JPS61213338A - W-ni-fe sintered alloy - Google Patents

W-ni-fe sintered alloy

Info

Publication number
JPS61213338A
JPS61213338A JP5293185A JP5293185A JPS61213338A JP S61213338 A JPS61213338 A JP S61213338A JP 5293185 A JP5293185 A JP 5293185A JP 5293185 A JP5293185 A JP 5293185A JP S61213338 A JPS61213338 A JP S61213338A
Authority
JP
Japan
Prior art keywords
weight
tungsten
alloy
sintered alloy
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5293185A
Other languages
Japanese (ja)
Other versions
JPS6330391B2 (en
Inventor
Yasuo Imai
今井 保穂
Akio Izumi
泉 昭雄
Shigemichi Kashiwagi
柏木 重道
Yoshinari Amano
良成 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Sumitomo Electric Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Sumitomo Electric Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Sumitomo Electric Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP5293185A priority Critical patent/JPS61213338A/en
Publication of JPS61213338A publication Critical patent/JPS61213338A/en
Publication of JPS6330391B2 publication Critical patent/JPS6330391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide high tensile strength, hardness and sufficient toughness, by specifying wt. ratio of Ni to Fe, particle diameter of W, solid soln. quantities of Ni and Fe in W particle and regulating contents of oxygen and carbon in sintered alloy. CONSTITUTION:In sintered alloy composed of 85-98wt% W and the balance Ni and Fe, particle diameter of W is regulated to 40-100mum, and >=0.1wt% Ni and >=0.2% Fe are dissolved into W particle in solid state. Oxygen and carbon contents are regulated to <=0.05%, and <=0.005% respectively in sintered alloy. Oxygen and carbon quantities are decreased by roasting powder mixture having said compsn. in oxidizing atmosphere, then reducing said mixture in reducing atmosphere, etc. By regulating W particle diameter, Ni, Fe are dissolved by suitable quantities into W particle after sintering, and toughness of alloy is improved. The W-Ni-Fe sintered alloy is useful to projectile (piercing body) piercing protector, high speed revolving body, etc.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は高靭性W−Ni−Fe焼結合金に関するもので
ある。本発明に係る合金は、防護物を貫通する発射体(
貫通体)、高速回転体(タイル等)に宵用なものである
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a high toughness W--Ni--Fe sintered alloy. The alloy according to the invention can be used for projectiles (
It is suitable for use on penetrating objects) and high-speed rotating objects (tiles, etc.).

(0)従来技術とその問題点 貫通体としては高度の引張強さ、密度及び硬さを有し、
しかも発射体が完全に貫通する前に破壊しないように十
分な靭性を有していなければならないことがこの技術分
野において一般に認められている。又、高速回転体とし
ては高度の引張強さ、ヤング率を有し、しかも高速回転
時破壊しないように十分な靭性を有していなければなら
ない。
(0) Prior art and its problems The penetrating body has high tensile strength, density and hardness,
Moreover, it is generally accepted in the art that it must have sufficient toughness so that the projectile does not break before complete penetration. In addition, as a high-speed rotating body, it must have high tensile strength and Young's modulus, and must also have sufficient toughness so as not to break during high-speed rotation.

従来より、このような用途に対してW−Cu−Nt 1
W−Cu−Fe系の合金が発射体や高速回転体として利
用されているが、0.5〜2%の伸びしかなくこのため
衝撃破壊しやすい弱点を持っていた。高密度、硬度を維
持したままでより靭性の高い伸びの大きい材料の開発が
望まれていた。
Conventionally, W-Cu-Nt 1 has been used for such applications.
W--Cu--Fe alloys have been used as projectiles and high-speed rotating bodies, but they only elongate by 0.5 to 2%, making them susceptible to impact fracture. There was a desire to develop a material with higher toughness and greater elongation while maintaining high density and hardness.

(ハ)発明の表示 本発明は高度の引張強さ及び硬さを何し、しかも十分な
靭性を備えたW−Ni−Fe焼結合金を提供するもので
ある。
(C) Description of the Invention The present invention provides a W--Ni--Fe sintered alloy that has high tensile strength and hardness, and also has sufficient toughness.

