JPH0480302A - Ni alloy powder and manufacture thereof - Google Patents

Ni alloy powder and manufacture thereof

Info

Publication number
JPH0480302A
JPH0480302A JP2192089A JP19208990A JPH0480302A JP H0480302 A JPH0480302 A JP H0480302A JP 2192089 A JP2192089 A JP 2192089A JP 19208990 A JP19208990 A JP 19208990A JP H0480302 A JPH0480302 A JP H0480302A
Authority
JP
Japan
Prior art keywords
powder
alloy
oxide
fine
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2192089A
Other languages
Japanese (ja)
Other versions
JP2748667B2 (en
Inventor
Koji Hoshino
孝二 星野
Teruo Shimizu
輝夫 清水
Toru Kono
河野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2192089A priority Critical patent/JP2748667B2/en
Publication of JPH0480302A publication Critical patent/JPH0480302A/en
Application granted granted Critical
Publication of JP2748667B2 publication Critical patent/JP2748667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture Ni alloy powder, in which fine Al2O3 is enclosed as layer state, by executing oxidizing treatment and reducing treatment to Ni-Al alloy raw material powder specifying the content. CONSTITUTION:The oxidizing treatment is executed to the Ni-Al alloy powder containing 1.5 - 1-% Al at 1000 - 1300 deg.C and preferably under fluidized condition. The formed oxide powder is made to have structure containing matrix composed of nickel oxide as essential material and annular complex oxide phase annularly flocculated fine Ni-Al complex oxide at between powder center part and powder peripheral part in the whole cross sectional face passing through the powder center part, and in other words, the annular complex oxide phase constituted of fine (Ni, Al)O coagulation-distributed as shell state making layers in inner part of the powder. Further, the reducing treatment is immediately executed to this oxide powder at 200 - 500 deg.C. NiO forming the matrix in the oxide powder as the essential material is reduced to Ni and the above annular complex oxide phase is changed to annular hardened phase containing fine Al2O3 as the essential material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特にすぐれた耐摩耗性を有する焼結体の製
造に用いるのに適したNi合金粉末、並びにその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Ni alloy powder suitable for use in producing a sintered body having particularly excellent wear resistance, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭58−207340号公報に記載さ
れるように、一般に、 重量%で(以F%は重−%を示す)、 A11:0.1〜1%、 を含有し、残りが実質的にNiからなる組成を有するN
i−AΩ合金原料粉末に、 大気中、450〜600℃の温度に加熱保持、の条件で
表面酸化処理を施した後、 ボールミル中で、メカニカルアロイング処理を施して、
粉末表面部に形成された酸化物を粉末全体に均一に分布
させ、 引続いて余剰の酸累を除去する目的で、還元性雰囲気中
、400〜800℃の温度に加熱保持、 の条件で還元処理を施して、上記の表面酸化によって生
成した微細な酸化アルミニウム(以下Ag2O3で示す
)がNIまたはNi−Al合金の素地に均一に分散した
組織を有するNi合金粉末を製造する方法が知られてい
る。
Conventionally, for example, as described in JP-A-58-207340, A11: 0.1 to 1% is contained in weight% (hereinafter F% indicates weight%), and the remainder is N having a composition consisting essentially of Ni
The i-AΩ alloy raw material powder was subjected to surface oxidation treatment under the conditions of heating and holding at a temperature of 450 to 600°C in the atmosphere, and then mechanical alloying treatment was performed in a ball mill.
In order to uniformly distribute the oxides formed on the powder surface throughout the powder, and subsequently to remove excess acid accumulation, the powder is heated and maintained at a temperature of 400 to 800°C in a reducing atmosphere. There is a known method for producing Ni alloy powder having a structure in which fine aluminum oxide (hereinafter referred to as Ag2O3) generated by the above-mentioned surface oxidation is uniformly dispersed in the base of NI or Ni-Al alloy. There is.

