JPH0499102A - Ni-cu series alloy powder and manufacture thereof - Google Patents

Ni-cu series alloy powder and manufacture thereof

Info

Publication number
JPH0499102A
JPH0499102A JP2208558A JP20855890A JPH0499102A JP H0499102 A JPH0499102 A JP H0499102A JP 2208558 A JP2208558 A JP 2208558A JP 20855890 A JP20855890 A JP 20855890A JP H0499102 A JPH0499102 A JP H0499102A
Authority
JP
Japan
Prior art keywords
powder
alloy
oxide
fine
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2208558A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Teruo Shimizu
輝夫 清水
Toru Kono
河野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2208558A priority Critical patent/JPH0499102A/en
Publication of JPH0499102A publication Critical patent/JPH0499102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To give excellent wear resistance and high strength to Ni-Cu-Al alloy powder by oxidizing the Ni-Cu-Al alloy powder at high temp. and successively, reducing it at low temp. CONSTITUTION:The Ni-Cu-Al alloy raw material powder composed of wt.% of 1.5-10% Al, 1-44% Cu and the balance Ni with inevitable impurities is heated and held to and at 900-1300 deg.C in an oxidizing atmosphere, and the oxidized desirably in a powder fluidizing condition. By this treatment, oxide powder having structure, in which cyclic complex oxide phase aggregated with fine (Ni, Cu, Al) O as ring-state exists between the powder center part and the powder peripheral part in all cross section passing the powder center part in matrix composed of (Ni, Cu) O as essential body, is formed. The oxide powder is heated and held to and at 200-500 deg.C in a reducing atmosphere to execute the reducing treatment and the matrix in the oxide powder is substantially made to Ni-Cu or Ni-Cu-Al alloy and also the cyclic complex oxide phase is made to ring hardened phase containing fine Al2O3 as essential body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に、すぐれた耐摩耗性並びに高靭性を有
する焼結体の製造に用いるのに適したNi−Cu系合金
粉末、並びにその製造法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention particularly relates to a Ni-Cu alloy powder suitable for use in manufacturing a sintered body having excellent wear resistance and high toughness, and a Ni-Cu alloy powder thereof. It concerns the manufacturing method.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭58 − 207340号公報に記
載されるように、一般に、 重量%で(以下%は重量%を示す)、 AX):0.1〜1%、 を含有し、残りが実質的にNiからなる組成を有するN
i−All合金原料粉末に、 大気中、450〜600℃の温度に加熱保持、の条件で
表面酸化処理を施した後、 ボールミル中で、メカニカルアロイング処理を施して、
粉末表面部に形成された酸化物を粉末全体に均一に分布
させ、 引続いて余剰の酸素を除去する目的で、還元性雰囲気中
、400〜800℃の温度に加熱保持、 の条件で還元処理を施して、上記の表面酸化によって生
成した微細な酸化アルミニウム(以下A il 2 0
 aで示す)がNiまたはNi−All合金の素地に均
一に分散した組織を有するNi合金粉末を製造する方法
が知られている。
Conventionally, as described in, for example, JP-A No. 58-207340, in general, in weight% (hereinafter % indicates weight%), AX): 0.1 to 1% is contained, and the remainder is substantially N having a composition consisting essentially of Ni
The i-All alloy raw material powder was subjected to surface oxidation treatment under conditions of heating and holding at a temperature of 450 to 600°C in the atmosphere, and then mechanical alloying treatment was performed in a ball mill.
In order to uniformly distribute the oxides formed on the powder surface throughout the powder and subsequently remove excess oxygen, reduction treatment is performed under the following conditions: heating and holding at a temperature of 400 to 800°C in a reducing atmosphere. The fine aluminum oxide (hereinafter referred to as A il 2 0 ) produced by the above surface oxidation is
A method is known for producing a Ni alloy powder having a structure in which Ni (indicated by a) is uniformly dispersed in a base of Ni or Ni-All alloy.