即ち、本発明はW85〜98重景%及び重量かNiとF
e (Ni:Fe重量比で5:5〜8:2)からなる合
金において、タングステンの粒径が40−100μmで
あり、このタングステンの粒子中にニッケルが0.1重
量%以上、鉄が0.2重量%以上固溶し、焼結合金中の
酸素量が0.05重量%以下、炭素量が0.005重量
%以下からなるW−Ni−Fe焼結合金である。
That is, the present invention uses W85 to 98 weight percent and weight Ni and F.
e (Ni:Fe weight ratio of 5:5 to 8:2), the tungsten grain size is 40-100 μm, and the tungsten particles contain 0.1% by weight or more of nickel and 0% iron. This is a W-Ni-Fe sintered alloy in which the amount of oxygen in the sintered alloy is 0.05% by weight or less and the amount of carbon is 0.005% by weight or less.

以下、本発明に係る合金につき詳細に述べる。The alloy according to the present invention will be described in detail below.

合金組成はタングステンが85〜98重量%で、残りが
ニッケルと鉄であり、Nr:Fe重量比は5:5から8
=2の範囲である。タングステン含有量が85重量%以
下だと液相焼結中に合金の変形がおこり、また98重量
%以上だとNi−Feの!くイングー相が少なくなり所
定の靭性が得られないためである。Ni:Feの比率が
2:1のとき靭性が最大になるが、5:5〜8:2の範
囲であれば所定の靭性が確保できる。これらの合金組成
において、十分な靭性を出すことにつき、不純物及びタ
ングステン粒径、合金構造分析を種々行った結果、合金
中の酸素、炭素含有量、タングステン粒径及び焼結体の
タングステン粒内の鉄、ニッケル含有mが靭性を大きく
左右することを発見した。合金中の酸素、炭素はバイン
ダー相、タングステン相に固溶し靭性を低下させると共
に、焼結時合金のフクレあるいは気孔を形成する。これ
はC+ 1/20. = GoあるいはC+ O,= 
Cotの反応によりガスを生成するためと思われる。酸
素量、炭素量が各々0.05重量%以下、0.005重
量%以下であれば上記の反応による合金のフクレ、気孔
形成は起りがた(靭性も崎保される。通常のタングステ
ン粉末、鉄粉末、ニッケル粉末特にニッケル、鉄粉末中
には、酸素、炭素が不純物として含有している。たとえ
ば、カーボニル法によって作られたニッケルや鉄では、
炭素が0゜1重量%、酸素が0.07重量%含有してい
る。このため、これら粉末を混合して型押し焼結体を作
ると焼結時間と共に、ガス反応により密度が低下し、極
端な場合には発泡して合金作成が不可能になる。酸素、
炭素の低減は実用的には以下の方法により達成される。
The alloy composition is 85-98% by weight of tungsten, the rest is nickel and iron, and the Nr:Fe weight ratio is 5:5-8.
=2 range. If the tungsten content is less than 85% by weight, the alloy will deform during liquid phase sintering, and if it is more than 98% by weight, Ni-Fe! This is because the amount of the hardening phase decreases, making it impossible to obtain the desired toughness. Toughness is maximized when the Ni:Fe ratio is 2:1, but a predetermined toughness can be ensured if it is in the range of 5:5 to 8:2. In order to achieve sufficient toughness in these alloy compositions, we conducted various analyzes of impurities, tungsten grain size, and alloy structure, and found that the oxygen in the alloy, carbon content, tungsten grain size, and the content of tungsten grains in the sintered body were It was discovered that iron and nickel content greatly affect toughness. Oxygen and carbon in the alloy form a solid solution in the binder phase and tungsten phase, reducing toughness and forming blisters or pores in the alloy during sintering. This is C+ 1/20. = Go or C+ O, =
This seems to be because gas is generated by the reaction of Cot. If the oxygen content and carbon content are 0.05% by weight or less and 0.005% by weight or less, respectively, blistering and pore formation of the alloy due to the above reaction will not occur (toughness will also be reduced.Ordinary tungsten powder, Iron powder, nickel powder, especially nickel and iron powder contain oxygen and carbon as impurities. For example, nickel and iron made by the carbonyl method,
It contains 0.1% by weight of carbon and 0.07% by weight of oxygen. For this reason, when these powders are mixed to make an embossed sintered body, the density decreases as the sintering time increases due to gas reactions, and in extreme cases, foaming occurs, making it impossible to create an alloy. oxygen,
Carbon reduction is practically achieved by the following method.

