JP2016056445A - Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy - Google Patents

Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy Download PDF

Info

Publication number
JP2016056445A
JP2016056445A JP2015061002A JP2015061002A JP2016056445A JP 2016056445 A JP2016056445 A JP 2016056445A JP 2015061002 A JP2015061002 A JP 2015061002A JP 2015061002 A JP2015061002 A JP 2015061002A JP 2016056445 A JP2016056445 A JP 2016056445A
Authority
JP
Japan
Prior art keywords
powder
mixed
mixed powder
iron
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015061002A
Other languages
Japanese (ja)
Inventor
雅道 藤川
Masamichi Fujikawa
雅道 藤川
尚樹 八代
Naoki Yashiro
尚樹 八代
大平 晃也
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of JP2016056445A publication Critical patent/JP2016056445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide mixed powder for powder metallurgy capable of obtaining a sintered metal component having homogeneity and high density, in which the fluidity of the mixed powder is increased for increasing powder packing properties.SOLUTION: Provided is mixed powder for powder metallurgy containing iron-based powder and carbon powder, being the powder subjected to stirring and mixing under the conditions (the number of revolution and stirring time) where fluidity reaches below 30 s/50 g after charing to a mixing machine, in which the Vickers hardness (Hv) of the iron-based powder is 100 or lower, the particle diameter of the carbon powder D90 is 4 to 10 μm, and a sintered metal component formed using the mixed powder has a density of 7.6 g/cm3 or higher.SELECTED DRAWING: Figure 3

Description

本発明は、粉末冶金用混合粉末及びこれを用いた焼結金属部品、並びに粉末冶金用混合粉末の製造方法に関する。   The present invention relates to a mixed powder for powder metallurgy, a sintered metal part using the same, and a method for producing a mixed powder for powder metallurgy.

鉄を主成分とする焼結体を製造する粉末冶金では、原料として、主原料粉末としての鉄基粉末の他、焼結体の強度や硬度などの物性を向上させるための黒鉛粉末や、合金成分を含む副原料粉末、成形性を確保するための潤滑剤などを混合した混合粉末が用いられる。この混合粉末は、各粉末の形状や粒径、比重等の粉体特性が異なるため、混合粉末中で特定成分(例えば黒鉛粉末)が偏析したり、混合粉末の流動性が低下したりする問題がある。混合粉末に偏析が生じると、製品間の密度や機械的性質にばらつきが生じ、品質安定性が損なわれる。また、混合粉末の流動性が低下すると、ホッパーから金型への粉末流下性が悪化し、金型への粉末充填性の低下を招く恐れがある。   In powder metallurgy for producing sintered bodies mainly composed of iron, as raw materials, in addition to iron-based powders as main raw material powders, graphite powders and alloys for improving physical properties such as strength and hardness of sintered bodies A mixed powder in which an auxiliary raw material powder containing components and a lubricant for ensuring moldability are mixed is used. This mixed powder has different powder characteristics such as shape, particle size, and specific gravity, etc., so that specific components (for example, graphite powder) are segregated in the mixed powder and the fluidity of the mixed powder is reduced. There is. When segregation occurs in the mixed powder, the density and mechanical properties vary between products, and quality stability is impaired. Moreover, when the fluidity | liquidity of mixed powder falls, there exists a possibility that the powder flowability from a hopper to a metal mold | die may deteriorate, and the powder filling property to a metal mold | die may be reduced.

例えば、下記の特許文献1には、黒鉛を微細化(平均粒径4μm以下)すると共に、鉄基粉末と黒鉛とをせん断力を与えながら混合することで、混合粉末中の黒鉛の偏析を防止する技術が開示されている。   For example, in Patent Document 1 below, graphite is refined (average particle size of 4 μm or less), and iron-base powder and graphite are mixed while applying a shearing force to prevent segregation of graphite in the mixed powder. Techniques to do this are disclosed.

特開2012−102355号公報JP 2012-102355 A

しかし、上記の特許文献1には、混合粉末の流動性を高めるための積極的な手法は示されていない。このため、混合粉末の流動性の不足により金型への粉末充填性が低下し、圧粉体、ひいては焼結体の密度が不足する懸念は拭いきれない。   However, the above-mentioned Patent Document 1 does not show an active technique for improving the fluidity of the mixed powder. For this reason, the powder filling property to a metal mold | die falls by lack of the fluidity | liquidity of mixed powder, and the concern that the density of a green compact and by extension, a sintered compact is insufficient cannot be wiped off.

以上の事情に鑑み、本発明が解決すべき課題は、均質且つ高密度の焼結金属部品を得ることができる粉末冶金用混合粉末を提供することにある。   In view of the above circumstances, the problem to be solved by the present invention is to provide a mixed powder for powder metallurgy capable of obtaining a homogeneous and high-density sintered metal part.

従来、粉末冶金用混合粉末(以下、単に「混合粉末」とも言う。)を混合機を用いて撹拌する目的は、混合粉末を均質化すること、特に、微細な炭素粉末(黒鉛粉末)を主成分原料粉末中に均一に分散させることであった。従って、混合粉末が均質になる撹拌条件(回転数や撹拌時間)で撹拌すれば十分であった。本発明者らの検証によれば、混合粉末を所定の条件で撹拌混合することにより、鉄基粉末が丸められ(図3参照)、これにより混合粉末の流動性が高められる(流動度が小さくなる)ことが明らかとなった。従って、混合粉末を撹拌混合する際、炭素粉末等の混合成分が均一に分散されるだけでなく、混合粉末の流動度が所定値未満となるように撹拌条件を設定すれば、均質で且つ流動性の高い混合粉末を得ることができる。   Conventionally, the purpose of stirring a mixed powder for powder metallurgy (hereinafter also simply referred to as “mixed powder”) using a mixer is to homogenize the mixed powder, particularly to use fine carbon powder (graphite powder). It was to disperse | distribute uniformly in a component raw material powder. Therefore, it was sufficient to stir under the stirring conditions (rotation speed and stirring time) in which the mixed powder becomes homogeneous. According to the verification by the present inventors, by mixing and mixing the mixed powder under predetermined conditions, the iron-based powder is rounded (see FIG. 3), thereby improving the fluidity of the mixed powder (the fluidity is small). It became clear. Therefore, when the mixed powder is stirred and mixed, not only the mixed components such as carbon powder are uniformly dispersed, but also if the stirring conditions are set so that the fluidity of the mixed powder is less than a predetermined value, the mixed powder is homogeneous and fluid. A highly mixed powder can be obtained.

本発明は、上記の知見に基づいてなされたものであり、具体的には、鉄基粉末と炭素粉末とを含む粉末冶金用混合粉末であって、流動度が30s/50g未満となる条件で撹拌混合した粉末冶金用混合粉末を提供する。また、本発明は、鉄基粉末と炭素粉末とを含む粉末冶金用混合粉末を製造するための方法であって、流動度が30s/50g未満となる条件で撹拌混合する粉末冶金用混合粉末の製造方法を提供する。   The present invention has been made on the basis of the above knowledge, and specifically, is a mixed powder for powder metallurgy containing an iron-based powder and a carbon powder, and the flow rate is less than 30 s / 50 g. Provided is a mixed powder for powder metallurgy that is stirred and mixed. The present invention is also a method for producing a powder mixture for powder metallurgy comprising an iron-based powder and a carbon powder, wherein the powder mixture for powder metallurgy is mixed with stirring under conditions where the fluidity is less than 30 s / 50 g. A manufacturing method is provided.