また、この方法で製造されたNi合金粉末が、含油軸受
やガイドブツシュ、さらにバルブシートなどの各種駆動
装置の構造部材を通常の粉末冶金法により製造するに際
して、原料粉末として用いられていることも良く知られ
るところである。
In addition, the Ni alloy powder produced by this method is used as a raw material powder when manufacturing structural members of various drive devices such as oil-impregnated bearings, guide bushes, and valve seats by ordinary powder metallurgy. It is also well known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年の各種駆動装置の高性能化および高速化はめ
ざましく、これに伴ない、これの構造部材の使用環境も
一段と苛酷さを増し、このため構造部材には一層の耐摩
耗性が要求されているが、上記の従来轟欅鰺牟細おり方
法で製造されたNi合金粉末を用いて製造された焼結体
製構造部材では耐摩耗性が十分でなく、これらの要求に
満足して対応することができないのが現状である。
On the other hand, in recent years, the performance and speed of various drive devices have increased dramatically, and as a result, the environments in which these structural members are used have become even more severe, and as a result, structural members are required to have even higher wear resistance. However, the wear resistance of structural members made of sintered bodies manufactured using Ni alloy powder manufactured by the conventional Todoroki Keyaki Ajimu thin-ori method described above is insufficient, and these requirements have been met satisfactorily. The current situation is that this is not possible.

なお、この場合上記従来方法により製造された従来Ni
合金粉末において、素地に均一に分散するAl203の
含有割合を多くして耐摩耗性の向上をはかる試みもなさ
れたか、粉末表面に露出するAl 0 粒の割合が増す
と、A I 20 a粒か粗大化し易く′なることと含
まって、焼結性が著しく低下し、この結果焼結体の強度
低下を招き、強度の而で実用に供することができないも
のである。
In this case, the conventional Ni manufactured by the above conventional method
In alloy powder, attempts have been made to increase the content of Al203, which is uniformly dispersed in the base material, to improve wear resistance. The sinterability is significantly lowered due to the tendency to coarsen the sintered body, which results in a decrease in the strength of the sintered body, making it impossible to put it to practical use due to its strength.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、各種駆
動装置の構造部材として用いた場合に、すぐれた耐摩耗
性を発揮する焼結体を製造すべく、上記従来Ni合金粉
末に着目し研究を行なった結果、 まず、上記の従来方法によるNi合金粉末の製造に用い
られているNi−Al1合金原料粉末における0、1〜
1%のAp含有量に比して相対的に多い割合の1.5〜
10%のAllを含有したNi−Al1合金粉末を用い
、 このNj−A、Q合金原料粉末に、上記の従来方法=昧
−4白白法における450〜600℃の酸化温度より一
段と高い1000〜1300℃の温度で、望ましくは粉
末流動化状態で、酸化処理を施すと、形成された酸化物
粉末は、主体が酸化ニッケル(以下NiOで示す)から
なる素地に、粉末中心部を通るあらゆる断面において、
粉末、中心部と粉末周辺部との間に、微細なNi−1複
合酸化物〔以下、(Ni、、’l )0で示す〕が環状
に凝集してなる環状複合酸化物相、いいかえれば粉末内
部に層をなしてシェル状に凝集分布する微細な(Ni、
l )Oで構成された環状複合酸化物相が存在する組織
をもつようになり、 さらに、この酸化物粉末に、メカニカルアロイング処理
を施すことなく、直ちに、上記の従来方法における40
0〜800℃の還元温度に比して相対的に低い200〜
500℃の温度で還元処理を施すと、 上記酸化物粉末の素地を形成していた主体のNiOがN
iに還元され、かつ上記環状複合酸化物相が微細なAg
2O3を主体とする環状硬質相に変化するようになり、 この結果得られたNi合金粉末は、相対的にAg2O3
の含有割合が高いので、これから焼結体を製造した場合
、耐摩耗性が飛躍的に向上するようになり、さらに上記
の通りAg2O3粒が粉末表面に存在せず、内部に層を
なしてシェル状に分布するので、焼結性がjMなわれる
ことがなく、A 1120 aの含有割合が高いにもか
かわらず、高強度の焼結体を製造することができるよう
になるという研究結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors focused on the conventional Ni alloy powder described above in order to produce a sintered body that exhibits excellent wear resistance when used as a structural member of various drive devices. As a result of our research, we found that the Ni-Al1 alloy raw material powder used in the production of Ni alloy powder by the conventional method described above has
1.5~, which is a relatively large proportion compared to 1% Ap content
Using Ni-Al1 alloy powder containing 10% All, this Nj-A, Q alloy raw material powder was heated to an oxidation temperature of 1000 to 1300°C, which is much higher than the oxidation temperature of 450 to 600°C in the conventional method (Mai-4 Hakuhaku method). When the oxidation treatment is carried out at a temperature of °C, preferably in a powder fluidized state, the formed oxide powder is applied to a matrix mainly composed of nickel oxide (hereinafter referred to as NiO) in all cross sections passing through the center of the powder. ,
Between the center of the powder and the periphery of the powder, there is a cyclic composite oxide phase, in which fine Ni-1 composite oxide [hereinafter referred to as (Ni,,'l)0] aggregates in a ring shape. Fine (Ni, Ni,
l) It has a structure in which a cyclic composite oxide phase composed of O exists, and furthermore, this oxide powder is immediately treated with
Relatively low reduction temperature of 200 to 800℃
When the reduction treatment is performed at a temperature of 500°C, the main NiO that formed the base of the above oxide powder becomes N.
i, and the cyclic composite oxide phase is fine Ag
The Ni alloy powder obtained as a result of this changes into an annular hard phase mainly composed of 2O3.
Since the content ratio of Ag2O3 is high, when a sintered body is manufactured from this, the wear resistance will be dramatically improved.Furthermore, as mentioned above, Ag2O3 grains do not exist on the powder surface, and form a layer inside to form a shell. As the A 1120 a content is high, the sinterability does not deteriorate due to the distribution of A 1120 a, and the research results show that it is possible to produce a high-strength sintered body despite the high content of A 1120 a. It was.