また、この方法で製造されたNi合金粉末が、含油軸受
やガイドブツシュ、さらにバルブシートなどの各種駆動
装置の構造部材を通常の粉末冶金法により製造するに際
して、原料粉末として用いられていることも良く知られ
るところである。
In addition, the Ni alloy powder produced by this method is used as a raw material powder when manufacturing structural members of various drive devices such as oil-impregnated bearings, guide bushes, and valve seats by ordinary powder metallurgy. It is also well known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年の各種駆動装置の高性能化および高速化はめ
ざましく、これに伴ない、これの構造部材の使用環境も
一段と苛酷さを増し、このため構造部材には一層の耐摩
耗性が要求されているが、上記の従来方法で製造された
Ni合金粉末を用いて製造された焼結体製構造部材では
、耐摩耗性が十分でなく、かつ靭性の面でも満足できな
いことから、これらの要求に満足して対応することがで
きないのが現状である。
On the other hand, in recent years, the performance and speed of various drive devices have increased dramatically, and as a result, the environments in which these structural members are used have become even more severe, and as a result, structural members are required to have even higher wear resistance. However, sintered structural members manufactured using Ni alloy powder manufactured by the conventional method described above do not have sufficient wear resistance and cannot satisfy these requirements in terms of toughness. The current situation is that it is not possible to respond satisfactorily.

なお、この場合上記の従来方法により製造された従来N
i合金粉末において、素地に均一に分散するAg203
の含有割合を多くして耐摩耗性の向上をはかる試みもな
されたが、粉末表面に露出するAl)  O  粒の割
合が増すと、AI 、、03粒が粗大化し品くなること
と相まって、焼結性が著しく低下し、この結果焼結体の
強度低下を招き、強度の面で実用に供することができな
いものである。
In this case, the conventional N manufactured by the above conventional method
In i-alloy powder, Ag203 is uniformly dispersed in the base material.
Attempts have been made to improve wear resistance by increasing the content of Al)O, but as the proportion of Al)O grains exposed on the powder surface increases, the grains become coarser and the quality deteriorates. The sinterability is markedly reduced, resulting in a reduction in the strength of the sintered body, which cannot be put to practical use in terms of strength.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、各種駆
動装置の構造部材として用いた場合に、すぐれた耐摩耗
性を発揮する高靭性焼結体を製造すべく、上記従来Ni
合金粉末に着目し研究を行なった結果、 まず、上記の従来方法によるNi合金粉末の製造に用い
られているNi−All合金原料粉末における0.1〜
196のAg含有量に比して相対的に多い割合の1.5
〜10%のAn)を含有させると共に、Cuを1〜44
%含有させたNi  −Cu −All合金粉末を用い
、 このNi  −Cu −Al合金原料粉末に、上記の従
来方法による製造法における450〜600℃の酸化温
度より一段と高い900〜1300℃の温度で、望まし
くは粉末流動化状態で、酸化処理を施すと、主体がNi
とCuの複合酸化物(以下、(Ni。
Therefore, from the above-mentioned viewpoint, the present inventors developed the above conventional Ni
As a result of conducting research focusing on alloy powder, we first found that the Ni-All alloy raw material powder used in the production of Ni alloy powder by the above-mentioned conventional method has a
1.5, which is relatively high compared to the Ag content of 196
~10% An) and 1~44% Cu
This Ni-Cu-Al alloy raw powder is heated at a temperature of 900 to 1300°C, which is much higher than the oxidation temperature of 450 to 600°C in the conventional production method described above. , preferably in a powder fluidized state, when oxidation treatment is performed, the main component is Ni.
and Cu composite oxide (hereinafter referred to as (Ni.

