JPS6330391B2 - - Google Patents

Info

Publication number
JPS6330391B2
JPS6330391B2 JP5293185A JP5293185A JPS6330391B2 JP S6330391 B2 JPS6330391 B2 JP S6330391B2 JP 5293185 A JP5293185 A JP 5293185A JP 5293185 A JP5293185 A JP 5293185A JP S6330391 B2 JPS6330391 B2 JP S6330391B2
Authority
JP
Japan
Prior art keywords
weight
tungsten
nickel
iron
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5293185A
Other languages
Japanese (ja)
Other versions
JPS61213338A (en
Inventor
Yasuo Imai
Akio Izumi
Shigemichi Kashiwagi
Yoshinari Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5293185A priority Critical patent/JPS61213338A/en
Publication of JPS61213338A publication Critical patent/JPS61213338A/en
Publication of JPS6330391B2 publication Critical patent/JPS6330391B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は高靭性W−Ni−Fe焼結合金に関する
ものである。本発明に係る合金は、防護物を貫通
する発射体(貫通体)、高速回転体(クイル等)
に有用なものである。 (ロ) 従来技術とその問題点 貫通体としては高度の引張強さ、密度及び硬さ
を有し、しかも発射体が完全に貫通する前に破壊
しないように十分な靭性を有していなければなら
ないことがこの技術分野において一般に認められ
ている。又、高速回転体としては高度の引張強
さ、ヤング率を有し、しかも高速回転時破壊しな
いように十分な靭性を有していなければならな
い。 従来より、このような用途に対してW−Cu−
Ni、W−Cu−Fe系の合金が発射体や高速回転体
として利用されているが、0.5〜2%の伸びしか
なくこのため衝撃破壊しやすい弱点を持つてい
た。高密度、硬度を維持したままでより靭性の高
い伸びの大きい材料の開発が望まれていた。 (ハ) 発明の表示 本発明は高度の引張強さ及び硬さを有し、しか
も十分な靭性を備えたW−Ni−Fe焼結合金を提
供するものである。 即ち、本発明はW85〜98重量%及び残部がNi
とFe(Ni:Fe重量比で5:5〜8:2)からな
る合金において、タングステンの粒径が40〜
100μmであり、このタングステンの粒子中にニ
ツケルが0.1重量%以上、鉄が0.2重量%以上固溶
し、焼結合金中の酸素量が0.05重量%以下、炭素
量が0.005重量%以下からなるW−Ni−Fe焼結合
金である。以下、本発明に係る合金につき詳細に
述べる。 合金組成はタングステンが85〜98重量%で、残
りがニツケルと鉄であり、Ni:Fe重量比は5:
5から8:2の範囲である。タングステン含有量
が85重量%以下だと液相焼結中に合金の変形がお
こり、また98重量%以上だとNi−Feのバインダ
ー相が少なくなり所定の靭性が得られないためで
ある。Ni:Feの比率が2:1のとき靭性が最大
になるが、5:5〜8:2の範囲であれば所定の
靭性が確保できる。これらの合金組成において、
十分な靭性を出すことにつき、不純物及びタング
ステン粒径、合金構造分析を種々行つた結果、合
金中の酸素、炭素含有量、タングステン粒径及び
焼結体のタングステン粒内の鉄、ニツケル含有量
が靭性を大きく左右することを発見した。合金中
の酸素、炭素はバインダー相、タングステン相に
固溶し靭性を低下させると共に、焼結時合金のフ
クレあるいは気孔を形成する。これはC+1/2O2
=COあるいはC+O2=CO2の反応によりガスを
生成するためと思われる。酸素量、炭素量が各々
0.05重量%以下、0.005重量%以下であれば上記
の反応による合金のフクレ、気孔形成は起りがた
く靭性も確保される。通常のタングステン粉末、
鉄粉末、ニツケル粉末特にニツケル、鉄粉末中に
は、酸素、炭素が不純物として含有している。た
とえば、カーボニル法によつて作られたニツケル
や鉄では、炭素が0.1重量%、酸素が0.07重量%
含有している。このため、これら粉末を混合して
型押し焼結体を作ると焼結時間と共に、ガス反応
により密度が低下し、極端な場合には発泡して合
金作成が不可能になる。酸素、炭素の低減は実用
的には以下の方法により達成される。 即ち、所定の割合で混合した粉末を400〜800℃
の酸化雰囲気中で焙結する。この工程にて粉末は
酸化されると共に、原料及び混合中に入つてきた
炭素は酸化除去される。これら焙結した粉末を
400〜800℃の還元雰囲気で還元する。この工程に
て酸素含有量を低減すると共に更に内在する炭素
も一部除去される。他の方法は、ニツケル、鉄、
タングステンの各々の粉末を別々に200〜500℃の
酸化雰囲気中で焙結する。これら焙結した粉末を
400〜800℃の還元雰囲気で還元する。これら処理
をした各々の粉末を所定割合に秤量混合すること
によつても酸素、炭素の低減を行なうことが出来
る。焼結体はバインダー相とタングステン粒子か
らなる二相合金の構造をしているが、このタング
ステン粒径は40〜100μmが靭性に優れる。タン
グステン粒径が大きくなるにつれて合金の伸びは
向上し、衝撃値はタングステン粒径が100μm程
度まで向上し、それ以上になると低下する傾向に
ある。従つてタングステン粒径は40〜100μmの
範囲が伸び、衝撃値共に優れている。タングステ
ン粒径は焼結時の温度、時間、および形状により
変化する。例えば直径45mmの丸棒の場合には1460
℃の温度で30〜40時間でタングステン粒径は40〜
100μmになる。また、直径16mmの丸棒の場合に
は4〜7時間で40〜100μmになる。焼結後のタ
ングステン粒内のNi、Fe含有量は靭性の向上に
効果があり、夫々0.1重量%以上、0.2重量%以上
固溶していることが必要である。固溶量が少ない
とタングステン粒径が40〜100μmであつても著
しく靭性が低下し少なくともNiが0.1重量%以上、
Feが0.2重量%以上必要である。実用的にはバイ
ンダーの液相温度より20〜60℃高い温度での焼結
温度から焼結体を500℃/時間以上にて急速に冷
却させることにより達成出来る。即ち焼結温度
で、タングステン粒子内に固溶している鉄、ニツ
ケル量をそのままタングステン粒子内に残すこと
によつて本願発明が可能なわけであり徐冷した場
合には固溶していた鉄、ニツケルが析出し靭性の
高い材料は得られない。 以上詳述した合金組成の範囲内において、タ
ングステンの粒径を40〜100μmにし酸素、炭
素量を各々0.05重量%、0.005重量%以下タン
グステン粒中のニツケル、鉄の固溶量を各々0.1
重量%以上、0.2重量%以上を具備させることに
より伸び20%以上の安定した高靭性合金を達成す
ることが出来る。この高密度、高靭性合金は高速
回転体などの用途に有用である。貫通体としては
加工硬化による硬度の向上を行なうために合金を
更に冷間加工することが望ましい場合もある。冷
間加工は鍛造、スエージング加工が有効である。
以下、実施例にて本発明の詳細を説明する。 実施例 1 タングステン191Kg、ニツケル6Kg、鉄3Kgを
篩にかけて巨大集合物を除去し、アトライターに
て溶媒をアルコールとして5時間混合した。アル
コールを真空乾燥除去した後の混合粉末の粒度は
平均粒径2.1μmであつた。又、炭素量は0.009重
量%であつた。この混合粉末を500℃、大気中に
て焙焼した。炭素量は0.004重量%となつた。更
に800℃水素中にて還元した。カーボン量は0.001
重量%、酸素量は0.03重量%であつた。静圧成型
のため直径70mm、長さ700mmのゴム袋に15Kgずつ
処理粉末を入れ充填した。その後圧力容器に入
れ、0.1Ton/minのスピードで加圧し、最高
