JPH0469221B2 - - Google Patents

Info

Publication number
JPH0469221B2
JPH0469221B2 JP31131089A JP31131089A JPH0469221B2 JP H0469221 B2 JPH0469221 B2 JP H0469221B2 JP 31131089 A JP31131089 A JP 31131089A JP 31131089 A JP31131089 A JP 31131089A JP H0469221 B2 JPH0469221 B2 JP H0469221B2
Authority
JP
Japan
Prior art keywords
tungsten
alloy
nickel
amount
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31131089A
Other languages
Japanese (ja)
Other versions
JPH03173738A (en
Inventor
Nobuyoshi Okato
Masao Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP31131089A priority Critical patent/JPH03173738A/en
Publication of JPH03173738A publication Critical patent/JPH03173738A/en
Publication of JPH0469221B2 publication Critical patent/JPH0469221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高速回転体又は防護物を貫通する発
射体に有用な高強度、高靭性タングステン焼結合
金に関する。 〔従来の技術〕 高速回転体は、高度の引張り強さ、ヤング率を
有し、しかも高速回転時に破壊しないような十分
な靫性を有していなければならない。又、上記発
射体は、防護物を完全に貫通する前に破壊しない
ように十分な延性、靭性を有し、しかも貫通時に
発射体の推進エネルギー損失をできるだけ小さく
するために高度の引張り強さを有することが必要
である。 このような要求を満たす従来技術として、例え
ば特開昭62−185805号公報には、所定比率のタン
グステン、ニツケル、鉄からなる原料粉体を圧粉
成形し、これを液相焼結した後に実質的に最終形
状に加工し、しかる後に真空中において加熱後急
冷する熱処理を施すことが提案されている(第1
従来例)。また、特公昭63−30391号公報には、タ
ングステン焼結合金中の酸素量と炭素量とを低減
することが提案されている(第2従来例)。 〔発明が解決しようとする課題〕 上記第1従来例にあつては熱処理条件によつて
タングステン焼結合金の延性を改善し得るとさ
れ、また第2従来例にあつては合金中の酸素量と
炭素量とを低減することによつて、材料内のポロ
シテイ発生を抑制し延性を改善し得るとされてい
る。すなわちいずれの従来例も、タングステン焼
結合金の延性向上が主な効果とされており、強度
の向上についてはほとんど触れられていない。し
かし、タングステン焼結合金が適用される高速回
転体や防護物を貫通する発射体の場合は、延性と
強度とを共に向上させる必要があり、その点に問
題があつた。 そこで本発明は、高速回転体や防護物を貫通す
る発射体として要求される25%以上の伸びを確保
すると同時に、窒素(N)の固溶強化を利用して強度
を少なくとも95Kg/mm2以上に高めたタングステン
焼結合金を提供することを目的としている。 〔課題を解決するための手段〕 上記目的を達成するため、本発明は、タングス
テン85〜98wt%、残部がニツケルと鉄とからな
り、そのニツケルと鉄との重量比が5:5ないし
8:2の範囲にあるタングステン焼結合金におい
て、タングステンの粒径が40μm以下であり、且
つニツケル−鉄相に固溶する窒素量が0.005%を
超え0.100%以下であることを特徴とする。 以下、更に詳細に説明する。 本発明のタングステン焼結合金の組成は、タン
グステン(W)が85〜98wt%で、残部がニツケル
(Ni)と鉄(Fe)である。タングステン含有量
は、所定の高密度を保つために85%以上が必要で
ある。かつ又、タングステン焼結合金を製造する
際の液相焼結工程において完全に緻密化する液相
量を確保するため、98%以下であることが必要で
ある。ニツケルと鉄は、焼結時に液相を発生して
高密度化を促進し、かつ材料の延性を高める目的
で添加される。その添加量は、合金量の2〜15%
とする。2%未満では十分な液相が発生せず、高
密度化の効果が発揮できない。一方、15%を越え
るとタングステンの含有量が少なくなりすぎて、
合金の高比重が得られなくなる。又、ニツケルと
鉄の重量比率は、液相生成温度を下げて効果的な
液相焼結を実施するために、Ni:Fe=7:3に
することが最も好ましい。しかし、Ni:Fe=
5:5からNi:Fe=8:2の範囲内であれば、
液相焼結に対して悪影響を及ぼさない。 上記の組成のタングステン焼結合金において、
タングステンの原料粉末の粒度が、最終的に得ら
れる合金の延性と強度とに悪影響を及ぼす。タン
グステン粒径が大きくなるに従つて延性が向上す
る傾向にあるが、強度は逆に低下する傾向があ
る。そのため、延性と強度との両特性を共に向上
させ、伸びを25%以上とし強度を少なくとも95
Kg/mm2以上とするには、タングステン粒径を40μ
m以下〜16μm以上とすることが望ましい。 さらに本発明者らは、高強度で高靭性を有する
タングステン焼結合金を研究する過程で、通常は
水素気流中で合金を液相焼結するのに対して、積
極的に窒素を添加すると、窒素がマトリツクス相
に固溶し、固溶強化によつて合金の強度が向上す
ることを見出した。 第1図にその研究の一例として、タングステ
ン、ニツケル、鉄の成分比率が95W−3.5Ni−
1.5Feを基本とするタングステン焼結合金におい
て、Fe−Ni相中の窒素(N)の量を種々に変化させ
た場合の引張り強度と伸びを測定した結果を示
す。窒素添加は液相焼結を行うときの雰囲気ガス
中にN2ガスを混入して行い、Nが合金中のFe−
Ni相に固溶するようにした。焼結温度は1500℃、
焼結時間は30分とし、焼結後に1000℃で1時間の
脱水素処理を施した。タングステンの粒径はいず
れも35μmである。 図から、Fe−Ni相中のN量の増加に伴つて合
金の強度が増加することがわかる。一方、合金の
伸びは逆に減少している。N量が0.005%以下で
は引張り強さが急低下しており、Nの固溶強化が
十分ではない。またN量が0.10%を超えると伸び
が急低下しており、高速回転体に要求される値の
25%に達しない。これから、Fe−Ni相中に固溶
する窒素量は0.005%を超え0.10%以下であるこ
たを適当といえる。 本発明によれば、タングステン焼結合金中に積
極的に窒素を添加することによつて生じる窒素の
固溶強化と、タングステン粒径の制御によるタン
グステン粒の微細強化とによつて、合金の靭性を
損なうことなく強度を向上させることができる。 〔実施例〕 以下、本発明の実施例を説明する。 タングステン粉とニツケル粉と鉄粉との混合比
率を変えて異なる化学組成とした混合粉末を3種
類用意し、それぞれの混合粉末を2ton/cm2の静水
圧下に圧縮成形し、その成形体を水素と窒素との
混合雰囲気中で液相焼結し、その後1000℃×1時
間の脱水素熱処理を行つてタングステン焼結合金
の試験試料を形成した。 焼結工程における焼結温度、焼結時間、雰囲気
ガス組成等を種々に設定して処理することによ
り、第1表に示すようにタングステン粒径が16μ
m以上で40μmを超えず、且つFe−Ni相中に固溶
する窒素量が0.005%を超え、0.100%以下の範囲
内にある本発明の合金試料No.1〜No.9を得た。一
方、比較例としては、タングステン粒径が16μm
未満のものと40μmを超えるものとを含み、また
Fe−Ni相中に固溶する窒素量が0.005%未満のも
のと0.100%を超えるものとを含む合金試料No.10
〜No.14を用意した。 上記の各試料No.1〜No.14のそれぞれにつき、引
張り試験を行つて、機械的性質を比較した。 その試験の結果を第1表に示す。 第1表より、本発明のタングステン焼結合金
は、全て引張り強さ95Kg/mm2以上で且つ伸びは25
%以上であるのに対して、比較例のものは引張り
強さ95Kg/mm2以上のものは伸びが25%に達してお
らず、伸びが25%以上のものは引張り強さが95
Kg/mm2に達していないことがわかる。
