JPH03173738A - High strength and high toughness tungsten sintered alloy - Google Patents

High strength and high toughness tungsten sintered alloy

Info

Publication number
JPH03173738A
JPH03173738A JP31131089A JP31131089A JPH03173738A JP H03173738 A JPH03173738 A JP H03173738A JP 31131089 A JP31131089 A JP 31131089A JP 31131089 A JP31131089 A JP 31131089A JP H03173738 A JPH03173738 A JP H03173738A
Authority
JP
Japan
Prior art keywords
tungsten
sintered alloy
strength
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31131089A
Other languages
Japanese (ja)
Other versions
JPH0469221B2 (en
Inventor
Nobuyoshi Okato
岡登 信義
Masao Nakai
中井 将雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP31131089A priority Critical patent/JPH03173738A/en
Publication of JPH03173738A publication Critical patent/JPH03173738A/en
Publication of JPH0469221B2 publication Critical patent/JPH0469221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the W sintered alloy having high strength and high toughness, in a W sintered alloy contg. specified amounts of Ni and Fe, by specifying the grain size of W and the amt. of N entering into solid soln. in an Ni-Fe phase. CONSTITUTION:In a W sintered alloy constituted of 85 to 98% W and the balance Ni and Fe in the range of 5:5 to 8:2 by weight ratio, the grain size of W is regulated to <=40mu, and the amt. of N entering into solid soln. in an Ni-Fe phase is regulated to the range of >0.005 to 0.100%. In this way, the W sintered alloy having at least about >=95kg/mm<2> strength and about >=25% elongation and suitably usable as a projectile going through a high speed rotary body and a protective can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速回転体又は防護物を貫通する発射体に有
用な高強度、高靭性タングステン焼結合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high strength, high toughness sintered tungsten alloy useful for high speed rotating bodies or projectiles that penetrate protective objects.

〔従来の技術〕[Conventional technology]

高速回転体は、高度の引張り強さ、ヤング率を有し、し
かも高速回転時に破壊しないような十分な靭性を有して
いなければならない。又、上記発射体は、防護物を完全
に貫通する前に破壊しないように十分な延性、靭性を有
し、しかも貫通時に発射体の推進エネルギー損失をでき
るだけ小さくするために高度の引張り強さを有すること
が必要である。
A high-speed rotating body must have high tensile strength and Young's modulus, and must also have sufficient toughness so as not to break during high-speed rotation. In addition, the projectile has sufficient ductility and toughness so as not to break before completely penetrating the protected object, and also has a high tensile strength to minimize the loss of propulsion energy of the projectile during penetration. It is necessary to have

このような要求を満たす従来技術として、例えば特開昭
62−185805号公報には、所定比率のタングステ
ン、ニッケル、鉄からなる原料粉体を圧粉成形し、これ
を液相焼結した後に実質的に最終形状に加工し、しかる
後に真空中において加熱後急冷する熱処理を施すことが
提案されている(第1従来例)、また、特公昭63−3
0391号公報には、タングステン焼結合金中の酸素量
と炭素量とを低減することが提案されている(第2従来
例)。
As a conventional technique that satisfies such requirements, for example, Japanese Patent Application Laid-Open No. 185805/1983 discloses that raw material powder consisting of tungsten, nickel, and iron in a predetermined ratio is compacted, liquid-phase sintered, and then substantially It has been proposed to process the product into the final shape, then heat it in a vacuum and then rapidly cool it (first conventional example).
Publication No. 0391 proposes reducing the amount of oxygen and carbon in a tungsten sintered alloy (second conventional example).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記第1従来例にあっては熱処理条件によってタングス
テン焼結合金の延性を改善し得るとされ、また第2従来
例にあっては合金中の酸素量と炭素量とを低減すること
によって、材料内のポロシティ発生を抑制し延性を改善
し得るとされている。
In the first conventional example, the ductility of the tungsten sintered alloy can be improved by changing the heat treatment conditions, and in the second conventional example, the ductility of the tungsten sintered alloy can be improved by reducing the amount of oxygen and carbon in the alloy. It is said that the ductility can be improved by suppressing the occurrence of porosity within the steel.