上述のように、混合粉末の撹拌条件を適切に設定すれば、撹拌混合により混合粉末の流動度を大幅に低下させることができ、例えば、撹拌混合により、粉末冶金用混合粉末の流動度を、撹拌混合前の前記鉄基粉末のみでの流動度よりも、9s/50g以上低下させることができる。   As described above, if the stirring condition of the mixed powder is appropriately set, the fluidity of the mixed powder can be greatly reduced by stirring and mixing. For example, the fluidity of the mixed powder for powder metallurgy can be reduced by stirring and mixing. The fluidity of the iron-based powder alone before stirring and mixing can be reduced by 9 s / 50 g or more.

混合粉末を激しく撹拌すると、粉末同士や粉末と混合機との衝突により粉末に加工硬化が生じる。粉末が硬すぎると、圧縮性が低下し、密度や寸法精度の低下を招く恐れがある。従って、本発明では、鉄基粉末のビッカース硬さ(HV)が100以下となるように、あるいは、混合前後における前記鉄基粉末のビッカース硬さ(HV)の増加率が20%未満となるように、撹拌条件を設定することが好ましい。   When the mixed powder is vigorously stirred, work hardening occurs in the powder due to collision between the powders or between the powder and the mixer. If the powder is too hard, the compressibility may be reduced, and the density and dimensional accuracy may be reduced. Therefore, in the present invention, the Vickers hardness (HV) of the iron-based powder is 100 or less, or the increase rate of the Vickers hardness (HV) of the iron-based powder before and after mixing is less than 20%. It is preferable to set stirring conditions.

混合粉末に配合する炭素粉末の粒径D90を4μm以上とすれば、極めて微細な炭素粉末を使用する必要がなくなり、炭素粉末の材料入手性や取り扱い性が向上する。尚、粒径D90とは、炭素粉末の体積基準における粒度分布の小径側からの累積体積が90%になるときの粒径のことを言う。   When the particle diameter D90 of the carbon powder blended in the mixed powder is 4 μm or more, it is not necessary to use a very fine carbon powder, and the material availability and handling of the carbon powder are improved. The particle size D90 refers to the particle size when the cumulative volume from the small diameter side of the particle size distribution on the volume basis of the carbon powder is 90%.

ところで、混合粉末中に含まれる炭素粉末は、焼結時に鉄基粉末内に固溶するため、炭素粉末が存在していた場所が空孔となる。通常、炭素粉末の配合量は極微量(例えば1wt%以下)であるため、焼結金属部品が比較的低密度である場合には、上記のような炭素粉末の固溶による空孔の形成が問題となることはほとんどない。しかし、高密度(例えば7.6/cm以上)の焼結金属部品を製造する場合には、上記のような炭素粉末の固溶による空孔が無視できなくなる。このような場合、炭素粉末を微細化し、炭素粉末の固溶によって形成される空孔を微細化することが有効となる。具体的には、炭素粉末の粒径D90を10μm以下とすることが好ましい。 By the way, since the carbon powder contained in the mixed powder is solid-solved in the iron-based powder at the time of sintering, the place where the carbon powder was present becomes a void. Normally, the amount of carbon powder blended is extremely small (for example, 1 wt% or less). Therefore, when sintered metal parts have a relatively low density, voids are formed by solid solution of carbon powder as described above. There is almost no problem. However, when manufacturing a sintered metal part having a high density (for example, 7.6 / cm 3 or more), voids due to solid solution of the carbon powder as described above cannot be ignored. In such a case, it is effective to make the carbon powder finer and to make fine pores formed by solid solution of the carbon powder. Specifically, the particle size D90 of the carbon powder is preferably 10 μm or less.

混合粉末に配合する鉄基粉末としては、例えばFe−Mo合金粉にNiを拡散付着させた拡散合金粉を使用することができる。   As the iron-based powder blended in the mixed powder, for example, a diffusion alloy powder in which Ni is diffused and adhered to an Fe—Mo alloy powder can be used.

せん断混合により粉末冶金用混合粉末を撹拌混合すれば、鉄基粉末が丸められやすくなり、混合粉末の流動性を効率良く高めることができる。この場合、混合機の回転数が小さすぎると、鉄基粉末が十分に丸められずに流動度が大きくなる。一方、混合機の回転数が大きすぎると、鉄基粉末の一部が粉砕されて微粉末が大量に発生し、この微粉末が鉄基粉末の周囲に存在することにより流動度が大きくなる。従って、流動度を30s/50g未満とするためには、混合機の回転数を所定の範囲内(例えば2000〜9000rpm)とすることが好ましい。   If the mixed powder for powder metallurgy is stirred and mixed by shear mixing, the iron-based powder is easily rounded, and the fluidity of the mixed powder can be improved efficiently. In this case, if the rotational speed of the mixer is too small, the iron-based powder is not sufficiently rounded and the fluidity increases. On the other hand, if the rotational speed of the mixer is too large, a portion of the iron-based powder is pulverized to generate a large amount of fine powder, and the fluidity increases due to the presence of this fine powder around the iron-based powder. Therefore, in order to make the fluidity less than 30 s / 50 g, it is preferable to set the rotational speed of the mixer within a predetermined range (for example, 2000 to 9000 rpm).

以上のように、本発明に係る混合粉末は、均質で且つ流動性が高いため、圧縮成形を行う金型のキャビティに均一且つ高密度に充填することが可能となる。従って、この混合粉末を用いれば、均質且つ高密度の焼結金属部品を得ることができる。   As described above, since the mixed powder according to the present invention is homogeneous and has high fluidity, it is possible to uniformly and densely fill the cavity of a mold for compression molding. Therefore, if this mixed powder is used, a homogeneous and high-density sintered metal part can be obtained.

鉄基粉末の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of iron-based powder. 混合処理前の鉄基粉末のSEM写真である。It is a SEM photograph of the iron base powder before a mixing process. 本発明の実施例に係る撹拌条件で混合した後の混合粉末(鉄基粉末)のSEM写真である。It is a SEM photograph of mixed powder (iron base powder) after mixing on the stirring conditions concerning the example of the present invention.

以下、本発明の一実施形態に係る粉末冶金用混合粉末について説明する。   Hereinafter, the mixed powder for powder metallurgy according to an embodiment of the present invention will be described.

本実施形態に係る混合粉末は、主原料粉末としての鉄基粉末と、炭素粉末とを含み、必要に応じて成形補助剤(潤滑剤やバインダー)をさらに含む。本実施形態の混合粉末は、鉄基粉末を90wt%以上、炭素粉末を1wt%以下含む。   The mixed powder according to the present embodiment includes an iron-based powder as a main raw material powder and a carbon powder, and further includes a molding aid (a lubricant or a binder) as necessary. The mixed powder of this embodiment contains 90 wt% or more of iron-based powder and 1 wt% or less of carbon powder.

鉄基粉末は、各粒子が鉄を主成分とするものである。鉄基粉末としては、純鉄粉の他、主原料としての鉄に、焼入れ性や機械的特性の向上のために合金成分を添加した合金粉を使用できる。純鉄粉としては、例えばアトマイズ法、還元法、スタンプ法、カルボニル法などで製造されたものを使用できる。特に、入手性やコスト、高密度成形性を考慮すると、水アトマイズ法により製造された純鉄粉が好ましい。   In the iron-based powder, each particle has iron as a main component. As the iron-based powder, in addition to pure iron powder, an alloy powder obtained by adding an alloy component to iron as a main raw material in order to improve hardenability and mechanical properties can be used. As a pure iron powder, what was manufactured by the atomizing method, the reduction method, the stamp method, the carbonyl method etc. can be used, for example. In particular, in view of availability, cost, and high density formability, pure iron powder produced by the water atomization method is preferable.