この発明は、上記研究結果にもとづいてなされたもので
あって、 AN : 1.5〜】0%、 を含有し、残りがNiと不可避不純物からなるNi −
A1合金原料粉末に、 酸化性雰囲気中、1000〜1300℃の温度に、望ま
しくは流動化状態で加熱保持、 の条件で酸化処理を施して、主体がNiOからなる素地
に、粉末中心部を通るあらゆる断面において、粉末中心
部と粉末周辺部との間に、微細な(Ni−Al2)0が
環状に凝集してなる環状複合酸化物相が存在する組織を
もった酸化物粉末を形成し、 引続いて、上記酸化物粉末に、 還元性雰囲気中、200〜500℃の温度に加熱保持、 の条件で還元処理を施して、上記酸化物粉末の素地をN
i またはNニーA1合金とすると共に、上記環状複合
酸化物相を微細な八1203を主体とする環状硬質相と
する、主要工程によってNi合金粉末を製造する方法、 並びに、この方法で製造された、 11: 1.5〜9.2%、 酸素:1.3〜8.2%、 を含有し、残りがNiと不可避不純物からなる組成、並
びにNiまたはNi−Al合金からなる素地に、粉末中
心部を通るあらゆる断面において、粉末中心部と粉末周
辺部との間に、環状に凝集した微細なA I 20 a
を主体とする環状硬質相が存在する組織を有するNi合
金粉末に特徴を有するものである。
This invention was made based on the above research results, and includes AN: 1.5~]0%, with the remainder consisting of Ni and unavoidable impurities.
A1 alloy raw material powder is oxidized in an oxidizing atmosphere at a temperature of 1000 to 1300°C, preferably kept in a fluidized state, and passed through the center of the powder to a base mainly composed of NiO. Forming an oxide powder with a structure in which a cyclic composite oxide phase formed by agglomeration of fine (Ni-Al2)0 in a ring shape exists between the powder center and the powder periphery in every cross section, Subsequently, the oxide powder was subjected to a reduction treatment under the conditions of heating and holding at a temperature of 200 to 500°C in a reducing atmosphere to convert the base material of the oxide powder into N.
i or N Ni A1 alloy, and a method for producing Ni alloy powder by the main process, in which the above-mentioned cyclic composite oxide phase is a cyclic hard phase mainly composed of fine 81203, and the method produced by this method. , 11: 1.5 to 9.2%, oxygen: 1.3 to 8.2%, and the remainder is Ni and unavoidable impurities, and a powder is applied to the base consisting of Ni or Ni-Al alloy. In every cross section passing through the center, between the powder center and the powder periphery, fine A I 20 a aggregated in an annular shape
It is characterized by a Ni alloy powder having a structure in which an annular hard phase mainly composed of .