[Industrial Application Field] The present invention relates to a high-strength, high-toughness sintered tungsten alloy useful for high-speed rotating bodies or projectiles that penetrate protective objects. [Prior Art] A high-speed rotating body must have a high degree of tensile strength and Young's modulus, and must also have sufficient toughness so as not to break during high-speed rotation. In addition, the projectile has sufficient ductility and toughness so as not to break before completely penetrating the protected object, and also has a high tensile strength to minimize the loss of propulsion energy of the projectile during penetration. It is necessary to have As a conventional technique that satisfies such requirements, for example, Japanese Patent Application Laid-Open No. 62-185805 discloses that raw material powder consisting of tungsten, nickel, and iron in a predetermined ratio is compacted, liquid-phase sintered, and then substantially It has been proposed that the process be processed into the final shape, and then subjected to heat treatment in which it is heated in a vacuum and then rapidly cooled.
conventional example). Further, Japanese Patent Publication No. 63-30391 proposes reducing the amount of oxygen and carbon in a tungsten sintered alloy (second conventional example). [Problems to be Solved by the Invention] In the first conventional example, the ductility of the tungsten sintered alloy can be improved by changing the heat treatment conditions, and in the second conventional example, the ductility of the tungsten sintered alloy can be improved by changing the amount of oxygen in the alloy. It is said that by reducing the amount of carbon and the amount of carbon, it is possible to suppress the occurrence of porosity within the material and improve the ductility. That is, in each of the conventional examples, the main effect is to improve the ductility of the tungsten sintered alloy, and there is almost no mention of improving the strength. However, in the case of high-speed rotating bodies or projectiles that penetrate protective objects, to which tungsten sintered alloys are applied, it is necessary to improve both ductility and strength, which poses a problem. Therefore, the present invention secures an elongation of 25% or more required for a projectile that can penetrate high-speed rotating bodies and protective objects, and at the same time increases the strength to at least 95 kg/mm 2 by using solid solution strengthening with nitrogen (N). The purpose is to provide a tungsten sintered alloy with improved properties. [Means for Solving the Problem] In order to achieve the above object, the present invention consists of tungsten in an amount of 85 to 98 wt% and the balance being nickel and iron, and the weight ratio of nickel to iron is 5:5 to 8: The tungsten sintered alloy falling within the range of 2 is characterized in that the particle size of tungsten is 40 μm or less, and the amount of nitrogen solidly dissolved in the nickel-iron phase is more than 0.005% and less than 0.100%. This will be explained in more detail below. The composition of the tungsten sintered alloy of the present invention is 85 to 98 wt% tungsten (W), and the balance is nickel (Ni) and iron (Fe). The tungsten content must be 85% or more to maintain the specified high density. Furthermore, in order to ensure the amount of liquid phase to be completely densified in the liquid phase sintering process when manufacturing a tungsten sintered alloy, it is necessary that the amount is 98% or less. Nickel and iron are added to generate a liquid phase during sintering to promote densification and increase the ductility of the material. The amount added is 2 to 15% of the alloy amount.
shall be. If it is less than 2%, a sufficient liquid phase will not be generated and the densification effect cannot be achieved. On the other hand, if it exceeds 15%, the tungsten content becomes too low.
It becomes impossible to obtain a high specific gravity of the alloy. The weight ratio of nickel and iron is most preferably Ni:Fe=7:3 in order to lower the liquid phase formation temperature and carry out effective liquid phase sintering. However, Ni:Fe=
If it is within the range of 5:5 to Ni:Fe=8:2,
No adverse effect on liquid phase sintering. In the tungsten sintered alloy with the above composition,
The grain size of the tungsten raw powder has an adverse effect on the ductility and strength of the final alloy. As the tungsten particle size increases, ductility tends to improve, but strength tends to decrease. Therefore, both ductility and strength properties have been improved, with elongation of 25% or more and strength of at least 95%.