鉄基粉末として合金粉を使用する場合、合金成分としては、例えば、Ni、Mo、Mn、Crの内の一種あるいは複数種の金属が使用できる。合金粉としては、例えば、鉄と合金成分とを溶融状態で混合し、固化させた完全合金粉や、鉄粉末あるいは鉄合金粉の表面に合金成分を拡散付着させた拡散合金粉を用いることができる。本実施形態では、合金成分としてNi及びMoを含み、残部を鉄及び不可避不純物とした鉄基合金粉が使用される。詳しくは、Fe−Mo合金の表面にNiを拡散付着させた拡散合金粉が使用される。このように、Fe合金にNi等の金属を拡散付着させることで、FeとNiとを完全に合金化した場合と比べて、焼結前の鉄基粉末の硬さが抑えられるため、圧縮成形時の成形性が高められる。その結果、比較的多量のNiを配合することが可能となる。   When alloy powder is used as the iron-based powder, as the alloy component, for example, one or more kinds of metals among Ni, Mo, Mn, and Cr can be used. As the alloy powder, for example, a complete alloy powder obtained by mixing iron and an alloy component in a molten state and solidified, or a diffusion alloy powder in which an alloy component is diffused and adhered to the surface of the iron powder or the iron alloy powder may be used. it can. In this embodiment, iron-based alloy powder containing Ni and Mo as alloy components and the balance being iron and inevitable impurities is used. Specifically, a diffusion alloy powder in which Ni is diffused and adhered to the surface of the Fe—Mo alloy is used. In this way, the hardness of the iron-based powder before sintering can be suppressed by diffusion-attaching a metal such as Ni to the Fe alloy, compared with the case where Fe and Ni are completely alloyed. Formability at the time is improved. As a result, a relatively large amount of Ni can be blended.

炭素粉末としては、黒鉛粉末、カーボンブラック粉末、フラーレン粉末、ナノカーボン粉末等を使用することができる。これらのうち、入手性やコストの観点から、黒鉛粉末が最も好ましい。炭素粉末の粒径D90は、10μm以下、好ましくは8μm以下である。炭素粉末の粒径が大きすぎると、炭素粉末の鉄基粉末への固溶により粗大な空孔が形成されるため、混合粉末で形成される焼結金属部品(特に7.6g/cm以上の超高密度の焼結金属部品)の密度低下、ひいては強度低下を招くからである(詳細は後述する)。また、炭素粉末の粒径D90は、3μm以上、好ましくは4μm以上とされる。炭素粉末の粒径が小さすぎると、材料入手性や取り扱い性が低下するからである。 As the carbon powder, graphite powder, carbon black powder, fullerene powder, nanocarbon powder, or the like can be used. Of these, graphite powder is most preferable from the viewpoint of availability and cost. The particle diameter D90 of the carbon powder is 10 μm or less, preferably 8 μm or less. If the particle size of the carbon powder is too large, coarse pores are formed by solid solution of the carbon powder in the iron-based powder, so that a sintered metal part formed with the mixed powder (particularly 7.6 g / cm 3 or more) This is because the density of the ultra-high density sintered metal part) is reduced, and the strength is reduced (details will be described later). The particle size D90 of the carbon powder is 3 μm or more, preferably 4 μm or more. This is because, if the particle size of the carbon powder is too small, the material availability and the handleability deteriorate.

潤滑剤は、混合粉末を圧縮成形する際の粉末同士あるいは金型と粉末との間の摩擦を低減する目的で添加される。潤滑剤としては、例えば金属セッケンやアミドワックス等が使用され、具体的には例えばエチレンビスステアリルアミド(EBS)が使用される。あるいは、上記の潤滑剤を溶液に分散させ、この分散液を鉄基粉末に噴霧し、または鉄基粉末を分散液に浸漬させ、溶剤成分を揮発・除去することで、鉄基粉末に潤滑剤を被覆させてもよい。バインダーは、成形性を確保するためのものであり、例えば、炭化水素系樹脂やワックス、ポリビニルアルコールなどが使用できる。バインダーは、主原料粉末に添加、噴霧して使用され、粉末間の結合力を増加させる役割を果たす。ただし、バインダーを添加することで成形体の密度低下を引き起こすので、注意が必要である。尚、特に必要なければ、混合粉末に潤滑剤やバインダー等の成形補助剤を配合しなくてもよい。   The lubricant is added for the purpose of reducing the friction between the powders when the mixed powder is compression-molded or between the mold and the powder. As the lubricant, for example, metal soap or amide wax is used, and specifically, for example, ethylene bisstearylamide (EBS) is used. Alternatively, the lubricant is dispersed in the solution, and the dispersion is sprayed onto the iron-based powder, or the iron-based powder is immersed in the dispersion, and the solvent component is volatilized and removed, whereby the lubricant is added to the iron-based powder. May be coated. The binder is for ensuring moldability, and for example, a hydrocarbon resin, wax, polyvinyl alcohol, or the like can be used. The binder is used by being added to and sprayed on the main raw material powder and plays a role of increasing the bonding force between the powders. However, care should be taken because the addition of a binder causes a decrease in the density of the molded body. If not particularly necessary, it is not necessary to add a molding aid such as a lubricant or a binder to the mixed powder.

上記の混合粉末は、鉄基粉末、炭素粉末、及び潤滑剤を混合機の容器内に投入し、これらを混合することで製造される。本実施形態では、せん断混合を行う混合機が使用され、好ましくは、対流混合とせん断混合を同時に行う混合器が使用される。せん断混合を行う混合機とは、容器内に投入された粉末にせん断力を与えながら混合するものである。このような混合器は、粉末をせん断しながら動く撹拌部材を有し、例えば、容器内で回転する撹拌羽根、特に容器内の底部で回転する撹拌羽根を備える。このような撹拌羽根を有する混合機で混合すると、撹拌羽根が回転することにより混合粉末にせん断力が与えられるだけでなく、混合粉末全体が容器内で対流する。容器は、固定型であっても回転型であってもよい。このように、対流混合とせん断混合を同時に行う混合機の具体例としては、ハイスピードミキサ(ヘンシェル社製)やマルチパーパスミキサ(日本コークス株式会社製)などが挙げられる。   Said mixed powder is manufactured by throwing iron-base powder, carbon powder, and lubricant into a container of a mixer and mixing them. In the present embodiment, a mixer that performs shear mixing is used, and preferably, a mixer that simultaneously performs convective mixing and shear mixing is used. A mixer that performs shear mixing is a mixer that applies shearing force to powder charged in a container. Such a mixer has a stirring member that moves while shearing the powder, and includes, for example, a stirring blade that rotates in a container, particularly a stirring blade that rotates at the bottom of the container. When mixing with a mixer having such a stirring blade, not only a shearing force is applied to the mixed powder by the rotation of the stirring blade, but also the entire mixed powder convects in the container. The container may be a fixed type or a rotary type. Thus, specific examples of a mixer that simultaneously performs convective mixing and shear mixing include a high-speed mixer (Henschel) and a multipurpose mixer (Nihon Coke).