つぎに、この発明のNi合金粉末およびこれの製造法に
おいて、成分組成および製造条件を上記の通りに限定し
た理由を説明する。
Next, in the Ni alloy powder of the present invention and the method for producing the same, the reason why the component composition and production conditions are limited as described above will be explained.

(a)Ni合金粉末の成分組成 AIIは酸素と結合して粉末内部で層をなしてシェル状
に凝集分布する微細なAjl1203を形成し、粉末の
焼結性を損なうことなく、かつこれを原料粉末として用
いて製造された焼結体の耐摩耗性を著しく向上させる作
用があり、この場合A、Ill含有量がきまれば必然的
に酸化処理で酸素含有mもきまるものであり、したがっ
てAN8有量が1.5%未満になると酸素含有量も1.
3%未満となり、八1203の形成割合が不十分で所望
のすぐれた耐摩耗性を確保することができず、一方1)
含有量が9.2%を越えると、酸素含有量も8.2%を
越えて多くなり、この結果多量のA I 20 aが形
成されることになるので、A I? 20 a粒の粗大
化が避けられず、相手攻撃性が現われるようになること
から、An)含有量を1.5〜9.2%、酸素含有量を
1.3〜8.2%と定めた。
(a) Component composition AII of the Ni alloy powder combines with oxygen to form fine Ajl1203 that forms a layer inside the powder and is aggregated and distributed in a shell shape, and can be used as a raw material without impairing the sinterability of the powder. It has the effect of significantly improving the wear resistance of the sintered compact produced as a powder, and in this case, if the A and Ill contents are determined, the oxygen content m will also be determined by the oxidation treatment. When the amount is less than 1.5%, the oxygen content is also 1.5%.
3%, the formation ratio of 81203 was insufficient and the desired excellent wear resistance could not be secured; on the other hand, 1)
When the content exceeds 9.2%, the oxygen content also increases beyond 8.2%, resulting in the formation of a large amount of A I 20 a, so that A I? 20 Since the coarsening of the a grains is unavoidable and the aggressiveness of the opponent appears, the An) content is set at 1.5 to 9.2% and the oxygen content is set at 1.3 to 8.2%. Ta.

(b)Ni合金原料粉末の1含有量 Al含有量が1.5%未満では、酸化処理で形成される
(Ni.Ail ) Oの粉末内部での環状凝集が十分
に行なわれず、この結果還元処理後の粉末表面に比較的
多量のA II203が存在するようになって焼結性が
低下し、焼結体の強度低下の原因となり、一方Ag含有
量が10%を越えると、酸化処理で形成される(Nj、
A、lit ) O並びに還元処理で形成されるA I
 20 aの組径が粗大化し、これを焼結体とした場合
相手攻撃性が増すようになることから、All含有量を
1.5〜lO%と定めた。
(b) If the Al content of the Ni alloy raw material powder is less than 1.5%, the annular agglomeration of (Ni.Ail)O formed in the oxidation treatment within the powder will not occur sufficiently, resulting in reduction. A relatively large amount of A II203 is present on the powder surface after treatment, which reduces sinterability and causes a decrease in the strength of the sintered body.On the other hand, if the Ag content exceeds 10%, the oxidation treatment formed (Nj,
A, lit ) O and A I formed in the reduction process
Since the set diameter of 20a becomes coarse and if it is made into a sintered body, the aggressiveness against others increases, so the All content was determined to be 1.5 to 10%.

