weight of a watch with a "mechanism", good rotation was obtained in synchronization with the movement of the arm, and power generation performance was improved. Further, chipping, cracking, discoloration, corrosion and the like did not occur even when used for a long time. These rotating weights are limited in the outer diameter of the watch, so women's watches with a small outer diameter, or large inscribed circles that are not circular in shape and do not have a large inscribed circle, for example, rectangular watches have a sufficient diameter. Practical application was difficult because it could not be obtained. By using the rotating weight of the present invention, it was possible to use the watch sufficiently even in a small timepiece having an outer diameter of about 18 mm or a rectangular timepiece having an inscribed circle of about 15 mm.
[0020]
(Example 6)
Further, when the above-mentioned material was used as a shielding material in a reactor pressure vessel in the form of a plate, the shielding performance was equivalent to that of a tungsten plate.
【effect】
By obtaining the high-density material of the present invention, a high-density material having a density of 18.6 g / cm 3 or more can be obtained. Further, by using the method for producing a high-density material of the present invention, a denser and higher-density material can be obtained at a lower temperature than in the past. Further, when the high-density material of the present invention is used for a vibrator of a mobile phone, a weight of a self-winding timepiece or a self-winding power generation mechanism, a radiation shielding material, etc., better operating characteristics than conventional materials can be obtained without deterioration.

Claims (6)

タングステンを98重量%以上、Ni、Co、Feのうち2種または3種を各0.1重量%以上で合計0.2〜1.8重量%含み、かつ、Cu、Alのうち1種または2種を計0.1〜1.5重量%含み、密度が18.6g/cm以上であることを特徴とする高密度材料。98% by weight or more of tungsten, two or three kinds of Ni, Co, and Fe each containing 0.1% by weight or more, and a total of 0.2 to 1.8% by weight, and one or more of Cu and Al A high-density material containing a total of 0.1 to 1.5% by weight and having a density of 18.6 g / cm 3 or more. 請求項1記載の高密度材料からなることを特徴とする放射線遮蔽材。A radiation shielding material comprising the high-density material according to claim 1. 請求項1記載の高密度材料からなることを特徴とするバランスウェイト。A balance weight comprising the high-density material according to claim 1. 請求項1記載の高密度材料からなることを特徴とする回転重錘。A rotating weight made of the high-density material according to claim 1. 請求項1記載の高密度材料からなることを特徴とする振動子。A vibrator made of the high-density material according to claim 1. タングステン粉末を98重量%以上、Ni、Co、Feのうち2種または3種の粉末を各0.1重量%以上で合計0.2〜1.8重量%、かつ、Cu、Alのうち1種または2種の粉末を計0.1〜1.5重量%と有機物バインダーを混合機にて混合し、成形後に脱脂を行い、焼結をH雰囲気中にて1500℃以下にて行って得ることを特徴とする密度が18.6g/cm以上の高密度材料の製造方法。98% by weight or more of tungsten powder, two or three kinds of powders of Ni, Co, and Fe are respectively 0.1% by weight or more, and a total of 0.2 to 1.8% by weight, and 1% of Cu and Al A seed or two kinds of powders are mixed in a total of 0.1 to 1.5% by weight and an organic binder in a mixer, and after molding, degreasing is performed, and sintering is performed at 1500 ° C. or lower in an H 2 atmosphere. A method for producing a high-density material having a density of 18.6 g / cm 3 or more, characterized by being obtained.
JP2002312986A 2002-10-28 2002-10-28 High density material, and production method therefor Withdrawn JP2004149813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312986A JP2004149813A (en) 2002-10-28 2002-10-28 High density material, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312986A JP2004149813A (en) 2002-10-28 2002-10-28 High density material, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004149813A true JP2004149813A (en) 2004-05-27

Family

ID=32457724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312986A Withdrawn JP2004149813A (en) 2002-10-28 2002-10-28 High density material, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004149813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789592A (en) * 2014-01-24 2014-05-14 株洲华美钨合金有限公司 Tungsten alloy material and preparation method and application thereof in preparation of molten aluminum filter disc
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same
CN109706337A (en) * 2018-12-28 2019-05-03 有研工程技术研究院有限公司 A kind of preparation method of tungsten particle reinforced aluminum matrix composites
CN111020334A (en) * 2020-01-08 2020-04-17 郑州航空工业管理学院 Preparation method of high-densification tungsten-copper refractory alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789592A (en) * 2014-01-24 2014-05-14 株洲华美钨合金有限公司 Tungsten alloy material and preparation method and application thereof in preparation of molten aluminum filter disc
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same
JP2018003135A (en) * 2016-07-07 2018-01-11 Jfe精密株式会社 Sintered tungsten-based alloy and manufacturing method therefor
CN109706337A (en) * 2018-12-28 2019-05-03 有研工程技术研究院有限公司 A kind of preparation method of tungsten particle reinforced aluminum matrix composites
CN111020334A (en) * 2020-01-08 2020-04-17 郑州航空工业管理学院 Preparation method of high-densification tungsten-copper refractory alloy
CN111020334B (en) * 2020-01-08 2020-10-20 郑州航空工业管理学院 Preparation method of high-densification tungsten-copper refractory alloy

Similar Documents

Publication Publication Date Title
CN106893923B (en) A kind of cutter multi-principal elements alloy and preparation method thereof
CN106893920B (en) A kind of high-wearing feature multi-principal elements alloy cutter and preparation method thereof
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
CN107552802A (en) A kind of cermet titanium carbonitride based solid solution powder and preparation method
SG175953A1 (en) Ferromagnetic-material sputtering target
JP2001081522A (en) High density non-magnetic alloy and its manufacturing method
JPH0689365B2 (en) Atomized prealloyed steel powder for powder metallurgy
CN108706974A (en) A kind of ramet superhigh temperature ceramics and preparation method thereof of normal pressure solid-phase sintering densification hafnium solid solution
JP6262332B2 (en) Sputtering target made of Al-Te-Cu-Zr alloy and method for producing the same
JP2004149813A (en) High density material, and production method therefor
CN100422362C (en) Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
JP5358968B2 (en) Metal bond grinding wheel
CN104588634B (en) A kind of discharge plasma sintering manufacture craft of high rigidity polycrystalline diamond wire drawing die
JPS5857502B2 (en) Sintered material with toughness and wear resistance
CN107378802B (en) A kind of grinding wheel and preparation method thereof for QFN encapsulation chip cutting
CN108220743A (en) A kind of multi-principal elements alloy high abrasion cutter and preparation method thereof
JP3675378B2 (en) High specific gravity high strength tungsten sintered alloy weight
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
CN1724469A (en) Method for manufacturing multi-element ceramic powder and sintered compact
TW201039945A (en) Intermediate for producing sintered metallic components, a process for producing the intermediate and the production of the components
CN107502808A (en) A kind of complete pre-alloyed diamond tool tyre case powder
JP2813159B2 (en) Manufacturing method of aluminum sintered material
JPH06172810A (en) Production of tungsten alloy sintered compact
JP3839632B2 (en) Method for producing Ni-Al intermetallic compound
JPH07300648A (en) High strength sintered w-base alloy and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110