上記のような混合機で混合することで、混合粉末が撹拌され、炭素粉末が混合粉末中で均一に分散されると共に、鉄基粉末が丸められて混合粉末の流動性が高められる。具体的には、長軸で10μm以上(好ましくは5μm以上)の炭素粉末の集合体が、混合粉末中に観察されない程度まで、混合粉末中で炭素粉末が均一に分散されている。また、本実施形態では、撹拌条件(撹拌部材の回転数や撹拌時間等)を適切な範囲に設定することで、流動度が30s/50g未満、好ましくは25s/50g未満とされる。例えば、撹拌部材の回転数が小さすぎたり、撹拌時間が短すぎたりすると、鉄基粉末が十分に丸められず、流動度を上記範囲とすることができない。一方、撹拌部材の回転数が大きすぎたり、撹拌時間が長すぎたりすると、鉄基粉末が部分的に粉砕されて微粉末が大量に発生し、この微粉末が鉄基粉末の周囲に存在することにより流動性が低下するため、流動度を上記範囲とすることができない。具体的な撹拌条件は、上記の知見に基づいて適宜設定すればよいが、本実施形態では、撹拌部材の回転数を2000〜9000rpmとし、10〜60分間撹拌することにより、混合粉末の流動度が上記範囲とされる。   By mixing with the mixer as described above, the mixed powder is stirred, the carbon powder is uniformly dispersed in the mixed powder, and the iron-based powder is rounded to improve the fluidity of the mixed powder. Specifically, the carbon powder is uniformly dispersed in the mixed powder to such an extent that an aggregate of carbon powder having a major axis of 10 μm or more (preferably 5 μm or more) is not observed in the mixed powder. In the present embodiment, the fluidity is less than 30 s / 50 g, preferably less than 25 s / 50 g, by setting the stirring conditions (such as the number of rotations of the stirring member and the stirring time) within an appropriate range. For example, if the rotation speed of the stirring member is too small or the stirring time is too short, the iron-based powder is not sufficiently rounded and the fluidity cannot be set in the above range. On the other hand, if the rotation speed of the stirring member is too large or the stirring time is too long, the iron-based powder is partially crushed and a large amount of fine powder is generated, and this fine powder exists around the iron-based powder. Since fluidity | liquidity falls by this, a fluidity | liquidity cannot be made into the said range. Specific stirring conditions may be set as appropriate based on the above findings, but in this embodiment, the fluidity of the mixed powder is set by setting the rotation speed of the stirring member to 2000 to 9000 rpm and stirring for 10 to 60 minutes. Is within the above range.

また、混合機で混合粉末を撹拌することで、粉末同士あるいは粉末と撹拌羽根とが衝突する。この衝突により、粉末に加工硬化が生じるため、粉末の硬さが上昇する。粉末の硬さが過度に高くなると、圧縮成形時の成形性が低下するため、望ましくない。本実施形態では、混合粉末のビッカース硬さ(HV)が100以下、好ましくは95以下となるように、あるいは、混合前後における前記鉄基粉末のビッカース硬さ(HV)の増加率が20%未満、好ましくは10%未満となるように、撹拌条件を設定する。   Further, by stirring the mixed powder with a mixer, the powders or the powder and the stirring blade collide with each other. Due to this collision, work hardening occurs in the powder, and the hardness of the powder increases. If the hardness of the powder becomes excessively high, the moldability at the time of compression molding is lowered, which is not desirable. In this embodiment, the Vickers hardness (HV) of the mixed powder is 100 or less, preferably 95 or less, or the increase rate of the Vickers hardness (HV) of the iron-based powder before and after mixing is less than 20%. The stirring conditions are preferably set to be less than 10%.

上記の混合粉末を用いて、焼結金属部品、例えばギアやカム等の焼結機械部品を製造することができる。焼結金属部品は、混合粉末を金型で圧縮して圧粉体を成形する圧縮成形工程と、圧粉体を焼成して焼結体を得る焼結工程と、表面処理工程とを経て製造される。   By using the above mixed powder, sintered metal parts, for example, sintered machine parts such as gears and cams can be manufactured. Sintered metal parts are manufactured through a compression molding process in which the powder mixture is compressed with a mold to form a green compact, a sintering process in which the green compact is fired to obtain a sintered body, and a surface treatment process. Is done.

圧縮成形工程では、まず、ホッパーに保管された混合粉末を、金型のキャビティに流し入れて充填する。本実施形態では、混合粉末が均質であるため、キャビティに混合粉末が均質な状態で充填される。また、混合粉末の流動性が高い(具体的には、流動度が30s/50g未満である)ことで、混合粉末がホッパーから金型にスムーズに流下するため、キャビティへの充填性が高く、キャビティに混合粉末を高密度な状態で充填することができる。   In the compression molding process, first, the mixed powder stored in the hopper is poured into a mold cavity and filled. In this embodiment, since the mixed powder is homogeneous, the mixed powder is filled in the cavity in a homogeneous state. In addition, since the fluidity of the mixed powder is high (specifically, the fluidity is less than 30 s / 50 g), the mixed powder flows smoothly from the hopper to the mold, so the filling property to the cavity is high, The mixed powder can be filled in the cavity in a high density state.

こうしてキャビティに充填された混合粉末を、上下パンチで上下から圧縮することで、所定形状の圧粉体が成形される。このとき、キャビティに混合粉末が均質且つ高密度に充填されているため、均質且つ高密度な圧粉体を得ることができる。また、混合粉末のビッカース硬さ(HV)が100以下であることで、圧縮時の成形性が高められ、寸法精度の高い圧粉体を得ることができる。   By compressing the mixed powder filled in the cavity from above and below with the upper and lower punches, a green compact having a predetermined shape is formed. At this time, since the mixed powder is uniformly and densely filled in the cavity, a compact powder having a uniform and high density can be obtained. Moreover, since the Vickers hardness (HV) of mixed powder is 100 or less, the moldability at the time of compression is improved and a compact with high dimensional accuracy can be obtained.

その後、圧粉体を所定温度で焼成することにより、均質且つ高密度な焼結体(すなわち焼結金属部品)が得られる。焼結温度は、例えば1000〜1300℃の範囲内で設定される。焼結工程は、不活性雰囲気下で行われ、例えば窒素と水素の混合ガスやアルゴンガスなどの雰囲気下で行われる。この焼結時に、炭素粉末が鉄基粉末に固溶することで、鉄基粉末の硬さが上昇するため、焼結金属部品の機械的性質がさらに向上する。一方、炭素粉末を過剰に添加すると、炭素粉末が鉄基粉末へ固溶することにより、炭素粉末のあった場所が空孔となるため、焼結金属部品の密度が低下し、強度の低下を招く。特に、密度が7.6g/cm以上、さらには7.62g/cm以上の高密度の焼結金属部品の場合、炭素粉末の固溶によって形成される比較的粗大な空孔が無視できなくなり、強度低下を招く。本実施形態では、上記のように、炭素粉末の平均粒径D90が10μm以下であるため、炭素粉末の固溶によって形成される空孔が微細化され、焼結金属部品の強度低下を防止できる。 Thereafter, the green compact is fired at a predetermined temperature to obtain a homogeneous and high-density sintered body (that is, a sintered metal part). The sintering temperature is set, for example, within a range of 1000 to 1300 ° C. The sintering process is performed in an inert atmosphere, for example, in an atmosphere of a mixed gas of nitrogen and hydrogen, argon gas, or the like. During the sintering, the carbon powder is solid-dissolved in the iron-based powder, so that the hardness of the iron-based powder is increased, so that the mechanical properties of the sintered metal part are further improved. On the other hand, if the carbon powder is added excessively, the carbon powder dissolves in the iron-based powder, so that the place where the carbon powder is located becomes voids, so that the density of the sintered metal parts is reduced and the strength is reduced. Invite. In particular, a density of 7.6 g / cm 3 or more, further in the case of sintered metal parts of 7.62 g / cm 3 or more high-density, negligible relatively coarse voids formed by the solid solution of carbon powder Disappears, causing a decrease in strength. In the present embodiment, as described above, since the average particle diameter D90 of the carbon powder is 10 μm or less, the pores formed by the solid solution of the carbon powder are refined, and the strength reduction of the sintered metal part can be prevented. .