Cu)0で示す)からなる素地に、粉末中心部を通るあ
らゆる断面において、粉末中心部と粉末周辺部との間に
、微細なNiとCuとAllの複合酸化物(以下、(N
i,Cu,AN )0で示す)が環状に凝集してなる環
状複合酸化物相、いいかえれば粉末内部に層をなしてシ
ェル状に凝集分布する微細な(Ni.Cu.AN )0
で構成された環状複合酸化物相が存在する組織をもった
酸化物粉末が形成されるようになり、 この酸化物粉末に、同じく上記の従来方法における40
0〜800℃の還元温度に比して相対的に低温の200
〜500℃の温度で還元処理を施すと、上記酸化物粉末
の素地を形成していた主体の(Ni.Cu)OがNi 
−Cu ニ還元すレ、カッ上記の(Ni、Cu、AI)
Oで構成された環状複合酸化物相が微細なAg2O3を
主体とする環状硬質相に変化し、 したがって、この結果得られたNi−Cu合金粉末は、
上記の通りAg2O3粒が粉末表面に実質的に存在せず
、内部に層をなしてシェル状に分布した組織をもつよう
になるので、Ag2O3の含有割合が相対的に高いにも
かかわらず、焼結性が損なわれることがないことから、
高強度をもった焼結体の製造を可能とし、かつこの焼結
体は、Cu含有によって高靭性をもつと共に、Al12
03の高含有によってすぐれた耐摩耗性を示すようにな
るという研究結果を得たのである。
A fine composite oxide of Ni, Cu, and Allium (hereinafter referred to as (N
A cyclic composite oxide phase formed by agglomeration of Ni,Cu,AN )0) in a ring shape, in other words, a fine (Ni.Cu.AN )0 layered inside the powder and aggregated and distributed in a shell shape.
An oxide powder having a structure in which a cyclic composite oxide phase composed of
200°C, which is relatively low compared to the reduction temperature of 0 to 800°C.
When the reduction treatment is performed at a temperature of ~500°C, the main (Ni.Cu)O that formed the base of the oxide powder becomes Ni.
-Cu (Ni, Cu, AI)
The cyclic composite oxide phase composed of O changes to a fine cyclic hard phase mainly composed of Ag2O3. Therefore, the resulting Ni-Cu alloy powder is
As mentioned above, Ag2O3 grains are not substantially present on the powder surface, and the powder has a shell-like structure with layers inside, so even though the Ag2O3 content is relatively high, the sintered Since the cohesion is not impaired,
It is possible to manufacture a sintered body with high strength, and this sintered body has high toughness due to the Cu content, and also has Al12
The research results showed that high content of 03 results in excellent wear resistance.

この発明は、上記研究結果にもとづいてなされたちので
あって、 An): 1.5〜10%、     Cu  :  
1〜4496、を含aし、残りがNiと不可避不純物か
らなる組成を有するNi  −Cu −/1合金原料粉
末に、酸化性雰囲気中、900〜1300℃の温度に、
望ましくは粉末流動化状態で加熱保持、 の条件で酸化処理を施して、主体が(Ni、Cu)0か
らなる素地に、粉末中心部を通るあらゆる断面において
、粉末中心部と粉末周辺部との間に、微細な(Ni、C
u、Al))Oが環状に凝集してなる環状複合酸化物相
が存在する組織をもった酸化物粉末を形成し、 引続いて、上記酸化物粉末に、 還元性雰囲気中、200〜500℃の温度に加熱保持、 の条件で還元処理を施して、上記酸化物粉末の素地を実
質的にNi−CuまたはNi  −Cu −Al7合金
とすると共に、上記環状複合酸化物相を微細なAg2O
3を主体とする環状硬質相とする、主要工程によってN
i−Cu系合金粉末を製造する方法、 並びに、この方法で製造された、 AN) : 1.5〜9.2%、  酸素:1.3〜8
.2%、Cu:0.9〜41%、 を含有し、残りがNiと不可避不純物からなる組成、 および実質的にNj−CuまたはNi−Cu−Al1合
金からなる素地に、粉末中心部を通るあらゆる断面にお
いて、粉末中心部と粉末周辺部との間に、環状に凝集し
た微細なAlI2O3を主体とする環状硬質相が存在す
る組織、 を有するNi−Cu系合金粉末、 に特徴を有するものである。
This invention was made based on the above research results, An): 1.5-10%, Cu:
1 to 4496, with the remainder consisting of Ni and unavoidable impurities.
Preferably, the powder is heated and held in a fluidized state, and oxidation treatment is performed under the conditions of In between, fine (Ni, C
u, Al)) An oxide powder having a structure in which a cyclic composite oxide phase formed by agglomerating O into a ring is formed, and then the oxide powder is heated to 200 to 500 ml in a reducing atmosphere. By heating and holding at a temperature of
N
Method for producing i-Cu alloy powder and the product produced by this method AN): 1.5 to 9.2%, Oxygen: 1.3 to 8
.. 2%, Cu: 0.9 to 41%, with the remainder consisting of Ni and unavoidable impurities, and a base material consisting essentially of Nj-Cu or Ni-Cu-Al1 alloy, passing through the center of the powder. A Ni-Cu alloy powder having a structure in which a ring-shaped hard phase mainly consisting of fine AlI2O3 aggregated in a ring is present between the powder center and the powder periphery in every cross section. be.