To achieve Kg/mm2 or more , the tungsten grain size should be 40μ.
It is desirable that the thickness be from 16 μm or less to 16 μm or less. Furthermore, in the process of researching tungsten sintered alloys with high strength and high toughness, the present inventors found that, while the alloy is normally liquid-phase sintered in a hydrogen stream, by actively adding nitrogen, It was discovered that nitrogen dissolves in the matrix phase and the strength of the alloy is improved by solid solution strengthening. Figure 1 shows an example of the research in which the composition ratio of tungsten, nickel, and iron is 95W−3.5Ni−.
The results of measuring the tensile strength and elongation of a tungsten sintered alloy based on 1.5Fe when varying the amount of nitrogen (N) in the Fe-Ni phase are shown. Nitrogen addition is performed by mixing N2 gas into the atmosphere gas when performing liquid phase sintering, and N is added to Fe-
It was made to be a solid solution in the Ni phase. Sintering temperature is 1500℃,
The sintering time was 30 minutes, and after sintering, dehydrogenation treatment was performed at 1000°C for 1 hour. The particle size of tungsten is 35 μm in both cases. The figure shows that the strength of the alloy increases as the amount of N in the Fe-Ni phase increases. On the other hand, the elongation of the alloy is decreasing. When the amount of N is 0.005% or less, the tensile strength rapidly decreases, and the solid solution strengthening of N is not sufficient. Furthermore, when the amount of N exceeds 0.10%, the elongation decreases rapidly, which is less than the value required for high-speed rotating bodies.
It does not reach 25%. From this, it can be said that the appropriate amount of nitrogen dissolved in the Fe-Ni phase is more than 0.005% and less than 0.10%. According to the present invention, the toughness of the alloy is improved by solid solution strengthening of nitrogen caused by actively adding nitrogen into the tungsten sintered alloy, and by fine strengthening of tungsten grains by controlling the tungsten grain size. The strength can be improved without compromising the strength. [Examples] Examples of the present invention will be described below. Three types of mixed powders with different chemical compositions were prepared by changing the mixing ratio of tungsten powder, nickel powder, and iron powder, and each mixed powder was compression molded under hydrostatic pressure of 2 tons/cm 2 to form a compact. A test sample of a tungsten sintered alloy was formed by liquid phase sintering in a mixed atmosphere of hydrogen and nitrogen, followed by dehydrogenation heat treatment at 1000° C. for 1 hour. By variously setting the sintering temperature, sintering time, atmospheric gas composition, etc. in the sintering process, the tungsten particle size was reduced to 16μ as shown in Table 1.
Alloy samples No. 1 to No. 9 of the present invention were obtained in which the nitrogen content was greater than 0.005% and did not exceed 40 μm, and the amount of nitrogen solidly dissolved in the Fe-Ni phase was in the range of more than 0.005% and less than 0.100%. On the other hand, as a comparative example, the tungsten particle size is 16 μm.
Including those less than 40μm and those exceeding 40μm, and
Alloy sample No. 10 containing nitrogen content dissolved in the Fe-Ni phase of less than 0.005% and more than 0.100%
~No.14 has been prepared. A tensile test was conducted on each of the above samples No. 1 to No. 14 to compare the mechanical properties. The results of the test are shown in Table 1. From Table 1, all of the tungsten sintered alloys of the present invention have a tensile strength of 95 kg/mm 2 or more and an elongation of 25 kg/mm 2 or more.
% or more, whereas the comparative examples have a tensile strength of 95 kg/mm 2 or more, the elongation does not reach 25%, and the elongation of 25% or more has a tensile strength of 95%.
It can be seen that the value has not reached Kg/mm 2 .