上記の焼結工程の後、再圧縮工程を施すことなく、焼結体に表面処理が施される。本実施形態では、焼結体に、浸炭焼入れ焼き戻し処理が施される。これにより、表面の硬度が高められると共に、内部の靭性が確保されるため、き裂の進展が抑制される。表面処理工程としては、上記の浸炭焼き入れ焼き戻しに限らず、ずぶ焼き入れ焼き戻し、高周波焼き入れ焼き戻し、浸炭窒化、真空浸炭などの各種熱処理や、窒化、軟窒化、浸硫、ダイヤモンドライクカーボン(DLC)をはじめとする硬質皮膜や樹脂皮膜の形成、各種メッキ、黒染めやスチーム処理をはじめとする防錆処理などの各種表面改質が適用可能であり、これらのうち複数種を組み合わせることも可能である。尚、特に必要がなければ、表面処理工程を省略してもよい。また、焼結工程の後、再圧縮工程を施してもよい。以上により、本発明の実施形態に係る焼結機械部品が完成する。   After the sintering step, the sintered body is subjected to surface treatment without performing a recompression step. In the present embodiment, the sintered body is subjected to a carburizing quenching and tempering process. As a result, the hardness of the surface is increased and the internal toughness is secured, so that the propagation of cracks is suppressed. The surface treatment process is not limited to the above carburizing quenching and tempering, but various heat treatments such as submerged quenching and tempering, induction quenching and tempering, carbonitriding and vacuum carburizing, nitriding, soft nitriding, sulfurizing, diamond-like Various surface modifications such as formation of hard coatings such as carbon (DLC) and resin coatings, various platings, rust prevention treatments such as black dyeing and steam treatment, etc. are applicable. It is also possible. Note that the surface treatment step may be omitted unless particularly necessary. Moreover, you may give a recompression process after a sintering process. Thus, the sintered machine part according to the embodiment of the present invention is completed.

上記の焼結機械部品について、表層から深さ方向で引張り応力が及ぶ深さを100 %とした時の表層から30%以上の領域における推定最大空孔包絡面積の平方根が√areamaxは、50μm未満、好ましくは45μm未満、より好ましくは40μm未満とされる(√areamaxの算出方法は後述する)。例えば、焼結機械部品がギアの場合は歯面から、また、焼結機械部品がカムの場合はカム面(カムフォロアとの接触面)から、深さ方向に引張り応力が及ぶ深さを計算し、当該深さと推定最大空孔包絡面積の平方根√areamaxの関係が上記範囲にあるようにされる。 For the above sintered machine parts, the square root of the estimated maximum pore envelope area in the region of 30% or more from the surface layer when the depth at which the tensile stress extends in the depth direction from the surface layer is 100% is √area max is 50 μm. Less than, preferably less than 45 μm, more preferably less than 40 μm (a method for calculating √area max will be described later). For example, if the sintered machine part is a gear, calculate the depth of the tensile stress in the depth direction from the tooth surface, and if the sintered machine part is a cam, calculate the depth from which the tensile stress is applied in the depth direction. The relationship between the depth and the square root √area max of the estimated maximum hole envelope area is in the above range.

鉄基粉末として、2wt%のNi、1wt%のMo、残部をFe及び不可避不純物とする部分拡散合金粉(JEFスチール社製シグマロイ2010、平均粒径100μm程度、粉末硬さHV90程度)を500g用意した。この鉄基粉末の流動分布を篩分けにより調査し、その結果を図1に示す。この鉄基粉末に、炭素粉末としての黒鉛粉末(TIMCAL社製TIMREX F−10)を、鉄基粉末100wt%に対し0.2wt%添加した。この原料粉末を混合機に投入し、撹拌条件(回転数及び時間)を変えて混合し、複数種の混合粉末を作製した。そして、各混合粉末(実施例及び比較例)について、以下の項目を評価した。各項目の評価方法及び評価基準は以下のとおりである。   As an iron-based powder, 500 g of 2 wt% Ni, 1 wt% Mo, partially diffused alloy powder (JEF Steel Sigmaloy 2010, average particle size of about 100 μm, powder hardness of about HV90) with the balance being Fe and inevitable impurities did. The flow distribution of this iron-based powder was investigated by sieving, and the results are shown in FIG. To this iron-based powder, 0.2 wt% of graphite powder (TIMREX F-10 manufactured by TIMCAL) as carbon powder was added with respect to 100 wt% of the iron-based powder. This raw material powder was put into a mixer and mixed under different stirring conditions (number of rotations and time) to produce a plurality of types of mixed powders. And the following items were evaluated about each mixed powder (Example and comparative example). The evaluation methods and evaluation criteria for each item are as follows.

(1)黒鉛の分散性
黒鉛の分散性の評価基準については、320μm×250μmの視野において、長軸で10μm以上の黒鉛が少なくとも1箇所以上存在する場合は×とし、上記の視野内で黒鉛が主原料粉末全域に分散しているが、長軸で5〜10μmの偏析が観察されるものは△とし、黒鉛が主原料粉末全域に分散して5μm以上の偏析が観察されなかったものを○とした。
(1) Dispersibility of graphite The evaluation standard of the dispersibility of graphite is x when there is at least one graphite having a major axis of 10 μm or more in the field of view of 320 μm × 250 μm. Although it is dispersed throughout the main raw material powder, △ indicates that segregation of 5 to 10 μm is observed in the major axis, and ○ indicates that segregation of 5 μm or more is not observed because graphite is dispersed throughout the main raw material powder. It was.

(2)流動度
流動度は、JIS Z2502(金属粉の流動度試験法)に則った。具体的には、50gの混合粉末がφ2.5mmのオリフィスを流れ出るまでの時間を測定し、この時間を混合粉末の流動度とした。流動度の評価基準は、下記の表1に示す通りである。
(2) Fluidity The fluidity was in accordance with JIS Z2502 (metal powder fluidity test method). Specifically, the time until 50 g of the mixed powder flows out through the orifice of φ2.5 mm was measured, and this time was defined as the fluidity of the mixed powder. The evaluation criteria of fluidity are as shown in Table 1 below.

(3)かさ密度
かさ密度は、JIS Z2504(金属粉―見かけ密度試験方法)に則った。具体的には、2.5mmのオリフィスからコップに混合粉末を流し込み、すり切った時の混合粉末の重量とコップの体積からから密度を測定した。かさ密度の評価基準は、下記の表2に示す通りである。
(3) Bulk density Bulk density was in accordance with JIS Z2504 (metal powder-apparent density test method). Specifically, the mixed powder was poured into a cup from a 2.5 mm orifice, and the density was measured from the weight of the mixed powder and the volume of the cup when worn. The evaluation criteria for the bulk density are as shown in Table 2 below.

(4)粉末硬さ
粉末硬さは、混合粉末を樹脂埋め及び表面研磨し、この表面に露出した粉末(特に鉄基粉末)のビッカース硬さを測定した。粉末硬さは、混合前後におけるビッカース硬さの増加率で評価し、その評価基準は下記の表3に示す通りである。尚、混合処理前の混合粉末(特に鉄基粉末)のビッカース硬さはHV86程度であるため、×のものはおよそHV100以上、△のものはおよそHV95〜100、○のものはおよそHV95以下となる。
(4) Powder hardness The powder hardness measured the Vickers hardness of the powder (especially iron-based powder) exposed to the surface by carrying out resin embedding and surface polishing of the mixed powder. The powder hardness is evaluated by the rate of increase in Vickers hardness before and after mixing, and the evaluation criteria are as shown in Table 3 below. In addition, since the Vickers hardness of the mixed powder (especially iron-based powder) before the mixing process is about HV86, x is about HV100 or more, △ is about HV95-100, ○ is about HV95 or less. Become.