つぎに、この発明のNi−Cu系合金粉末およびその製
造法において、成分組成並びに製造条件を上記の通りに
限定した理由を説明する。
Next, the reason why the component composition and manufacturing conditions are limited as described above in the Ni-Cu alloy powder and the manufacturing method thereof of the present invention will be explained.

A、Ni  −Cu系合金粉末の成分組成(a)ANお
よび酸素 ANは酸素と結合して粉末内部で層をなしてシェル状に
凝集分布する微細なA 、020 sを形成し、粉末の
焼結性を損なうことなく、かつこれを原料粉末として用
いて製造された焼結体の耐摩耗性を著しく向上させる作
用があり、この場合AN含有量がきまれば必然的に酸化
処理で酸素含有量もきまるものであり、したがってAl
l含有量が1.5%未満になると酸素含有量も1.3%
未満となり、Ag2O3の形成割合が不十分で所望のす
ぐれた耐摩耗性を確保することができず、一方Al含有
量が9.2%を越えると、酸素含有量も8.2%を越え
て多くなり、この結果多量のA I 20 aが形成さ
れることになるので、A 1) 20 s粒の粗大化が
避けられず、相手攻撃性が現われるようになることから
、Al1含有量を1.5〜9.2%、酸素含有量を1.
3〜8.2%と定めた。
A, Composition of Ni-Cu alloy powder (a) AN and oxygen AN combine with oxygen to form fine A,020s that form a layer inside the powder and are aggregated and distributed in a shell shape, and the sintering of the powder It has the effect of significantly improving the wear resistance of sintered bodies manufactured using it as a raw material powder without impairing its concretion properties.In this case, once the AN content is determined, the oxygen content must be reduced by oxidation treatment. Therefore, Al
When the l content is less than 1.5%, the oxygen content is also 1.3%.
If the Al content exceeds 9.2%, the oxygen content also exceeds 8.2%, making it impossible to secure the desired excellent wear resistance due to insufficient formation of Ag2O3. As a result, a large amount of A I 20 a is formed, and the coarsening of the A 1) 20 s grains is unavoidable, and the opponent's aggressiveness appears. .5-9.2%, oxygen content 1.
It was set at 3 to 8.2%.

(b)  Cu Cu成分には、靭性を向上させる作用があるが、その含
有量が0.9%未満では所望の靭性向上効果が得られず
、一方その含有量が41%を越えると、これを用いて焼
結体を製造した場合に、これの耐食性が低下するように
なることから、その含有量を0.9〜41%と定めた。
(b) Cu Cu component has the effect of improving toughness, but if its content is less than 0.9%, the desired effect of improving toughness cannot be obtained, while if its content exceeds 41%, this When a sintered body is manufactured using this, the corrosion resistance of this decreases, so the content was determined to be 0.9 to 41%.