1.5Tonにし、10分間保持した。その後、
0.2Ton/minのスピードで除圧し型押体を袋から
取り出した。型押体を直径60mmに旋盤加工した
後、水素焼結炉に入れ1350℃で1時間焼結した。
得られた中間焼結体は密度が18.1となり理論密度
の99.1%であつた。この焼結体を更に1460℃、水
素雰囲気中で32時間焼結し、1460℃から常温まで
1時間、2時間、3時間、4時間、10時間で冷却
した。液相焼結後の寸法は直径47mm、長さ510mm
であつた。第1図に合金の組織写真を示すタング
ステンの平均粒径は60μmであつた。 実施例 2 タングステン194Kg、ニツケル4Kg、鉄2Kgを
篩にかけて実施例1と同様にアトライターにて混
合した。混合粉末の平均粒径は2.1μmであつた。
炭素量は0.010重量%であつた。この粉末を500℃
大気中で焙焼し、さらに800℃水素中にて還元し
た。炭素量は0.003%、酸素量は0.02%であつた。
実施例1と同一条件にて静圧成型し、これを直径
60mmに旋盤加工した。成型体を実施例1と同一条
件にし予備焼結した。焼結体の密度は18.3とな
り、理論密度98.9%であつた。このものを実施例
1と同様にして、1460℃水素雰囲気炉に入れ、32
時間焼結した。この焼結体を1460℃から常温まで
1時間、2時間、3時間、4時間、10時間で冷却
した。焼結体のタングステンの粒径は52μmであ
つた。 実施例 3 実施例1及び2で作製した合金につき、樹脂に
埋め込み、研磨後X線マイクロアナライザーによ
り、タングステン粒内のNi、Fe量を点分析し別
に求めた検量線との対比で定量分析した。又、焼
結体より引張試験片、衝撃試験片を切削加工し、
各々につき特性を評価した。第1表にそれらの結
果を示す。引張特性は形状をASTME8−79Fig18
とし、クロスヘツドスピード0.2cm/minゲージ
長さ25mmにて行なつた。衝撃試験はJISZ2202 3
号試験片とし衝撃値を求めた。
(a) Technical field The present invention relates to a high toughness W-Ni-Fe sintered alloy. The alloy according to the present invention can be used for projectiles that penetrate protective objects (penetrating bodies), high-speed rotating bodies (quills, etc.)
It is useful for (b) Prior art and its problems Penetrators must have a high degree of tensile strength, density and hardness, and have sufficient toughness to prevent the projectile from breaking before it completely penetrates. It is generally accepted in this technical field that this is not the case. In addition, as a high-speed rotating body, it must have high tensile strength and Young's modulus, and must also have sufficient toughness so as not to break during high-speed rotation. Traditionally, W-Cu-
Ni and W-Cu-Fe alloys have been used as projectiles and high-speed rotating bodies, but they only elongate by 0.5 to 2%, making them susceptible to impact damage. There was a desire to develop a material with higher toughness and greater elongation while maintaining high density and hardness. (C) Description of the Invention The present invention provides a W--Ni--Fe sintered alloy that has high tensile strength and hardness, as well as sufficient toughness. That is, in the present invention, W85 to 98% by weight and the balance is Ni.
and Fe (Ni:Fe weight ratio 5:5 to 8:2), when the grain size of tungsten is 40 to
100 μm, nickel is solidly dissolved in the tungsten particles at least 0.1% by weight, iron is solidly dissolved at least 0.2% by weight, and the amount of oxygen in the sintered alloy is not more than 0.05% by weight, and the amount of carbon is not more than 0.005% by weight. -Ni-Fe sintered alloy. The alloy according to the present invention will be described in detail below. The alloy composition is 85-98% by weight of tungsten, the rest is nickel and iron, and the weight ratio of Ni:Fe is 5:
The ratio ranges from 5 to 8:2. This is because if the tungsten content is less than 85% by weight, the alloy will be deformed during liquid phase sintering, and if it is more than 98% by weight, the Ni-Fe binder phase will decrease and the desired toughness will not be obtained. Toughness is maximized when the Ni:Fe ratio is 2:1, but a predetermined toughness can be ensured if the Ni:Fe ratio is in the range of 5:5 to 8:2. In these alloy compositions,
In order to achieve sufficient toughness, we conducted various analyzes of impurities, tungsten grain size, and alloy structure, and found that the oxygen, carbon content, and tungsten grain size in the alloy, as well as the iron and nickel content in the tungsten grains of the sintered body, were They discovered that it has a large effect on toughness. Oxygen and carbon in the alloy form a solid solution in the binder phase and tungsten phase, reducing toughness and forming blisters or pores in the alloy during sintering. This is C+1/2O 2