即ち、所定の割合で混合した粉末を400〜800℃の
酸化雰囲気中で焙焼する。この工程にて粉末は酸化され
ると共に、原料及び混合中に入ってきた炭素は酸化除去
される。これら焙焼した粉末を400〜800℃の還元
雰囲気で還元する。この工程にて酸素量を量を低減する
と共に更に内在する炭素も一部除去される。他の方法は
、ニッケル、鉄、タングステンの各々の粉末を別々に2
00〜500℃の酸化雰囲気中で焙焼する。これら焙焼
した粉末を400〜800℃の還元雰囲気で還元する。
That is, powders mixed at a predetermined ratio are roasted in an oxidizing atmosphere at 400 to 800°C. In this step, the powder is oxidized, and the raw materials and carbon introduced during mixing are oxidized and removed. These roasted powders are reduced in a reducing atmosphere at 400 to 800°C. In this step, the amount of oxygen is reduced and a portion of the carbon contained therein is also removed. Another method is to separately prepare two powders of nickel, iron, and tungsten.
Roast in an oxidizing atmosphere at 00-500°C. These roasted powders are reduced in a reducing atmosphere at 400 to 800°C.

これら処理をした各々の粉末を所定割合に秤量混合する
ことによっても酸素、炭素の低減を行なうことが出来る
。焼結体はバインダー相とタングステン粒子からなる二
相合金の構造をしているが、このタングステン粒径は4
O−100μmが靭性に優れる。タングステン粒径が大
きくなるにつれて合金の伸びは向上し、衝撃値はタング
ステン粒径が100μm程度まで向上し、それ以上にな
ると低下する傾向にある。
Oxygen and carbon can also be reduced by weighing and mixing the powders subjected to these treatments in a predetermined proportion. The sintered body has a two-phase alloy structure consisting of a binder phase and tungsten particles, and the tungsten particle size is 4.
O-100 μm has excellent toughness. As the tungsten particle size increases, the elongation of the alloy improves, and the impact value increases up to a tungsten particle size of about 100 μm, and tends to decrease as the tungsten particle size increases beyond that.

従ってタングステン粒径は40−100μmの範囲が伸
び、衝撃値共に優れている。タングステン粒径は焼結時
の温度、時間、および形状により変化する。
Therefore, the tungsten particle size ranges from 40 to 100 μm, and the impact value is excellent. Tungsten particle size varies depending on temperature, time, and shape during sintering.

例えば直径45■■の丸棒の場合には1460℃の温度
で30〜40時間でタングステン粒径は40〜100μ
mになる。また、直径18m+mの丸棒の場合には4〜
7時間で40〜100μmになる。焼結後のタングステ
ン粒内のNrs Fe含有量は靭性の向上に効果があり
、夫々0.1重量%以上、0.2重量%以上固溶してい
ることが必要である。固溶量が少ないとタングステン粒
径が40−100μmであっても著しく靭性が低下し少
より20〜[iθ℃高い温度での焼結温度から焼結体を
500℃/時間以上にて急速に冷却させることにより達
成出来る。即ち焼結温度で、タングステン粒子内に固溶
している鉄、ニッケル量をそのままタングステン粒子内
に残すことによって本願発明が可能なわけであり徐冷し
た場合には固溶していた鉄、ニッケルが析出し靭性の高
い材料は得られない。
For example, in the case of a round bar with a diameter of 45mm, the tungsten particle size will become 40 to 100μ in 30 to 40 hours at a temperature of 1460℃.
It becomes m. In addition, in the case of a round bar with a diameter of 18m + m, 4~
It becomes 40-100 μm in 7 hours. The Nrs Fe content in the tungsten grains after sintering is effective in improving toughness, and it is necessary that the Nrs Fe content be 0.1% by weight or more and 0.2% by weight or more in solid solution, respectively. If the amount of solid solution is small, the toughness will decrease significantly even if the tungsten particle size is 40-100 μm, and the sintered body will be rapidly sintered at a temperature of 500°C/hour or more from a sintering temperature of 20 to [iθ°C higher than a small amount. This can be achieved by cooling. In other words, the present invention is possible by leaving the amount of iron and nickel dissolved in the tungsten particles as they are in the tungsten particles at the sintering temperature, and when slowly cooling, the iron and nickel dissolved in the solid solution are removed. precipitates, making it impossible to obtain a material with high toughness.