B、製造条件 (a)  Ni  −Cu −Al合金原料粉末の成分
組成An)含有量が1.5%未満では、酸化処理で形成
される(Cu、NLA、IJ ) Oの粉末内部での環
状凝集が十分に行なわれず、この結果還元処理後の粉末
表面に比較的多量のAg2O3が存在するようになって
焼結性が低下し、焼結体の強度低下の原因となり、一方
AJ含有量が10%を越えると、酸化処理で形成される
(Ni.Cu、Al1)0並びに還元処理で形成される
A 1) 20 aの粒径が陰火化し、これを焼結体と
した場合、相手攻撃性が増すようになることから、Al
含有量を1.5〜10%と定めた。
B. Manufacturing conditions (a) Composition of Ni-Cu-Al alloy raw material powder An) When the content is less than 1.5%, annular formation inside the powder of (Cu, NLA, IJ)O formed by oxidation treatment Agglomeration is not sufficient, and as a result, a relatively large amount of Ag2O3 is present on the powder surface after reduction treatment, which reduces sinterability and causes a decrease in the strength of the sintered body. If it exceeds 10%, the particle size of (Ni.Cu, Al1)0 formed by oxidation treatment and A1)20a formed by reduction treatment will become negative, and if this is made into a sintered body, it will be difficult to attack the opponent. Al
The content was determined to be 1.5 to 10%.

また、Cu含有量が1%未満では、製造されたNi−C
u系合金粉末におけるCu含有量が0.996未満とな
ってしまい、所望の高靭性をもった焼結体を製造するこ
とができなくなり、一方間様にその含有量が44%を越
えると、粉末のCu含有量が41%を越えて高くなって
しまい、これを用いて製造した焼結体の耐食性が低下す
るようになることから、Cu含有量を1〜44%と定め
た。
Furthermore, if the Cu content is less than 1%, the produced Ni-C
If the Cu content in the U-based alloy powder becomes less than 0.996, it becomes impossible to produce a sintered body with the desired high toughness.On the other hand, if the content exceeds 44%, If the Cu content of the powder exceeds 41%, the corrosion resistance of the sintered body manufactured using the powder will deteriorate, so the Cu content was set at 1 to 44%.

(b)  酸化処理温度 その温度が900℃未満では、(Ni、Cu、All 
)0の環状凝集が不十分であり、一方その温度が130
0℃を越えると、粉末を流動化しても粉末同志に融着が
起り易くなることから、その温度を900〜1300℃
と定めた。
(b) Oxidation treatment temperature If the temperature is less than 900°C, (Ni, Cu, All
) 0 annular agglomeration is insufficient, while its temperature is 130
If the temperature exceeds 0℃, the powders tend to fuse together even if they are fluidized, so the temperature should be adjusted to 900 to 1300℃.
It was determined that

<c> 還元温度 その温度が200℃未満では、酸化物粉末の還元に長時
間を要し、実用的でなく、一方その温度が500℃を越
えると、還元処理で形成されるAl1203が陰火化す
るようになり、この結果焼結体の相手攻撃性が増すよう
になることから、その温度を200〜500℃と定めた
<c> Reduction temperature If the temperature is less than 200°C, it will take a long time to reduce the oxide powder, making it impractical. On the other hand, if the temperature exceeds 500°C, the Al1203 formed in the reduction process will become underfire. As a result, the aggressiveness of the sintered body toward others increases, so the temperature was set at 200 to 500°C.

〔実 施 例〕〔Example〕

つぎに、この発明のNi−Cu系合金粉末およびその製
造法を実施例により具体的に説明する。
Next, the Ni--Cu alloy powder of the present invention and its manufacturing method will be specifically explained with reference to Examples.

それぞれ第1表に示される平均粒径、並びにAllおよ
びCu含有量のNi  −C1−AN合金原料粉末を用
意し、これらのNi  −Cu −Al1合金原料粉末
に、同じく第1表に示される条件で、酸化処理、必要に
応じてボールミル中での3時間のメカニカルアロイング
処理、および還元処理を施すことにより本発明法1〜8
および従来法1〜3を実施し、それぞれ本発明Ni−C
u系合金粉末1〜8および従来Ni合金粉末1〜3を製
造した。
Ni-C1-AN alloy raw material powders having the average particle diameters and All and Cu contents shown in Table 1 are prepared, and these Ni-Cu-Al1 alloy raw material powders are subjected to the conditions also shown in Table 1. Then, by performing oxidation treatment, mechanical alloying treatment for 3 hours in a ball mill as necessary, and reduction treatment, methods 1 to 8 of the present invention
and Conventional methods 1 to 3 were carried out, and the Ni-C of the present invention was
U-based alloy powders 1 to 8 and conventional Ni alloy powders 1 to 3 were manufactured.