(c)  酸化処理温度 その温度力筒000℃未満では、(NLAN )Oの環
状凝集が不十分であり、一方その温度力筒300℃を越
えると、粉末を流動化しても粉末同志に融着が起り易く
なることから、その温度を1000〜1300℃と定め
た。
(c) Oxidation treatment temperature If the temperature is less than 000°C, the annular agglomeration of (NLAN)O is insufficient, while if the temperature exceeds 300°C, the powders will fuse together even if they are fluidized. Since this tends to occur, the temperature was set at 1000 to 1300°C.

(d)還元温度 その温度が200℃未満では、酸化物粉末の還元に長時
間を要し、実用的でなく、一方その温度が500℃を越
えると、還元処理で形成されるAg2O3が粗大化する
ようになり、この結果焼結体の相手攻撃性が増すように
なることから、その温度を200〜500℃と定めた。
(d) Reduction temperature If the temperature is less than 200°C, it takes a long time to reduce the oxide powder, making it impractical. On the other hand, if the temperature exceeds 500°C, Ag2O3 formed in the reduction process becomes coarse. As a result, the aggressiveness of the sintered body toward others increases, so the temperature was set at 200 to 500°C.

〔実 施 例〕〔Example〕

つぎに、この発明のNi合金粉末およびその製造法を実
施例により具体的に説明する。
Next, the Ni alloy powder of the present invention and its manufacturing method will be specifically explained using Examples.

それぞれ第1表に示される平均粒径およびAΩ含有量の
Ni−Aρ合金原料粉末を用意し、これらNi−Al合
金原料粉末に、同じく第1表に示される条件で、酸化処
理、必要に応じてボールミル中での3時間のメカニカル
アロイング処理、および還元処理を施すことにより本発
明法1〜7および従来法1〜3を実施し、それぞれ本発
明Ni合金粉末1〜7および従来Ni合金粉末1〜3を
製造した。
Ni-Aρ alloy raw material powders having the average particle diameter and AΩ content shown in Table 1 are prepared, and these Ni-Al alloy raw material powders are subjected to oxidation treatment and optionally under the conditions also shown in Table 1. Methods 1 to 7 of the present invention and conventional methods 1 to 3 were carried out by mechanical alloying treatment for 3 hours in a ball mill and reduction treatment to obtain Ni alloy powders of the present invention 1 to 7 and conventional Ni alloy powders, respectively. 1 to 3 were manufactured.

ついで、この結果得られた各種Ni合金粉末について、
成分組成を71pj定すると共に、その断面組織を金属
顕微鏡(化率: 1000倍)を用いて観察し、さらに
本発明Ni合金粉末1〜7については、30個の粉末の
それぞれの断面の中心部を通る任意直線上における粒径
、並びに環状硬質相の外径および内径を測定し、これら
の平均値を算出した。これらの結果を第2表に示した。
Next, regarding the various Ni alloy powders obtained as a result,
In addition to determining the component composition of 71 pj, the cross-sectional structure was observed using a metallurgical microscope (magnification ratio: 1000 times), and for the Ni alloy powders 1 to 7 of the present invention, the central part of the cross section of each of the 30 powders was determined. The particle size on an arbitrary straight line passing through , and the outer diameter and inner diameter of the annular hard phase were measured, and the average value thereof was calculated. These results are shown in Table 2.