すなわちいずれの従来例も、タングステン焼結合金の延
性向上が主な効果とされており、強度の向上については
ほとんど触れられていない。しかし、タングステン焼結
合金が適用される高速回転体や防護物を貫通する発射体
の場合は、延性と強度とを共に向上させる必要があり、
その点に問題があった。
That is, in each of the conventional examples, the main effect is to improve the ductility of the tungsten sintered alloy, and there is almost no mention of improving the strength. However, in the case of high-speed rotating bodies or projectiles that penetrate protective objects, to which tungsten sintered alloys are applied, it is necessary to improve both ductility and strength.
There was a problem with that.

そこで本発明は、高速回転体や防護物を貫通する発射体
として要求される25%以上の伸びを確保すると同時に
、窒素(N)の固溶強化を利用して強度を少なくとも9
5kg/mm”以上に高めたタングステン焼結合金を提
供することを目的としている。
Therefore, the present invention secures an elongation of 25% or more required for a projectile that can penetrate high-speed rotating bodies and protective objects, and at the same time increases the strength by at least 9% by using solid solution strengthening with nitrogen (N).
The purpose of the present invention is to provide a tungsten sintered alloy with an increased weight of 5 kg/mm" or more.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、タングステン85
〜98−t%、残部がニッケルと鉄とからなり、そのニ
ッケルと鉄との重量比が5:5ないし8:2の範囲にあ
るタングステン焼結合金において、タングステンの粒径
が40μm以下であり、且つニッケル−鉄相に固溶する
窒素量がO,OO5%を超え0.100%以下であるこ
とを特徴とする。
In order to achieve the above object, the present invention provides tungsten 85
~98-t%, the balance is nickel and iron, and the tungsten sintered alloy has a weight ratio of nickel and iron in the range of 5:5 to 8:2, and the tungsten particle size is 40 μm or less. , and the amount of nitrogen solidly dissolved in the nickel-iron phase is more than 5% of O, OO and less than 0.100%.

以下、更に詳細に説明する。This will be explained in more detail below.

本発明のタングステン焼結合金の組成は、タングステン
(W)が85〜98−t%で、残部がニッケル(Ni)
と鉄(Fe)である。タングステン含有量は、所定の高
密度を保つために85%以上が必要である。かつ又、タ
ングステン焼結合金を製造する際の液相焼結工程におい
て完全に緻密化する液相量を確保するため、98%以下
であることが必要である。ニッケルと鉄は、焼結時に液
相を発生して高密度化を促進し、かつ材料の延性を高め
る目的で添加される。その添加量は、合金量の2〜15
%とする。2%未満では十分な液相が発生せず、高密度
化の効果が発揮できない。一方、15%を越えるとタン
グステンの含有量が少なくなりすぎて、合金の高比重が
得られなくなる。又、ニッケルと鉄の重量比率は、液相
生成温度を下げて効果的な液相焼結を実施するために、
Ni:Fe=7:3にすることが最も好ましい、しかし
、Ni:Fe=5:5からNi : Fe=8 : 2
の範囲内であれば、液相焼結に対して悪影響を及ぼさな
い。
The composition of the tungsten sintered alloy of the present invention is 85 to 98-t% tungsten (W), and the balance is nickel (Ni).
and iron (Fe). The tungsten content needs to be 85% or more in order to maintain a predetermined high density. Furthermore, in order to ensure the amount of liquid phase to be completely densified in the liquid phase sintering process when manufacturing a tungsten sintered alloy, it is necessary that the amount is 98% or less. Nickel and iron are added for the purpose of generating a liquid phase during sintering to promote densification and increase the ductility of the material. The amount added is 2 to 15 of the alloy amount.
%. If it is less than 2%, a sufficient liquid phase will not be generated and the densification effect cannot be achieved. On the other hand, if it exceeds 15%, the tungsten content becomes too small, making it impossible to obtain a high specific gravity of the alloy. In addition, the weight ratio of nickel and iron is determined to lower the liquid phase formation temperature and perform effective liquid phase sintering.
Most preferably Ni:Fe=7:3, but from Ni:Fe=5:5 to Ni:Fe=8:2
Within this range, there is no adverse effect on liquid phase sintering.