以上詳述した合金組成の範囲内において、■タングステ
ンの粒径を40〜100μmにし■酸素、炭素量を各々
0.05重量%、O,GO5重量%以下■タングステン
粒中のニッケル、鉄の固溶量を各々0.1重量%以上、
0.2重量%以上を具備させることにより伸び20%以
上の安定した高靭性合金を達成することが出来る。この
高密度、高靭性合金は高速回転体などの用途に有用であ
る。貫通体としては加工硬化による硬度の向上を行なう
ために合金を更に冷間加工することが望ましい場合もあ
る。冷間加工は鍛造、スェージング加工が有効である。
Within the range of the alloy composition detailed above, ■ the grain size of tungsten is set to 40 to 100 μm; ■ the amount of oxygen and carbon is each 0.05% by weight, and the amount of O and GO is 5% by weight or less; ■ the solidification of nickel and iron in the tungsten grains; Each dissolved amount is 0.1% by weight or more,
By containing 0.2% by weight or more, a stable high-toughness alloy with an elongation of 20% or more can be achieved. This high-density, high-toughness alloy is useful for applications such as high-speed rotating bodies. In some cases, it may be desirable to further cold-work the alloy in order to improve the hardness of the penetrating body through work hardening. Forging and swaging are effective cold working methods.

以下、実施例にて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 ! タングステン191kg1ニツケル8 kg s鉄3 
kgを篩にかけて巨大集合物を除去し、アトライターに
て溶媒をアルコールとして5時間混合した。アルコール
を真空乾燥除去した後の混合粉末の粒度は平均粒径2.
1μmであった。又、炭素量はo、oos重量%であっ
た。この混合粉末を500℃、大気中にて焙焼した。炭
素量は0.004重量%となった。更に800℃水素中
にて還元した。カーボン量は0.001重量%、酸素量
は0.03重量%であった。静圧成型のため直径フ0−
1長さ700龍のゴム袋に15に、ずつ処理粉末を入れ
充填した。その後圧力容器に入れ、0 、 l Ton
/ll1inのスピードで加圧し、最高1 、57on
にし、10分間保持した。その後N O,2Ton/w
inのスピードで除圧し型押体を袋から取り出した。型
押体を直径60龍に旋盤加工した後、水素焼結炉に入れ
l350°Cで1時間焼結した。得られた中間焼結体は
密度が18.1となり理論密度の39.1%であった。
Example ! Tungsten 191 kg 1 Nickel 8 kg s Iron 3
kg was sieved to remove large aggregates, and mixed in an attritor for 5 hours using alcohol as a solvent. The particle size of the mixed powder after removing the alcohol by vacuum drying is an average particle size of 2.
It was 1 μm. Further, the amount of carbon was o, oos% by weight. This mixed powder was roasted at 500°C in the air. The carbon content was 0.004% by weight. It was further reduced in hydrogen at 800°C. The amount of carbon was 0.001% by weight, and the amount of oxygen was 0.03% by weight. Due to static pressure molding, the diameter is 0-
The treated powder was filled into 15 rubber bags each having a length of 700 mm. After that, put it in a pressure vessel, 0, l Ton
Pressurizes at a speed of 1 inch/1 inch, maximum 1,57 on
and held for 10 minutes. After that, NO, 2Ton/w
The pressure was removed at a speed of 1.5 in. and the embossed body was taken out from the bag. After lathe-machining the stamped body to a diameter of 60mm, it was placed in a hydrogen sintering furnace and sintered at 350°C for 1 hour. The density of the obtained intermediate sintered body was 18.1, which was 39.1% of the theoretical density.

この焼結体を更に14[i0℃、水素雰囲気中で32時
間焼結し、1460℃から常温まで1時間、2時間、3
時間、4時間、10時間で冷却した。液相焼結後の寸法
は直径47關、長さ510s層であった。第1図に合金
の組織写真を示すタングステンの平均粒径は60μmで
あった。
This sintered body was further sintered for 14 hours in a hydrogen atmosphere at 0°C, and then heated from 1460°C to room temperature for 1 hour, 2 hours, and 3 hours.
The mixture was cooled for 4 hours, 10 hours. The dimensions after liquid phase sintering were a diameter of 47 mm and a length of 510 seconds. The average grain size of tungsten, whose microstructure photograph is shown in FIG. 1, was 60 μm.