さらにこれらの各種のNi合金粉末を原料粉末として用
い、これより51on/c−の圧力で圧粉体にプレス成
形し、この圧粉体を、水素中、1350℃に30分間保
持の条件で焼結して、断面=lO關XIO能、長さ: 
55mmの寸法をもった焼結体を製造し、この焼結体に
ついて、強度を評価する目的て引張強さを測定すると共
に、摩耗試験を行なった。
Furthermore, using these various Ni alloy powders as raw material powders, they were press-formed into a compact at a pressure of 51 on/c-, and this compact was sintered in hydrogen at 1350°C for 30 minutes. Therefore, cross section = lO xIO function, length:
A sintered body having a size of 55 mm was manufactured, and the tensile strength of this sintered body was measured for the purpose of evaluating the strength, and an abrasion test was conducted on the sintered body.

なお、摩耗試験は、回転軸を水平とした外径=40mm
X内径:30mmX長さ二15mの鋳鉄(Fe12)製
熱処理リング(硬さ: HRC50)の上方から、上記
焼結体から8+++mX8mmX35關の寸法に切出し
た試験片を水平に当接させ、この状態で上記試験片に5
kgの荷重を垂直にかけ、前記リングを1.2m/秒の
周速で回転させ、10分後の試験片の最大摩耗深さを測
定することにより行なった。これらの結果も第2表に示
した。
In addition, the wear test was performed using an outer diameter of 40 mm with the rotation axis horizontal.
A test piece cut out from the above sintered body into a size of 8+++ m x 8 mm x 35 m was horizontally brought into contact with a heat-treated ring made of cast iron (Fe12) (hardness: HRC50) with an inner diameter of 30 mm and a length of 215 m. 5 on the above test piece
The test was carried out by vertically applying a load of kg, rotating the ring at a circumferential speed of 1.2 m/sec, and measuring the maximum wear depth of the test piece after 10 minutes. These results are also shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1.2表に示される通り、本発明法1〜7によれば、
粉末内部に微細なAg2O3が断面組織でみて環状に凝
集してなる環状硬質相が存在したNi合金粉末(本発明
Ni合金粉末1〜7)を製造することができ、この本発
明Ni合金粉末1〜7は、上記の通りA、9含有量が高
いにもかかわらず、A I 20 sが粉末内部に封じ
込められた状態になっているので、これを原料粉末とし
て用いて焼結体を製造した場合、良好な焼結性が確保さ
れることから、高強度の焼結体を製造することができる
ばかりでなく、相対的に高含有量のA I? 20 a
によって、これより製造された焼結体は、相手材である
熱処理リングの損耗がきわめて少ない状態、すなわち相
手攻撃性が抑制された状態で、すぐれた耐摩耗性を示す
のに対して、従来法1〜3で製造されたNi合金粉末(
従来Ni合金粉末1〜3)は、A it 20 aが粉
末全体に均一に分散分布した組織をもつので、Afi含
有量が相対的に低いことと含まって、焼結性の低下はあ
まりなく、したがってほぼ同等の強度を有する焼結体を
製造することができるものの、耐摩耗性の面ではかなり
劣った結果しか示さないことが明らかである。
As shown in Table 1.2, according to methods 1 to 7 of the present invention,
It is possible to produce Ni alloy powder (Ni alloy powders 1 to 7 of the present invention) in which there is a ring-shaped hard phase formed by agglomeration of fine Ag2O3 in a ring shape when viewed from the cross-sectional structure, and this Ni alloy powder 1 of the present invention can be produced. -7, despite the high A and 9 contents as described above, A I 20 s was confined inside the powder, so this was used as the raw material powder to produce the sintered body. In this case, since good sinterability is ensured, not only can a high-strength sintered body be manufactured, but also a relatively high content of AI? 20a
The sintered body produced by this method shows excellent wear resistance with extremely little wear on the heat-treated ring, which is the mating material, in other words, the aggressiveness to the mating material is suppressed. Ni alloy powder manufactured in 1 to 3 (
Conventional Ni alloy powders 1 to 3) have a structure in which A it 20 a is uniformly distributed throughout the powder, so the sinterability does not deteriorate much due to the relatively low Afi content. It is therefore clear that although it is possible to produce a sintered body with approximately the same strength, the results are considerably inferior in terms of wear resistance.