上記の組成のタングステン焼結合金において、タングス
テンの原料粉末の粒度が、最終的に得られる合金の延性
と強度とに影響を及ぼす。タングステン粒径が太き(な
るに従って延性が向上する傾向にあるが、強度は逆に低
下する傾向がある。
In the tungsten sintered alloy having the above composition, the particle size of the tungsten raw powder affects the ductility and strength of the finally obtained alloy. As the tungsten grain size becomes thicker, ductility tends to improve, but strength tends to decrease.

そのため、延性と強度との両特性を共に向上させ、伸び
を25%以上とし強度を少なくとも95kg/閤2以上
とするには、タングステン粒径を40μm以下〜16μ
m以上とすることが望ましい。
Therefore, in order to improve both the properties of ductility and strength, and to achieve an elongation of 25% or more and a strength of at least 95 kg/2 or more, the tungsten particle size should be 40 μm or less to 16 μm or less.
It is desirable to set it to m or more.

さらに本発明者らは、高強度で高靭性を有するタン、ゲ
ステン焼結合金を研究する過程で、通常は水素気流中で
合金を液相焼結するのに対して、積極的に窒素を添加す
ると、窒素がマトリックス相に固溶し、固溶強化によっ
て合金の強度が向上することを見出した。
Furthermore, in the process of researching tan and gesten sintered alloys that have high strength and high toughness, the inventors actively added nitrogen to the alloy, which is normally liquid-phase sintered in a hydrogen stream. They discovered that nitrogen dissolves into the matrix phase, improving the strength of the alloy through solid solution strengthening.

第1図にその研究の一例として、タングステン。Figure 1 shows tungsten as an example of this research.

ニッケル、鉄の成分比率が95W−3,5Ni−1゜5
Feを基本とするタングステン焼結合金において、Fe
−Ni相中の窒素(N)の量を種々に変化させた場合の
引張り強度と伸びを測定した結果を示す、窒素添加は液
相焼結を行うときの雰囲気ガス中にN2ガスを混入して
行い、Nが合金中のFe−Ni相に固溶するようにした
。焼結温度は1500°C1焼結時間は30分とし、焼
結後に1000℃で1時間の脱水素処理を施した。タン
グステンの粒径はいずれも35μmである。
The component ratio of nickel and iron is 95W-3,5Ni-1゜5
In tungsten sintered alloys based on Fe, Fe
- Shows the results of measuring the tensile strength and elongation when the amount of nitrogen (N) in the Ni phase was varied. Nitrogen addition involves mixing N2 gas into the atmospheric gas during liquid phase sintering. This was done so that N was dissolved in the Fe-Ni phase in the alloy. The sintering temperature was 1500°C, the sintering time was 30 minutes, and after sintering, dehydrogenation treatment was performed at 1000°C for 1 hour. The particle size of tungsten is 35 μm in all cases.

図から、Fe−Ni相中のN量の増加に伴って合金の強
度が増加することがわかる。一方、合金の伸びは逆に減
少している。N量がO,OO5%以下では引張り強さが
急低下しており、Nの固溶強化が十分ではない、またN
量が0.10%を超えると伸びが急低下しており、高速
回転体に要求される値の25%に達しない。これから、
Fe−Ni相中に固溶する窒素量はO,OO5%を超え
o、 i 。
The figure shows that the strength of the alloy increases as the amount of N in the Fe-Ni phase increases. On the other hand, the elongation of the alloy is decreasing. When the amount of N is less than 5% of O, OO, the tensile strength rapidly decreases, and the solid solution strengthening of N is not sufficient.
When the amount exceeds 0.10%, the elongation decreases rapidly and does not reach the value of 25% required for a high-speed rotating body. from now,
The amount of nitrogen solidly dissolved in the Fe-Ni phase exceeds 5% of O,OO.

0%以下であることた適当といえる。It can be said that it is appropriate that it is 0% or less.