実施例 2 タングステン194kg、ニッケル4kg、鉄2 kg
を篩にかけて実施例1と同様にアトライターにて混合し
た。混合粉末の平均粒径は2.1μmであった。
Example 2 194 kg of tungsten, 4 kg of nickel, 2 kg of iron
The mixture was sieved and mixed in an attritor in the same manner as in Example 1. The average particle size of the mixed powder was 2.1 μm.

炭素mはo、oto重量%であった。この粉末を500
℃大気中で焙焼し、さらに800℃水素中にて還元した
。炭素量は0.003%、酸素量は0.02%であった
Carbon m was o, oto% by weight. 500 ml of this powder
It was roasted in the atmosphere at 800°C and further reduced in hydrogen at 800°C. The carbon content was 0.003% and the oxygen content was 0.02%.

実施例1と同一条件にて静圧成型し、これを直径80m
mに旋盤加工した。成型体を実施例1と同一条件にし予
備焼結した。焼結体の密度は!8.3となり、理論密度
98.9%であった。このものを実施例1と同様にして
、146Oで水素雰囲気炉に入れ、32時間焼結した。
Static pressure molding was carried out under the same conditions as Example 1, and this was made into a diameter of 80 m.
Lathe machined to m. The molded body was pre-sintered under the same conditions as in Example 1. What is the density of the sintered body? The density was 8.3, which was 98.9% of the theoretical density. This product was placed in a hydrogen atmosphere furnace at 146 O and sintered for 32 hours in the same manner as in Example 1.

この焼結体を141%0℃から常温まで1時間、2時間
、3時間、4時間、10時間で冷却した。
This sintered body was cooled from 141% 0° C. to room temperature over 1 hour, 2 hours, 3 hours, 4 hours, and 10 hours.

焼結体のタングステンの粒径は52μmであった。The grain size of tungsten in the sintered body was 52 μm.

実施例 3 実施例1及び2で作製した合金につき、樹脂に埋め込み
、研磨後X線マイクロアナライザーにより、タングステ
ン粒内のN ilF e量を点分析し別に求めた検量線
との対比で定量分析した。又、焼結体より引張試験片、
衝撃試験片を切削加工し、各々につき特性を評価した。
Example 3 The alloys produced in Examples 1 and 2 were embedded in resin, and after polishing, the amount of N ilFe in the tungsten grains was point-analyzed using an X-ray microanalyzer and quantitatively analyzed by comparison with a separately determined calibration curve. . In addition, tensile test pieces from the sintered body,
Impact test pieces were cut and their properties were evaluated.

第1表にそれらの結果を示す。引張特性は形状をAST
ME 8−79Fig18、!=L、、クロスヘッドス
ピード0.2cm/岨nゲージ長さ25m−にて行なっ
た。衝撃試験はJIS222023号試験片とし衝撃値
を求めた。
Table 1 shows the results. Tensile properties AST shape
ME 8-79Fig18,! = L, crosshead speed 0.2 cm/n gauge length 25 m. In the impact test, a JIS 222023 test piece was used to determine the impact value.

第  1  表 実施例 4 実施例1の冷却スピード1440℃/時間にて作成した
合金につきスェージングによる冷間加工を行った。断面
減少率は8.23.42%とした。得られた丸棒につき
実施例3と同様に引張試験片を作成し同一条件にて引張
試験を行ない引張強度、伸びを評価した。
Table 1 Example 4 The alloy prepared in Example 1 at a cooling rate of 1440° C./hour was subjected to cold working by swaging. The area reduction rate was 8.23.42%. A tensile test piece was prepared for the obtained round bar in the same manner as in Example 3, and a tensile test was conducted under the same conditions to evaluate the tensile strength and elongation.

又冷間加工后棒の端面につき、ロックウェル硬度計にて
5点測定し硬度を求めた。結果を第2表に示す。断面減
少率42%の合金の組織を5I2図に示す。冷間加工に
よりW粒が変形し且つ加工硬化により引張強度、硬度が
上がる。
Further, the end face of the cold-worked bar was measured at 5 points using a Rockwell hardness meter to determine the hardness. The results are shown in Table 2. The structure of an alloy with a reduction in area of 42% is shown in Figure 5I2. The W grains are deformed by cold working, and the tensile strength and hardness are increased by work hardening.