ついで、この結果得られた各種の粉末について、成分組
成を測定すると共に、その断面組織を金属顕微鏡(倍率
: 1000倍)を用いて観察し、さらに本発明Ni−
Cu系合金粉末1〜8については、30個の粉末のそれ
ぞれの断面の中心部を通る任意直線上における粒径、並
びに環状硬質相の外径および内径を測定し、これらの平
均値を算出した。
Next, the component compositions of the various powders obtained as a result were measured, and the cross-sectional structures thereof were observed using a metallurgical microscope (magnification: 1000 times).
For Cu-based alloy powders 1 to 8, the particle size on an arbitrary straight line passing through the center of the cross section of each of the 30 powders, as well as the outer diameter and inner diameter of the annular hard phase were measured, and the average value of these was calculated. .

これらの結果を第2表に示した。These results are shown in Table 2.

さらに、これらの各種粉末を原料粉末として用い、これ
を5ton/cI#の圧力で圧粉体にプレス成形し、こ
の圧粉体を、水素中、1000〜1300℃の範囲内の
所定温度に30分間保持の条件で焼結して、断面:IO
w++5XIO龍、長さ=55−■の寸法をもった焼結
体を製造し、この焼結体について、強度および靭性を評
価する目的で引張強さ、シャルピー衝撃値(ノツチなし
)をΔt1定すると共に、摩耗試験を行なった。
Furthermore, using these various powders as raw material powders, this is press-molded into a green compact at a pressure of 5 tons/cI#, and this green compact is heated to a predetermined temperature within the range of 1000 to 1300°C in hydrogen for 30 minutes. Sintered under the conditions of holding for minutes, cross section: IO
A sintered body with dimensions of w++5 At the same time, a wear test was conducted.

なお、摩耗試験は、回転軸を水平とした外径:4(le
mX内径:30mmX長さ=15mmの鋳鉄(F C2
5)製熱処理リング(硬さ: HRC50)の上方から
、上記焼結体から81×81X35mrsの寸法に切出
した試験片を水平に当接させ、この状態で上記試験にに
7kgの荷重を垂直にかけ、前記リングを1.2m/秒
の周速で回転させ、10分後の試験片の最大摩耗深さを
測定することにより行なった。これらの結果も第2表に
示した。
In addition, the wear test was conducted using an outer diameter of 4 (le
m x inner diameter: 30 mm x length = 15 mm cast iron (F C2
5) A test piece cut into a size of 81 x 81 x 35 mrs from the above sintered body was placed in horizontal contact with the above heat treated ring (hardness: HRC50), and in this state a load of 7 kg was applied vertically to the above test. The test was carried out by rotating the ring at a circumferential speed of 1.2 m/sec and measuring the maximum wear depth of the test piece after 10 minutes. These results are also shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1.2表に示される通り、本発明法1〜8によれば、
粉末内部に微細な八ρ203が断面組織でみて環状に凝
集してなる環状硬質を目が存在したNi−Cu系合金粉
末(本発明Ni−Cu系合金粉末1〜8)を製造するこ
とができ、この本発明Ni−Cu系合金粉末1〜8は、
上記の通りAll含有二が高いにもかかわらず、八p2
03が粉末内部に封し込められた状態になっているので
、これを原料粉末として用いて焼結体を製造した場合、
良好な焼結性が確保されることから、高強度の焼結体を
製造することができるばかりでなく、相対的に高含有量
のAg2O3によって、これより製造された焼結体は、
相手材である熱処理リングの損耗がきわめて少ない状態
、すなわち相手攻撃性が著しく抑制された状態で、すぐ
れた耐摩耗性を示し、かつCυ金含有よって高靭性も具
備するのに対して、従来法1〜3で製造されたNi合金
粉末(従来Ni合金粉末1〜3)は、Ag2O3が粉末
全体に均一に分散分布する組織をもつので、AJ含有量
が相対的に低いことと相まって、焼結性の低下はあまり
なく、したがってほぼ同等の強度を有する焼結体を製造
することができるものの、耐摩耗性および靭性の面では
劣った結果しか示さないことが明らかである。
As shown in Table 1.2, according to methods 1 to 8 of the present invention,
It is possible to produce a Ni-Cu alloy powder (Ni-Cu alloy powders 1 to 8 of the present invention) in which there is an annular hard structure formed by agglomeration of fine 8ρ203 particles in an annular shape when viewed from the cross-sectional structure inside the powder. , the Ni-Cu alloy powders 1 to 8 of the present invention are:
As mentioned above, despite the high All content, 8p2
Since 03 is sealed inside the powder, when a sintered body is manufactured using this as a raw material powder,
Since good sinterability is ensured, not only can a high-strength sintered body be manufactured, but also the relatively high content of Ag2O3 allows the sintered body manufactured from this to
The heat-treated ring, which is the mating material, exhibits excellent wear resistance with very little wear, that is, its aggressiveness to the mating material is significantly suppressed, and also has high toughness due to the Cυ gold content, whereas the conventional method The Ni alloy powders manufactured in steps 1 to 3 (conventional Ni alloy powders 1 to 3) have a structure in which Ag2O3 is uniformly distributed throughout the powder, and this combined with the relatively low AJ content makes it difficult to sinter. It is clear that although there is not much of a decrease in strength and therefore it is possible to produce a sintered body with approximately the same strength, the results are inferior in terms of wear resistance and toughness.