本発明によれば、タングステン焼結合金中に積極的に窒
素を添加することによって生じる窒素の固溶強化と、タ
ングステン粒径の制御によるタングステン粒の微細強化
とによって、合金の靭性を損なうことなく強度を向上さ
せることができる。
According to the present invention, the solid solution strengthening of nitrogen caused by actively adding nitrogen into the tungsten sintered alloy and the fine strengthening of the tungsten grains by controlling the tungsten grain size do not impair the toughness of the alloy. Strength can be improved.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

タングステン粉とニッケル粉と鉄粉との混合比率を変え
て異なる化学組成とした混合粉末を3種類用意し、それ
ぞれの混合粉末をを2ton/cdの静水圧下に圧縮成
形し、その成形体を水素と窒素との混合雰囲気中で液相
焼結し、その後1000°CX1時間の脱水素熱処理を
行ってタングステン焼結合金の試験試料を形成した。
Three types of mixed powders with different chemical compositions were prepared by changing the mixing ratio of tungsten powder, nickel powder, and iron powder, and each mixed powder was compression molded under hydrostatic pressure of 2 tons/cd, and the molded product was made. A test sample of a tungsten sintered alloy was formed by liquid phase sintering in a mixed atmosphere of hydrogen and nitrogen, followed by dehydrogenation heat treatment at 1000° C. for 1 hour.

焼結工程における焼結温度、焼結時間、雰囲気ガス組成
等を種々に設定して処理することにより、第1表に示す
ようにタングステン粒径が16μm以上で40μmを超
えず、且つFe−Ni相中に固溶する窒素量が0.00
5%を超えo、 t o o%以下の範囲内にある本発
明の合金試料kl−Nα9を得た。一方、比較例として
は、タングステン粒径が16μm未満のものと40μm
を超えるものとを含み、またFe−Ni相中に固溶する
窒素量が0、005%未満のものとo、 i o o%
を超えるものとを含む合金試料Na1O−k14を用意
した。
By variously setting the sintering temperature, sintering time, atmospheric gas composition, etc. in the sintering process, as shown in Table 1, the tungsten particle size is 16 μm or more and does not exceed 40 μm, and Fe-Ni The amount of nitrogen dissolved in the phase is 0.00
An alloy sample kl-Nα9 of the present invention having a content of more than 5% and less than or equal to 0% was obtained. On the other hand, as comparative examples, the tungsten grain size is less than 16 μm and 40 μm.
Including those in which the amount of nitrogen solidly dissolved in the Fe-Ni phase is less than 0,005% and o, i o o%.
An alloy sample Na1O-k14 was prepared.

上記の各試料kl〜k14のそれぞれにつき、引張り試
験を行って、機械的性質を比較した。
A tensile test was conducted on each of the above samples kl to k14 to compare the mechanical properties.

その試験の結果を第1表に示す。The results of the test are shown in Table 1.

第1表より、本発明のタングステン焼結合金は、全て引
張り強さ95kg/nu”以上で且つ伸びは25%以上
であるのに対して、比較例のものは引張り強さ95kg
/nm”以上のものは伸びが25%に達しておらず、伸
びが25%以上のものは引張り強さが95kg/mn”
に達していないことがわかる。
From Table 1, all of the tungsten sintered alloys of the present invention have a tensile strength of 95 kg/nu" or more and an elongation of 25% or more, whereas those of the comparative example have a tensile strength of 95 kg/nu".
/nm" or more, the elongation has not reached 25%, and those with an elongation of 25% or more have a tensile strength of 95kg/mn".
It can be seen that this has not been reached.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、タングステン8
5〜98−t%、残部が重量比で5:5ないし8:2の
範囲にあるニッケルと鉄とからなるタングステン焼結合
金において、タングステンの粒径が40μm以下であり
、且つニッケル−鉄相に固溶する窒素量が0.0 O5
%を超え0.100%以下の範囲内にあるものとした。
As explained above, according to the present invention, tungsten 8
A tungsten sintered alloy consisting of nickel and iron in a weight ratio of 5 to 98-t% and the balance in a weight ratio of 5:5 to 8:2, in which the grain size of tungsten is 40 μm or less, and the nickel-iron phase is The amount of nitrogen dissolved in solid solution is 0.0 O5
% and 0.100% or less.