This seems to be because gas is generated by the reaction of =CO or C+O 2 =CO 2 . The amount of oxygen and the amount of carbon are each
If it is 0.05% by weight or less, or 0.005% by weight or less, blistering and pore formation in the alloy due to the above reaction will not occur, and toughness will be ensured. ordinary tungsten powder,
Iron powder, nickel powder, especially nickel and iron powder, contain oxygen and carbon as impurities. For example, nickel and iron made by the carbonyl method contain 0.1% by weight of carbon and 0.07% by weight of oxygen.
Contains. For this reason, when these powders are mixed to make an embossed sintered body, the density decreases over time due to gas reaction, and in extreme cases, foaming occurs, making it impossible to create an alloy. Reduction of oxygen and carbon is practically achieved by the following method. In other words, powder mixed at a predetermined ratio is heated to 400 to 800℃.
roasted in an oxidizing atmosphere. In this step, the powder is oxidized, and the raw materials and carbon introduced during mixing are removed by oxidation. These roasted powders
Reducing in a reducing atmosphere at 400-800℃. This step reduces the oxygen content and also removes some of the inherent carbon. Other methods include nickel, iron,
Each powder of tungsten is separately roasted in an oxidizing atmosphere at 200-500°C. These roasted powders
Reduce in a reducing atmosphere at 400-800℃. Oxygen and carbon can also be reduced by weighing and mixing the powders subjected to these treatments at a predetermined ratio. The sintered body has a two-phase alloy structure consisting of a binder phase and tungsten particles, and a tungsten particle size of 40 to 100 μm provides excellent toughness. As the tungsten particle size increases, the elongation of the alloy improves, and the impact value increases up to a tungsten particle size of about 100 μm, and tends to decrease as the tungsten particle size increases beyond that. Therefore, the tungsten grain size ranges from 40 to 100 μm, and the impact value is excellent. Tungsten particle size varies depending on temperature, time, and shape during sintering. For example, 1460 for a round bar with a diameter of 45 mm.
Tungsten grain size in 30-40 hours at temperature of 40~40℃
It becomes 100μm. Moreover, in the case of a round bar with a diameter of 16 mm, it becomes 40 to 100 μm in 4 to 7 hours. The Ni and Fe contents in the tungsten grains after sintering are effective in improving toughness, and it is necessary that the Ni and Fe contents in solid solution be 0.1% by weight or more and 0.2% by weight or more, respectively. If the amount of solid solution is small, the toughness will decrease significantly even if the tungsten particle size is 40 to 100 μm.
0.2% by weight or more of Fe is required. Practically, this can be achieved by rapidly cooling the sintered body at 500°C/hour or more from a sintering temperature 20 to 60°C higher than the liquidus temperature of the binder. In other words, the present invention is possible by leaving the amount of iron and nickel dissolved in solid solution in tungsten particles as they are in tungsten particles at the sintering temperature, and when slowly cooling, the iron dissolved in solid solution is removed. , nickel precipitates and a material with high toughness cannot be obtained. Within the range of alloy composition detailed above, the grain size of tungsten is 40 to 100 μm, the amount of oxygen and carbon is 0.05% by weight each, and the amount of solid solution of nickel and iron in the tungsten grains is 0.1% each, 0.005% by weight or less.