第  2  表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の合金の150倍拡大の顕微
鏡組織写真、第2図は他の実施例合金のtSO倍拡大の
顕微鏡組織写真である。 第1記 第2図
FIG. 1 is a 150 times magnified micrograph of the alloy of Example 1 of the present invention, and FIG. 2 is a tSO times magnified micrograph of another example alloy. Part 1, Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)タングステン85〜98重量%及び残部がニッケ
ルと鉄からなり、ニッケルと鉄の重量比が5:5から8
:2の組成からなる焼結合金において、タングステンの
粒径が40〜100μmであり、このタングステンの粒
中にニッケルが0.1重量%以上、鉄が0.2重量%以
上固溶しており、かつ焼結合金中の酸素量が0.05重
量%以下炭素量が0.005重量%以下からなることを
特徴とするW−Ni−Fe焼結合金。
(1) Consisting of 85 to 98% by weight of tungsten and the balance being nickel and iron, with a weight ratio of nickel and iron of 5:5 to 8.
: In the sintered alloy having the composition of 2, the grain size of tungsten is 40 to 100 μm, and 0.1% or more of nickel and 0.2% or more of iron are dissolved in solid solution in the tungsten grains. , and the amount of oxygen in the sintered alloy is 0.05% by weight or less, and the amount of carbon is 0.005% by weight or less.
(2)酸素量が0.05重量%以下、炭素量が0.00
5重量%以下からなるタングステン、ニッケルおよび鉄
の粉末を原料とすることを特徴とする特許請求の範囲第
1項記載のW−Ni−Fe焼結合金。
(2) Oxygen content is 0.05% by weight or less, carbon content is 0.00%
The W-Ni-Fe sintered alloy according to claim 1, characterized in that the W-Ni-Fe sintered alloy is made from powders of tungsten, nickel, and iron containing 5% by weight or less.
JP5293185A 1985-03-15 1985-03-15 W-ni-fe sintered alloy Granted JPS61213338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293185A JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293185A JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Publications (2)

Publication Number Publication Date
JPS61213338A true JPS61213338A (en) 1986-09-22
JPS6330391B2 JPS6330391B2 (en) 1988-06-17

Family

ID=12928586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293185A Granted JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Country Status (1)

Country Link
JP (1) JPS61213338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same
JPWO2020218058A1 (en) * 2019-04-26 2020-10-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same
JP2018003135A (en) * 2016-07-07 2018-01-11 Jfe精密株式会社 Sintered tungsten-based alloy and manufacturing method therefor
JPWO2020218058A1 (en) * 2019-04-26 2020-10-29
WO2020218058A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Tungsten wire and tungsten product

Also Published As

Publication number Publication date
JPS6330391B2 (en) 1988-06-17

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
US3816081A (en) ABRASION RESISTANT CEMENTED TUNGSTEN CARBIDE BONDED WITH Fe-C-Ni-Co
US4684405A (en) Sintered tungsten carbide material and manufacturing method
US3709667A (en) Dispersion strengthening of platinum group metals and alloys
CN108367356B (en) Iron-based powder for powder injection molding
US4799955A (en) Soft composite metal powder and method to produce same
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US3700434A (en) Titanium-nickel alloy manufacturing methods
JPS61213338A (en) W-ni-fe sintered alloy
US3196007A (en) Beryllium copper composition and method of producing green compacts and sintered articles therefrom
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
JP3113144B2 (en) Method for producing high density sintered titanium alloy
US3141235A (en) Powdered tantalum articles
JPS5913037A (en) Production of w-ni-fe sintered alloy
JP2531623B2 (en) Manufacturing method of W-based sintered alloy flying body having high toughness
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
JP2531624B2 (en) Method for producing cored W alloy sintered body having high toughness and high strength
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
JP2502322B2 (en) High toughness cermet
US2657128A (en) Silicon-alloyed corrosion-resistant metal powders and related products and processes
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JPH0469221B2 (en)
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPS6331540B2 (en)
JP2744737B2 (en) Sintering method of Cr-based heat-resistant alloy powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term