下記の表4および表5に、実施例及び比較例の撹拌条件及び各評価項目の結果を示す。実施例1〜15および比較例2〜4は、対流混合とせん断混合とを同時に行う混合機(日本コークス株式会社製MP5B/I型マルチパーパスミキサ)を用いて混合し、比較例1は、対流混合のみを行う混合機(筒井理化学器械株式会社製V型混合機S−3型)を用いて混合した。   The following Table 4 and Table 5 show the stirring conditions of the examples and comparative examples and the results of the respective evaluation items. Examples 1 to 15 and Comparative Examples 2 to 4 are mixed using a mixer (MP5B / I type multi-purpose mixer manufactured by Nippon Coke Co., Ltd.) that simultaneously performs convection mixing and shear mixing, and Comparative Example 1 is a convection. Mixing was performed using a mixer (V-type mixer S-3 type manufactured by Tsutsui Rika Kikai Co., Ltd.) that only performs mixing.

表4および表5に示すように、せん断混合により混合した実施例1〜15及び比較例3及び4は、混合粉末中に黒鉛が概ね均一に分散されたのに対し、対流混合のみで混合した比較例1や、せん断混合により回転数1000min−1で10分間しか混合しなかった比較例2は、混合粉末中に黒鉛が偏析していた。また、回転数2000min−1以上でせん断混合した実施例1〜15は、混合後の混合粉末の流動度が30s/50g未満であった。これに対し、対流混合のみで混合した比較例1や、回転数1000min−1でせん断混合した比較例2〜4は、混合後の混合粉末の流動度が30s/50g以上であった。以上より、混合機の回転数を調整することで(具体的には回転数2000min−1以上とすることで)、混合粉末の流動度を30s/50g未満とすることができることが明らかとなった。尚、撹拌混合前の鉄基粉末のみでの流動度は39s/50gであったため、実施例1〜15では、撹拌混合により流動度が9s/50g以上低下したと言える。 As shown in Tables 4 and 5, in Examples 1 to 15 and Comparative Examples 3 and 4 mixed by shear mixing, graphite was almost uniformly dispersed in the mixed powder, but mixed only by convection mixing. In Comparative Example 1 and Comparative Example 2 in which only 10 minutes were mixed at a rotational speed of 1000 min −1 by shear mixing, graphite was segregated in the mixed powder. Moreover, the fluidity of the mixed powder after mixing was less than 30 s / 50 g in Examples 1 to 15 which were shear mixed at a rotational speed of 2000 min −1 or more. On the other hand, Comparative Example 1 mixed only by convection mixing and Comparative Examples 2 to 4 shear mixed at a rotational speed of 1000 min −1 had a mixed powder fluidity of 30 s / 50 g or more after mixing. From the above, it became clear that the fluidity of the mixed powder can be reduced to less than 30 s / 50 g by adjusting the rotation speed of the mixer (specifically, by setting the rotation speed to 2000 min −1 or more). . In addition, since the fluidity | liquidity only with the iron-based powder before stirring mixing was 39 s / 50g, in Examples 1-15, it can be said that the fluidity fell 9 s / 50g or more by stirring mixing.

混合粉末を均質化することを目的として混合する場合、例えば混合機の回転数を1000min−1とした比較例3及び4でも、十分に均質な混合粉末が得られている。従って、均質化のみを目的とする場合は、回転数は1000min−1で十分であり、これよりも高速で回転させる必要はない。本発明では、撹拌混合により鉄基粉末が丸められるという知見に基づいて、回転数等の撹拌条件を調整することで(具体的には2000min−1以上とすることで)、流動度を30s/50g未満にすることができることを見出した。 When mixing for the purpose of homogenizing the mixed powder, for example, in Comparative Examples 3 and 4 in which the rotational speed of the mixer is 1000 min −1 , a sufficiently homogeneous mixed powder is obtained. Therefore, for the purpose of homogenization only, a rotation speed of 1000 min −1 is sufficient, and it is not necessary to rotate at a higher speed. In the present invention, based on the knowledge that the iron-based powder is rounded by stirring and mixing, by adjusting the stirring conditions such as the rotational speed (specifically, 2000 min −1 or more), the fluidity is 30 s / It has been found that it can be less than 50 g.

また、図2は、混合処理前の混合粉末(特に鉄基粉末)のSEM写真であり、図3は、実施例9に係る条件で撹拌した後の混合粉末のSEM写真である。これらの写真から、適切な条件で撹拌した混合粉末は、鉄基粉末(部分拡散合金粉)が十分に丸められていることが分かる。このように、鉄基粉末が丸められることで、混合粉末の流動性が高められたと考えられる。   FIG. 2 is an SEM photograph of the mixed powder (particularly iron-based powder) before the mixing treatment, and FIG. 3 is an SEM photograph of the mixed powder after stirring under the conditions according to Example 9. From these photographs, it can be seen that the mixed powder stirred under appropriate conditions has iron-base powder (partial diffusion alloy powder) sufficiently rounded. Thus, it is thought that the fluidity | liquidity of mixed powder was improved by iron-base powder being rounded.

以上のように、ミキサーの回転数や時間を増加させることで、粉体特性(黒鉛分散性、流動性、かさ密度)は概ね向上した。ただし、回転数10000min−1で60分間混合した実施例15は、回転数10000min−1で30分間混合した実施例14よりも、流動性が低下した(流動度が大きくなった)。この結果から、回転数や撹拌時間をむやみに大きくすると、かえって流動性が低下することが分かる。これは、回転数や撹拌時間が大きすぎると、鉄粉が部分的に粉砕されて微粉末が大量に発生し、この微粉末が鉄粉の周囲に存在することにより粉末の流動が阻害されたためと考えられる。また、ミキサーの回転数が高く、且つ撹拌時間の長い実施例12〜15は、混合により粉末の硬さが大幅に上昇する結果となった。これは、粉体に与えるエネルギーが増加することで、粉末に加工硬化が生じたためと考えられる。 As described above, the powder characteristics (graphite dispersibility, fluidity, bulk density) were generally improved by increasing the rotation speed and time of the mixer. However, the rotational speed 10000 min -1 in Example 15 was mixed 60 minutes, than Example 14 were mixed for 30 minutes at a rotation speed of 10000 min -1, the fluidity decreases (flowability is increased). From this result, it can be seen that if the number of rotations and the stirring time are increased unnecessarily, the fluidity is lowered. This is because if the rotational speed or stirring time is too long, the iron powder is partially crushed and a large amount of fine powder is generated, and the flow of the powder is inhibited by the presence of this fine powder around the iron powder. it is conceivable that. Further, Examples 12 to 15 in which the rotation speed of the mixer was high and the stirring time was long resulted in the hardness of the powder being significantly increased by mixing. This is presumably because work hardening occurred in the powder due to an increase in energy applied to the powder.

以上より、ミキサーの回転数及び撹拌時間は、粉末の特性(特に流動度と硬さ)が所望の範囲となるように設定すればよい。本実施例では、回転数2000〜9000min−1で10〜60分、好ましくは、回転数2000〜5000min−1で30〜60分程度混合すれば、流動性に優れ、且つ、硬さの上昇が抑えられた混合粉末を得ることができる。 From the above, the rotation speed and stirring time of the mixer may be set so that the characteristics (particularly fluidity and hardness) of the powder are in a desired range. In this example, if mixing at a rotational speed of 2000 to 9000 min −1 for 10 to 60 minutes, preferably about 30 to 60 minutes at a rotational speed of 2000 to 5000 min −1 , the fluidity is excellent and the hardness is increased. A suppressed mixed powder can be obtained.