【表】 〓注〓 *印は本発明の条件から外れているもの
〔発明の効果〕 以上説明したように、本発明によれば、タング
ステン85〜98wt%、残部が重量比が5:5ない
し8:2の範囲にあるニツケルと鉄とからなるタ
ングステン焼結合金において、タングステンの粒
径が40μm以下であり、且つニツケル−鉄相に固
溶する窒素量が0.005%を超え0.100%以下の範囲
内にあるものとした。そのため、強度が少なくと
も95Kg/mm2以上で且つ伸びが25%以上であり、し
たがつて高速回転体や防護物を貫通する発射体と
して好適に用いうるタングステン焼結合金を提供
することができるという効果が得られる。
[Table] Note: Items marked with * do not meet the conditions of the present invention [Effects of the invention] As explained above, according to the present invention, tungsten is 85 to 98 wt%, and the balance is in a weight ratio of 5:5 or 5:5. In a tungsten sintered alloy consisting of nickel and iron in the range of 8:2, the grain size of tungsten is 40 μm or less, and the amount of nitrogen solidly dissolved in the nickel-iron phase is in the range of more than 0.005% and less than 0.100%. It was assumed that it was inside. Therefore, it is possible to provide a tungsten sintered alloy that has a strength of at least 95 Kg/mm 2 and an elongation of 25% or more, and can therefore be suitably used as a projectile that penetrates high-speed rotating bodies and protective objects. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタングステン焼結合金において、ニツ
ケル−鉄相中の窒素量と合金の引張り強さ及び伸
びとの関係を表す図である。
FIG. 1 is a diagram showing the relationship between the amount of nitrogen in the nickel-iron phase and the tensile strength and elongation of the alloy in a tungsten sintered alloy.