上述のように、この発明の方法によれば、相対的に多量
の微細なAg2O3が粉末内部に層をなしてシェル状に
封じ込められたNi合金粉末を製造することができ、し
たがってこの結果製造されたNi合金粉末は焼結性がき
わめて良好で、これを用いて製造された焼結体は高強度
をもち、かつすぐれた耐摩耗性を示すようになるので、
これを用いて上記のほかに、ブロックリングやロッカー
アーム用チップ、ブレーキ用バット、さらにクラッチ板
などの各種駆動装置の構造部材を製造した場合、すぐれ
た性能を発揮するようになるなど工業上有用な効果がも
たらされるのである。
As mentioned above, according to the method of the present invention, it is possible to produce a Ni alloy powder in which a relatively large amount of fine Ag2O3 forms a layer inside the powder and is confined in a shell shape, and thus the produced The Ni alloy powder has extremely good sintering properties, and the sintered bodies manufactured using it have high strength and excellent wear resistance.
In addition to the above, when this is used to manufacture structural members of various drive devices such as block rings, rocker arm tips, brake butts, and clutch plates, it exhibits excellent performance and is industrially useful. This brings about a great effect.

Claims (3)

【特許請求の範囲】[Claims] (1)Al:1.5〜9.2重量%、 酸素:1.3〜8.2重量%、 を含有し、残りがNiと不可避不純物からなる組成、並
びにNiまたはNi−Al合金からなる素地に、粉末中
心部を通るあらゆる断面において、粉末中心部と粉末周
辺部との間に、環状に凝集した微細な酸化アルミニウム
を主体とする環状硬質相が存在する組織、を有すること
を特徴とするNi合金粉末。
(1) Contains Al: 1.5 to 9.2% by weight, Oxygen: 1.3 to 8.2% by weight, and the remainder is Ni and unavoidable impurities, and Ni or Ni-Al alloy. The base material is characterized by having a structure in which a ring-shaped hard phase mainly composed of fine aluminum oxide agglomerated in an annular shape exists between the powder center and the powder periphery in every cross section passing through the powder center. Ni alloy powder.
(2)Al:1.5〜10重量%、 を含有し、残りがNiと不可避不純物からなるNi−A
l合金原料粉末に、 酸化性雰囲気中、1000〜1300℃の温度に加熱保
持、 の条件で酸化処理を施して、主体が酸化ニッケルからな
る素地に、粉末中心部を通るあらゆる断面において、粉
末中心部と粉末周辺部との間に、微細なNi−Al複合
酸化物が環状に凝集してなる環状複合酸化物相が存在す
る組織をもった酸化物粉末を形成し、 ついで、上記酸化物粉末に、 還元性雰囲気中、200〜500℃の温度に加熱保持、 の条件で還元処理を施して、上記酸化物粉末の素地をN
iまたはNi−Al合金とすると共に、上記環状複合酸
化物相を微細な酸化アルミニウムで構成された環状硬質
相とすることを特徴とするNi合金粉末の製造法。
(2) Al: Ni-A containing 1.5 to 10% by weight, with the remainder consisting of Ni and unavoidable impurities
l Alloy raw material powder is subjected to oxidation treatment under the conditions of heating and holding at a temperature of 1000 to 1300℃ in an oxidizing atmosphere, and the powder center is An oxide powder having a structure in which a cyclic composite oxide phase formed by agglomerating fine Ni-Al composite oxides in a ring shape is formed between the part and the peripheral part of the powder, and then the oxide powder is Then, in a reducing atmosphere, heat and hold at a temperature of 200 to 500 ° C. A reduction treatment was performed under the following conditions to transform the base of the oxide powder into N.
A method for producing a Ni alloy powder, characterized in that the cyclic composite oxide phase is a cyclic hard phase composed of fine aluminum oxide.
(3)上記酸化処理が、上記Ni−Al合金原料粉末を
流動化させながら行なわれることを特徴とする上記特許
請求の範囲第(2)項記載のNi合金粉末の製造法。
(3) The method for producing Ni alloy powder according to claim (2), wherein the oxidation treatment is performed while fluidizing the Ni-Al alloy raw material powder.
JP2192089A 1990-07-20 1990-07-20 Ni alloy powder and method for producing the same Expired - Lifetime JP2748667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192089A JP2748667B2 (en) 1990-07-20 1990-07-20 Ni alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192089A JP2748667B2 (en) 1990-07-20 1990-07-20 Ni alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0480302A true JPH0480302A (en) 1992-03-13
JP2748667B2 JP2748667B2 (en) 1998-05-13