次に、上記の粉末を所定の圧力で圧縮成形した成形体(試験片)の特性を調査した。試験片はリング状であり、外径がφ23.2mm、内径がφ16.4mm、軸方向寸法が7mmとなるように調整した。成形性の評価は、成形体表面を目視で観察し、クラックがあるものを×、ないものを○とした。焼結はRXガス雰囲気の炉中で、最高温度は1250℃とし、最高温度保持時間は150分で行った。焼結密度の測定方法はJIS Z2501に則った。   Next, the characteristics of a compact (test piece) obtained by compression molding the above powder at a predetermined pressure were investigated. The test piece was ring-shaped and adjusted so that the outer diameter was φ23.2 mm, the inner diameter was φ16.4 mm, and the axial dimension was 7 mm. The moldability was evaluated by visually observing the surface of the molded body, and x for those with cracks and ◯ for those without cracks. Sintering was performed in a furnace in an RX gas atmosphere at a maximum temperature of 1250 ° C. and a maximum temperature holding time of 150 minutes. The method for measuring the sintered density was in accordance with JIS Z2501.

上記工程により得られた試験片において、焼結密度および推定最大空孔包絡面積の平方根を調査した。以下に、√areamax値の推定手法の詳細を説明する。 In the test piece obtained by the above process, the sintered density and the square root of the estimated maximum pore envelope area were examined. Details of the √area max value estimation method will be described below.

まず、焼結体の空孔の極値分布が二重指数分布に従うとする。これにより、極値統計を用いた空孔包絡面積の最大値の推定を行う。具体的には以下の手順を経て、推定最大空孔包絡面積の平方根√areamaxが算出される。 First, it is assumed that the extreme value distribution of pores in the sintered body follows a double exponential distribution. Thereby, the maximum value of the hole envelope area is estimated using extreme value statistics. Specifically, the square root √area max of the estimated maximum hole envelope area is calculated through the following procedure.

鏡面研磨を施した試験片について顕微鏡観察を行い、定めた基準面積So(mm2)のy領域の画像を取得する。得られた画像について画像解析ソフトを用いて二値化し、空孔の包絡面積を解析する。得られた包絡面積のうち最も大きなものを基準面積So中の最大空孔包絡面積とし、その平方根をその領域における√areamaxとする。この測定を、検査領域を変えてn回繰り返す。 The specimen subjected to mirror polishing is observed with a microscope, and an image of a y region having a predetermined reference area So (mm 2 ) is acquired. The obtained image is binarized using image analysis software, and the envelope area of the holes is analyzed. The largest envelope area among the obtained envelope areas is defined as the maximum hole envelope area in the reference area So, and the square root thereof is defined as √area max in the region. This measurement is repeated n times while changing the inspection region.

測定したn個の√areamaxを小さいものから順に並べ、それぞれ√areamax,j(j=1〜n)とする。(式1参照)
Measured n √area max are arranged in order from the smallest, and √area max, j (j = 1 to n), respectively. (See Formula 1)

それぞれのj(j=1〜n)について、式2で表される累積分布関数Fj(%)および式3で表される基準化変数yjを計算する。
For each j (j = 1 to n), a cumulative distribution function F j (%) expressed by Expression 2 and a standardized variable y j expressed by Expression 3 are calculated.

極値確率用紙の座標横軸に√areamaxを取り、上記結果をプロットして極値分布を得る。(極値確率用紙の縦軸はFもしくはyを取っている) Taking √area max on the coordinate horizontal axis of the extreme value probability sheet, the above result is plotted to obtain an extreme value distribution. (The vertical axis of the extreme probability sheet takes F or y)

最小二乗法による近似直線を極値分布に対して外挿し、式4で表されるaおよびbを得る。ただし、yは式5で表される基準化変数、Tは式6で表される再帰期間、Vは推定対象領域の体積(予測体積:mm3)、V0は式7で表される基準体積(mm3)、hは式8で表される測定した√areamax,jの平均値(mm)である。
An approximate straight line obtained by the least square method is extrapolated with respect to the extreme value distribution to obtain a and b represented by Expression 4. However, y is the normalization variable represented by Formula 5, T is the recursion period represented by Formula 6, V is the volume of the estimation target region (predicted volume: mm 3 ), and V 0 is the standard represented by Formula 7. Volume (mm 3 ), h is an average value (mm) of the measured √area max, j represented by Formula 8.

極値確率用紙の縦軸であるF目盛の10〜85%におけるプロット点が近似直線状に乗ることを確認する。これにより、得られた極値分布が二重指数分布に従うことを確認できる。式6に推定対象領域の体積V(予測体積)を代入し、再帰期間Tと得られた極値分布が交わる点が推定最大空孔包絡面積の平方根√areamaxである。 It is confirmed that the plot points at 10 to 85% of the F scale which is the vertical axis of the extreme value probability sheet are on an approximate straight line. Thereby, it can be confirmed that the obtained extreme value distribution follows a double exponential distribution. Substituting the volume V (predicted volume) of the estimation target region into Equation 6, the point where the recurring period T and the obtained extreme value distribution intersect is the square root √area max of the estimated maximum hole envelope area.

本実施形態では、基準面積Sを0.39mm、検査回数nを32回、推定対象領域の体積Vを200mmとした。表層は、試験片1の内周面から深さ0.54mmの領域とした。基準面積は、半径方向寸法を試験片の内周面から0.54mm、軸方向寸法を0.74mmとした。推定対象領域は、試験片の内周面から0.54mmの円筒領域であり、軸方向寸法を7mmとした。 In this embodiment, the reference area S 0 is 0.39 mm 2 , the number of inspections n is 32, and the volume V of the estimation target region is 200 mm 3 . The surface layer was a region having a depth of 0.54 mm from the inner peripheral surface of the test piece 1. As for the reference area, the radial dimension was 0.54 mm from the inner peripheral surface of the test piece, and the axial dimension was 0.74 mm. The estimation target area was a cylindrical area of 0.54 mm from the inner peripheral surface of the test piece, and the axial dimension was 7 mm.

焼結密度および推定最大空孔包絡面積の平方根(√areamax)の評価基準をそれぞれ表6、7に示す。また、各試験片の諸元及び評価結果を表8に示す。
The evaluation criteria for the sintered density and the square root (√area max ) of the estimated maximum pore envelope area are shown in Tables 6 and 7, respectively. Table 8 shows the specifications and evaluation results of each test piece.

試験片1〜7に示すように、処理回転数および時間の増加や成形圧の上昇によって、試験片の特性は向上する傾向がある。具体的には、混合粉末の撹拌時の回転数を2,000min−1以上、撹拌時間を30min以上とし、且つ、圧縮成形時の成形圧を900MPa以上とした場合(試験片3〜7)に、特に良好な結果となった。一方、試験片11、12に示すように、混合粉末の撹拌時の回転数および撹拌時間をさらに上昇させていくと、成形性が悪化した。これは、処理により粉末表面が改質されたことにより、粉末間の絡み合いが減少したためと考えられる。この結果から、成形性を考慮すると、混合粉末の撹拌時の回転数は1,500〜2,500min−1、撹拌時間は10〜50minとすることが好ましいと言える。 As shown in the test pieces 1 to 7, the characteristics of the test piece tend to be improved by increasing the processing rotation speed and time and increasing the molding pressure. Specifically, when the number of rotations when the mixed powder is stirred is 2,000 min −1 or more, the stirring time is 30 min or more, and the molding pressure during compression molding is 900 MPa or more (test pieces 3 to 7). Especially good results. On the other hand, as shown in the test pieces 11 and 12, the moldability deteriorated when the rotational speed and the stirring time during the stirring of the mixed powder were further increased. This is presumably because the entanglement between the powders decreased due to the modification of the powder surface by the treatment. From this result, it can be said that considering the moldability, it is preferable that the rotation speed of the mixed powder is 1,500 to 2,500 min −1 and the stirring time is 10 to 50 min.