By containing 0.2% by weight or more, a stable high-toughness alloy with an elongation of 20% or more can be achieved. This high-density, high-toughness alloy is useful for applications such as high-speed rotating bodies. In some cases, it may be desirable to further cold-work the alloy in order to improve the hardness of the penetrating body through work hardening. Forging and swaging are effective cold working methods.
Hereinafter, the details of the present invention will be explained in Examples. Example 1 191 kg of tungsten, 6 kg of nickel, and 3 kg of iron were sieved to remove large aggregates, and mixed in an attritor for 5 hours using alcohol as a solvent. The average particle size of the mixed powder after removing the alcohol by vacuum drying was 2.1 μm. Further, the carbon content was 0.009% by weight. This mixed powder was roasted at 500°C in the air. The carbon content was 0.004% by weight. It was further reduced in hydrogen at 800°C. The amount of carbon is 0.001
% by weight, and the amount of oxygen was 0.03% by weight. For static pressure molding, 15 kg of treated powder was filled into rubber bags with a diameter of 70 mm and a length of 700 mm. After that, it is placed in a pressure vessel and pressurized at a speed of 0.1Ton/min.
The pressure was set to 1.5Ton and held for 10 minutes. after that,
The pressure was removed at a speed of 0.2Ton/min and the embossed body was taken out from the bag. After turning the stamped body to a diameter of 60 mm, it was placed in a hydrogen sintering furnace and sintered at 1350°C for 1 hour.
The density of the obtained intermediate sintered body was 18.1, which was 99.1% of the theoretical density. This sintered body was further sintered at 1460°C in a hydrogen atmosphere for 32 hours, and then cooled from 1460°C to room temperature over 1 hour, 2 hours, 3 hours, 4 hours, and 10 hours. Dimensions after liquid phase sintering: diameter 47mm, length 510mm
It was hot. The average grain size of the tungsten, whose microstructure photograph is shown in FIG. 1, was 60 μm. Example 2 194 kg of tungsten, 4 kg of nickel, and 2 kg of iron were sieved and mixed in an attritor in the same manner as in Example 1. The average particle size of the mixed powder was 2.1 μm.
The carbon content was 0.010% by weight. This powder is heated to 500℃
It was roasted in the air and further reduced in hydrogen at 800°C. The carbon content was 0.003% and the oxygen content was 0.02%.
Static pressure molding was performed under the same conditions as Example 1, and the diameter
Lathe machined to 60mm. The molded body was pre-sintered under the same conditions as in Example 1. The density of the sintered body was 18.3, which was 98.9% of the theoretical density. This material was placed in a hydrogen atmosphere furnace at 1460°C in the same manner as in Example 1, and heated to 32°C.
Sintered for hours. This sintered body was cooled from 1460° C. to room temperature over 1 hour, 2 hours, 3 hours, 4 hours, and 10 hours. The grain size of tungsten in the sintered body was 52 μm. Example 3 The alloys produced in Examples 1 and 2 were embedded in resin, and after polishing, the amounts of Ni and Fe in the tungsten grains were point-analyzed using an X-ray microanalyzer and quantitatively analyzed by comparison with a separately determined calibration curve. . In addition, we cut tensile test pieces and impact test pieces from the sintered body,
The characteristics of each were evaluated. Table 1 shows the results. Tensile properties are based on the shape ASTME8−79Fig18
The crosshead speed was 0.2 cm/min and the gauge length was 25 mm. Impact test is JISZ2202 3
The impact value was determined using a No. 1 test piece.