そのため、強度が少なくとも95kg/μm”以上で且
つ伸びが25%以上あり、したがって高速回転体や防護
物を貫通する発射体として好適に用いうるタングステン
焼結合金を提供することができるという効果が得られる
Therefore, it is possible to provide a tungsten sintered alloy that has a strength of at least 95 kg/μm" and an elongation of 25% or more, and can therefore be suitably used as a projectile that penetrates high-speed rotating bodies and protective objects. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタングステン焼結合金において、ニッケル−鉄
相中の窒素量と合金の引張り強さ及び伸びとの関係を表
す図である。 引弓長弓@Δ (Kg/mm2) 〜    (JJ      島 o□o。 イ申1)−(%)
FIG. 1 is a diagram showing the relationship between the amount of nitrogen in the nickel-iron phase and the tensile strength and elongation of the alloy in a tungsten sintered alloy. Long bow @ Δ (Kg/mm2) ~ (JJ Island o□o. Ishin 1) - (%)

Claims (1)

【特許請求の範囲】[Claims] (1)タングステン85〜98wt%、残部がニッケル
と鉄とからなり、そのニッケルと鉄との重量比が5:5
ないし8:2の範囲にあるタングステン焼結合金におい
て、 タングステンの粒径が40μm以下であり、且つニッケ
ル−鉄相に固溶する窒素量が0.005%を超え0.1
00%以下であることを特徴とする高強度、高靭性タン
グステン焼結合金。
(1) Tungsten is 85 to 98 wt%, the balance is nickel and iron, and the weight ratio of nickel and iron is 5:5.
In the tungsten sintered alloy in the range of 8:2 to 8:2, the grain size of tungsten is 40 μm or less, and the amount of nitrogen solidly dissolved in the nickel-iron phase exceeds 0.005% and 0.1
A high-strength, high-toughness tungsten sintered alloy characterized by having a tungsten sintered alloy of 0.00% or less.
JP31131089A 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy Granted JPH03173738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31131089A JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131089A JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Publications (2)

Publication Number Publication Date
JPH03173738A true JPH03173738A (en) 1991-07-29
JPH0469221B2 JPH0469221B2 (en) 1992-11-05

Family

ID=18015598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131089A Granted JPH03173738A (en) 1989-11-30 1989-11-30 High strength and high toughness tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH03173738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263163A (en) * 1992-03-18 1993-10-12 Japan Steel Works Ltd:The Manufacture of w-ni-fe sintered alloy
WO2013084749A1 (en) * 2011-12-07 2013-06-13 株式会社アライドマテリアル Sintered tungsten alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263163A (en) * 1992-03-18 1993-10-12 Japan Steel Works Ltd:The Manufacture of w-ni-fe sintered alloy
WO2013084749A1 (en) * 2011-12-07 2013-06-13 株式会社アライドマテリアル Sintered tungsten alloy
JPWO2013084749A1 (en) * 2011-12-07 2015-04-27 株式会社アライドマテリアル Tungsten sintered alloy

Also Published As

Publication number Publication date
JPH0469221B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
JPH0583624B2 (en)
JPH01195247A (en) Reduction of irregularity of mechanical characteristic of tungsten-nickel-iron alloy
JPS62146202A (en) Intermetallic compound for application of mechanical alloying and production of intermetallic compound type precursor alloy
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
JPH0261521B2 (en)
US3180012A (en) Cobalt alloys
US3650729A (en) Internally nitrided steel powder and method of making
US2765227A (en) Titanium carbide composite material
JPH02197535A (en) Manufacture of intermetallic compound
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
JPH03173738A (en) High strength and high toughness tungsten sintered alloy
US4908182A (en) Rapidly solidified high strength, ductile dispersion-hardened tungsten-rich alloys
JPS62196306A (en) Production of double layer tungsten alloy
JPH04246149A (en) Oxide dispersion strengthened type nb-base alloy and its production
JPS6342346A (en) High-strength sintered hard alloy
JPS62287041A (en) Production of high-alloy steel sintered material
JPS6229481B2 (en)
US3695868A (en) Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements
CN112593161B (en) High-strength Sc composite nano oxide dispersion strengthening Fe-based alloy and preparation method thereof
JPS6330391B2 (en)
JPH11335771A (en) Oxide-dispersion-strengthened steel and its production
JPS62961B2 (en)
JPH0382732A (en) Aluminum alloy sintered product and its manufacture
JPH0480302A (en) Ni alloy powder and manufacture thereof