ここで、試験片5の√areamaxは32μmである。一方、滑剤を0.1wt.%に減らし、1,200 MPaで120℃温間成形を行い、金型潤滑を併用した試験片9の√areamaxは35μmである。両者の√areamaxが同等であることから、滑剤を減らすことで金型に負荷を与えたり、温間成形や金型潤滑といった複雑な工程を介したりすることなく、試験片内の√areamaxを低減させることが可能であることが確認された。 Here, √area max of the test piece 5 is 32 μm. On the other hand, the √area max of the test piece 9 in which the lubricant is reduced to 0.1 wt.%, Warm molding at 120 ° C. is performed at 1,200 MPa, and die lubrication is used together is 35 μm. Since √area max of both is equal, √area max in the test piece can be reduced without applying a load to the mold by reducing the lubricant or through complicated processes such as warm molding and mold lubrication. It has been confirmed that it is possible to reduce.

Claims (11)

鉄基粉末と炭素粉末とを含む粉末冶金用混合粉末であって、
流動度が30s/50g未満となる条件で撹拌混合した粉末冶金用混合粉末。
A mixed powder for powder metallurgy comprising iron-based powder and carbon powder,
A mixed powder for powder metallurgy that is stirred and mixed under a condition that the fluidity is less than 30 s / 50 g.
前記鉄基粉末のビッカース硬さ(HV)が100以下である請求項1記載の粉末冶金用混合粉末。   The mixed powder for powder metallurgy according to claim 1, wherein the iron-based powder has a Vickers hardness (HV) of 100 or less. 前記炭素粉末の粒径D90が4μm以上10μm以下である請求項1又は2記載の粉末冶金用混合粉末。   The mixed powder for powder metallurgy according to claim 1 or 2, wherein a particle diameter D90 of the carbon powder is 4 µm or more and 10 µm or less. 前記鉄基粉末が、Fe−Mo合金粉にNiを拡散付着させた拡散合金粉である請求項1〜3の何れかに記載の粉末冶金用混合粉末。   The mixed powder for powder metallurgy according to any one of claims 1 to 3, wherein the iron-based powder is a diffusion alloy powder in which Ni is diffused and adhered to an Fe-Mo alloy powder. 請求項1〜4の何れかに記載の混合粉末を用いて形成した焼結金属部品。   The sintered metal part formed using the mixed powder in any one of Claims 1-4. 密度が7.6g/cm以上である請求項5記載の焼結金属部品。 The sintered metal part according to claim 5, wherein the density is 7.6 g / cm 3 or more. 鉄基粉末と炭素粉末とを含む原料粉末を混合機に投入して撹拌混合することにより粉末冶金用混合粉末を製造するにあたり、
流動度が30s/50g未満となるように撹拌条件を設定する粉末冶金用混合粉末の製造方法。
In producing a mixed powder for powder metallurgy by charging a raw material powder containing iron-based powder and carbon powder into a mixer and stirring and mixing,
A method for producing a mixed powder for powder metallurgy, wherein the stirring conditions are set so that the fluidity is less than 30 s / 50 g.
撹拌混合により、粉末冶金用混合粉末の流動度を、撹拌混合前の前記鉄基粉末のみでの流動度よりも、9s/50g以上低下させる請求項7に記載の粉末冶金用混合粉末の製造方法。   The method for producing a mixed powder for powder metallurgy according to claim 7, wherein the fluidity of the powder mixture for powder metallurgy is reduced by 9 s / 50 g or more than the fluidity of the iron-based powder alone before stirring and mixing by stirring and mixing. . 前記混合機が、せん断混合により粉末冶金用混合粉末を撹拌混合するものである請求項7又は8に記載の粉末冶金用混合粉末の製造方法。   The method for producing a mixed powder for powder metallurgy according to claim 7 or 8, wherein the mixer stirs and mixes the mixed powder for powder metallurgy by shear mixing. 前記混合機の回転数を2000〜9000rpmとする請求項9記載の粉末冶金用混合粉末の製造方法。   The method for producing a mixed powder for powder metallurgy according to claim 9, wherein the rotational speed of the mixer is 2000 to 9000 rpm. 混合前後における前記鉄基粉末のビッカース硬さ(HV)の増加率が20%未満である請求項7〜10の何れかに記載の粉末冶金用混合粉末の製造方法。
The method for producing a mixed powder for powder metallurgy according to any one of claims 7 to 10, wherein the rate of increase in Vickers hardness (HV) of the iron-based powder before and after mixing is less than 20%.
JP2015061002A 2014-09-04 2015-03-24 Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy Pending JP2016056445A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014180180 2014-09-04
JP2014180180 2014-09-04

Publications (1)

Publication Number Publication Date
JP2016056445A true JP2016056445A (en) 2016-04-21

Family

ID=55757583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061002A Pending JP2016056445A (en) 2014-09-04 2015-03-24 Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2016056445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163959A1 (en) 2016-03-22 2017-09-28 日産自動車株式会社 Power supply system and method for controlling same
WO2021166331A1 (en) * 2020-02-18 2021-08-26 住友電気工業株式会社 Tool main body and tool main body production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280907A (en) * 2008-04-22 2009-12-03 Jfe Steel Corp Iron powder mixture for powder metallurgy
JP2011026700A (en) * 2009-06-26 2011-02-10 Jfe Steel Corp Iron-based mixed powder for powder metallurgy
JP2011084816A (en) * 2006-02-15 2011-04-28 Jfe Steel Corp Iron-based powder mixture, and methods for producing iron-based compacted body and iron-based sintered body
JP2012102355A (en) * 2010-11-09 2012-05-31 Kobe Steel Ltd Mixed powder for powder metallurgy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084816A (en) * 2006-02-15 2011-04-28 Jfe Steel Corp Iron-based powder mixture, and methods for producing iron-based compacted body and iron-based sintered body
JP2009280907A (en) * 2008-04-22 2009-12-03 Jfe Steel Corp Iron powder mixture for powder metallurgy
JP2011026700A (en) * 2009-06-26 2011-02-10 Jfe Steel Corp Iron-based mixed powder for powder metallurgy
JP2012102355A (en) * 2010-11-09 2012-05-31 Kobe Steel Ltd Mixed powder for powder metallurgy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163959A1 (en) 2016-03-22 2017-09-28 日産自動車株式会社 Power supply system and method for controlling same
WO2021166331A1 (en) * 2020-02-18 2021-08-26 住友電気工業株式会社 Tool main body and tool main body production method
JP7512367B2 (en) 2020-02-18 2024-07-08 住友電気工業株式会社 Tool body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
TW201244852A (en) Iron-based powder mixture and method of manufacturing iron-based compacted body and iron-based sintered body
TW201116351A (en) Metal powder composition
JP2006233331A (en) Iron-based sintered alloy and manufacturing method therefor
CN106795590B (en) The manufacturing method of Cu base sintered bearing and Cu base sintered bearing
KR20180031750A (en) Mixed powder for powder metallurgy, sintered compact, and method for producing sintered compact
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
EP3097999A1 (en) Sintered machine part and manufacturing method thereof
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP5765654B2 (en) Method for manufacturing sintered parts
JPWO2018180942A1 (en) Valve seat made of iron-based sintered alloy with excellent thermal conductivity for internal combustion engines
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2016056445A (en) Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
JP5750076B2 (en) Powder for molding and method for producing the same
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP2018123428A (en) Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and shock resistance
JP2012255183A (en) Carburized sintered body, and manufacturing method thereof
JP6741153B2 (en) Partially diffused alloy steel powder
JP2006257539A (en) Mixed powder for powder metallurgy
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP6444621B2 (en) Sintered machine parts
JP2009263697A (en) Method for manufacturing sintered steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190620