【表】 実施例 4 実施例1の冷却スピード1440℃/時間にて作成
した合金につきスエージングによる冷間加工を行
つた。断面減少率は8、23、42%とした。得られ
た丸棒につき実施例3と同様に引張試験片を作成
し同一条件にて引張試験を行ない引張強度、伸び
を評価した。 又冷間加工后棒の端面につき、ロツクウエル硬
度計にて5点測定し硬度を求めた。結果を第2表
に示す。断面減少率42%の合金の組織を第2図に
示す。冷間加工によりW粒が変形し且つ加工硬化
により引張強度、硬度が上がる。
[Table] Example 4 The alloy prepared in Example 1 at a cooling rate of 1440° C./hour was subjected to cold working by swaging. The cross-sectional reduction rates were 8, 23, and 42%. A tensile test piece was prepared for the obtained round bar in the same manner as in Example 3, and a tensile test was conducted under the same conditions to evaluate the tensile strength and elongation. Further, the end face of the cold-worked bar was measured at 5 points using a Rockwell hardness meter to determine the hardness. The results are shown in Table 2. Figure 2 shows the structure of an alloy with a reduction in area of 42%. The W grains are deformed by cold working, and the tensile strength and hardness are increased by work hardening.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の合金の150倍拡大
の顕微鏡組織写真、第2図は他の実施例合金の
150倍拡大の顕微鏡組織写真である。
Figure 1 is a 150x magnified micrograph of the alloy of Example 1 of the present invention, and Figure 2 is of another example alloy.
This is a micrograph of the structure magnified 150 times.