Family

ID=16285469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192089A Expired - Lifetime JP2748667B2 (en) 1990-07-20 1990-07-20 Ni alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2748667B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072957A (en) * 2006-09-21 2008-04-03 Kubota Corp Support apparatus for farm equipment
JP5111601B2 (en) * 2008-03-07 2013-01-09 株式会社日立メディコ Ultrasonic imaging device
WO2017188088A1 (en) * 2016-04-28 2017-11-02 住友電気工業株式会社 Alloy powder, sintered body, method for producing alloy powder and method for producing sintered body
RU2686831C1 (en) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Intermetallide matrix based metal-ceramic composite material and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072957A (en) * 2006-09-21 2008-04-03 Kubota Corp Support apparatus for farm equipment
JP5111601B2 (en) * 2008-03-07 2013-01-09 株式会社日立メディコ Ultrasonic imaging device
WO2017188088A1 (en) * 2016-04-28 2017-11-02 住友電気工業株式会社 Alloy powder, sintered body, method for producing alloy powder and method for producing sintered body
CN109070207A (en) * 2016-04-28 2018-12-21 住友电气工业株式会社 Alloy powder, sintered body, the method for manufacturing alloy powder and the method for manufacturing sintered body
US11045872B2 (en) 2016-04-28 2021-06-29 Sumitomo Electric Industries, Ltd. Alloy powder, sintered material, method for producing alloy powder, and method for producing sintered material
RU2686831C1 (en) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Intermetallide matrix based metal-ceramic composite material and its production method

Also Published As

Publication number Publication date
JP2748667B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
CA2888692C (en) Ti-included oxide dispersion strengthened copper alloy and method for manufacturing dispersed copper
KR100249006B1 (en) Water spray iron powder for powder plating and its manufacturing method
RU2696113C1 (en) Method of producing nanocomposite material based on copper, hardened by carbon nanofibres
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JPH01195247A (en) Reduction of irregularity of mechanical characteristic of tungsten-nickel-iron alloy
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
JPH03166335A (en) Dispersively reinforcing material
JPH0480302A (en) Ni alloy powder and manufacture thereof
JPH0499102A (en) Ni-cu series alloy powder and manufacture thereof
JP2748666B2 (en) Cu alloy powder and method for producing the same
JPH04128301A (en) Co-base alloy powder and manufacture thereof
JPH04128302A (en) Fe-base alloy powder and manufacture thereof
JPH0499101A (en) Cu-ni series alloy powder and manufacture thereof
JP2006328520A (en) Sintered alloy having high fatigue limit ratio, and method for producing the same
JPH101760A (en) Particle strengthened type titanium matrix composite material and its production
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH0459362B2 (en)
JPS61264105A (en) Production of high-strength sintered member
JPS6152302A (en) Alloy steel powder for powder metallurgy
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
JPH01279701A (en) Production of forged member
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPH01132701A (en) Alloy steel powder for powder metallurgy