Claims (1)

【特許請求の範囲】 1 タングステン85〜98wt%、残部がニツケル
と鉄とからなり、そのニツケルと鉄との重量比が
5:5ないし8:2の範囲にあるタングステン焼
結合金において、 タングステンの粒径が40μm以下であり、且つ
ニツケル−鉄相に固溶する窒素量が0.005%を超
え0.100%以下であることを特徴とする高強度、
高靭性タングステン焼結合金。
[Claims] 1. A tungsten sintered alloy consisting of 85 to 98 wt% tungsten, the balance being nickel and iron, and the weight ratio of nickel to iron being in the range of 5:5 to 8:2, High strength, characterized in that the particle size is 40 μm or less, and the amount of nitrogen solidly dissolved in the nickel-iron phase is more than 0.005% and less than 0.100%,
High toughness tungsten sintered alloy.
JP31131089A 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy Granted JPH03173738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31131089A JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131089A JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Publications (2)

Publication Number Publication Date
JPH03173738A JPH03173738A (en) 1991-07-29
JPH0469221B2 true JPH0469221B2 (en) 1992-11-05

Family

ID=18015598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131089A Granted JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH03173738A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263163A (en) * 1992-03-18 1993-10-12 Japan Steel Works Ltd:The Manufacture of w-ni-fe sintered alloy
EP2789708A4 (en) * 2011-12-07 2015-10-14 Almt Corp Sintered tungsten alloy

Also Published As

Publication number Publication date
JPH03173738A (en) 1991-07-29

Similar Documents

Publication Publication Date Title
CN108103381B (en) High-strength FeCoNiCrMn high-entropy alloy and preparation method thereof
US7806995B2 (en) ODS molybdenum-silicon-boron alloy
US7767138B2 (en) Process for the production of a molybdenum alloy
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
EP0311369A1 (en) Method for the production of a composite metal powder and the powder produced thereby
US3085005A (en) Alloys
US3664889A (en) TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
US5462576A (en) Heavy metal alloy and method for its production
JPH0320452B2 (en)
US2917383A (en) Fabrication of uranium-aluminum alloys
US3141235A (en) Powdered tantalum articles
JPH0469221B2 (en)
CN115011838A (en) Rare earth modified titanium alloy and preparation method and application thereof
JPS62196306A (en) Production of double layer tungsten alloy
US4448606A (en) Molybdenum-tungsten based alloys containing hafnium carbide
US3576621A (en) Vanadium-base alloy
EP0221746A2 (en) Activated sintering of metallic powders
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JPS6330391B2 (en)
US3695868A (en) Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements
US3676084A (en) Refractory metal base alloy composites
CN115673327B (en) High-strength and high-toughness tungsten alloy and preparation method thereof
JPS62961B2 (en)
JPS6229481B2 (en)
JPH0382732A (en) Aluminum alloy sintered product and its manufacture