Claims (1)

【特許請求の範囲】 1 タングステン85〜98重量%及び残部がニツケ
ルと鉄からなり、ニツケルと鉄の重量比が5:5
から8:2の組成からなる焼結合金において、タ
ングステンの粒径が40〜100μmであり、このタ
ングステンの粒中にニツケルが0.1重量%以上、
鉄が0.2重量%以上固溶しており、かつ焼結合金
中の酸素量が0.05重量%以下炭素量が0.005重量
%以下からなることを特徴とする高靭性W−Ni
−Fe焼結合金。 2 タングステン85〜98重量%及び残部がニツケ
ルと鉄からなり、ニツケルと鉄の重量比が5:5
から8:2の組成からなる混合粉末を圧縮して型
押体とし、該型押体をニツケル鉄合金の液相発生
温度以上の温度で焼結することからなる高靭性W
−Ni−Fe焼結合金の製造方法において、酸素量
が0.05重量%以下、炭素量が0.005重量%以下か
らなるタングステン、ニツケルおよび鉄の粉末を
原料とすることを特徴とする高靭性W−Ni−Fe
焼結合金の製造方法。
[Scope of Claims] 1 Consisting of 85 to 98% by weight of tungsten and the balance being nickel and iron, with a weight ratio of nickel and iron of 5:5.
In the sintered alloy having a composition of 8:2, the tungsten grain size is 40 to 100 μm, and the tungsten grains contain 0.1% by weight or more of nickel.
High-toughness W-Ni characterized by having 0.2% by weight or more of iron in solid solution, and having an oxygen content of 0.05% by weight or less and a carbon content of 0.005% by weight or less in the sintered alloy.
−Fe sintered alloy. 2 Tungsten is 85-98% by weight and the balance is nickel and iron, with a weight ratio of nickel and iron of 5:5.
High toughness W is obtained by compressing a mixed powder having a composition of 8:2 to form a stamped body, and sintering the stamped body at a temperature higher than the liquid phase generation temperature of the nickel iron alloy.
- A method for producing a Ni-Fe sintered alloy, characterized in that the raw materials are tungsten, nickel, and iron powders containing 0.05% by weight or less of oxygen and 0.005% by weight or less of carbon. −Fe
Method for manufacturing sintered alloy.
JP5293185A 1985-03-15 1985-03-15 W-ni-fe sintered alloy Granted JPS61213338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293185A JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293185A JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Publications (2)

Publication Number Publication Date
JPS61213338A JPS61213338A (en) 1986-09-22
JPS6330391B2 true JPS6330391B2 (en) 1988-06-17

Family

ID=12928586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293185A Granted JPS61213338A (en) 1985-03-15 1985-03-15 W-ni-fe sintered alloy

Country Status (1)

Country Link
JP (1) JPS61213338A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same
CN113728119A (en) * 2019-04-26 2021-11-30 松下知识产权经营株式会社 Tungsten wire and tungsten product

Also Published As

Publication number Publication date
JPS61213338A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
JPH0583624B2 (en)
JPH08939B2 (en) Method for reducing variation in mechanical property values of tungsten-nickel-iron alloy
US4365996A (en) Method of producing a memory alloy
JPS62156240A (en) Powder metallurgical production of copper-nickel-tin spinodal alloy
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
US3158473A (en) Method for producing composite bodies
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US3700434A (en) Titanium-nickel alloy manufacturing methods
JPH0225961B2 (en)
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP2531624B2 (en) Method for producing cored W alloy sintered body having high toughness and high strength
JPS6330391B2 (en)
JP2531623B2 (en) Manufacturing method of W-based sintered alloy flying body having high toughness
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
US3378356A (en) Composites of beryllium-coppermagnesium
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JPH03120324A (en) Manufacture of alloy for compacted bullet
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPS6331540B2 (en)
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2726140B2 (en) High toughness tungsten sintered alloy
JPH0469221B2 (en)
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term