上述のように、この発明の方法によれば、相対的に多量
の微細なAg2O3が粉末内部に層をなしてシェル状に
封じ込められた組織を有するNi−Cu系合金粉末を製
造することができ、したがってこの結果製造されたNi
−Cu系合金粉末は焼結性がきわめて良好で、これを用
いて製造された焼結体は、高強度をもつようになると共
に、多量の微細なA II 20 aで構成された環状
硬質層の存在によってすぐれた耐摩耗性を示すようにな
り、さらにCu成分の含有によって高靭性を具備するよ
うになるので、これを用いて上記の構造部材のほかに、
さらに加えてブロックリングやロッカーアーム用チップ
、ブレーキ用バット、クラッチ板などの各種駆動装置の
構造部材の製造に適用した場合、これらの構造部材はす
ぐれた性能を長期に亘って発揮するようになるなど工業
上有用な効果がもたらされるのである。
As described above, according to the method of the present invention, it is possible to produce a Ni-Cu alloy powder having a structure in which a relatively large amount of fine Ag2O3 forms a layer inside the powder and is confined in a shell shape. , so the resulting Ni
-Cu-based alloy powder has extremely good sinterability, and sintered bodies manufactured using it have high strength and an annular hard layer composed of a large amount of fine A II 20 a. The presence of Cu gives it excellent wear resistance, and the inclusion of Cu gives it high toughness.
Furthermore, when applied to the manufacturing of structural members for various drive devices such as block rings, rocker arm tips, brake butts, and clutch plates, these structural members will demonstrate superior performance over a long period of time. Industrially useful effects such as these are brought about.

Claims (3)

【特許請求の範囲】[Claims] (1)Al:1.5〜9.2%、酸素:1.3〜8.2
%、Cu:0.9〜41%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)、 並びに実質的にNi−CuまたはNi−Cu−Al合金
からなる素地に、粉末中心部を通るあらゆる断面におい
て、粉末中心部と粉末周辺部との間に、環状に凝集した
微細な酸化アルミニウムを主体とする環状硬質相が存在
する組織、 を有することを特徴とするNi−Cu系合金粉末。
(1) Al: 1.5-9.2%, oxygen: 1.3-8.2
%, Cu: 0.9 to 41%, with the remainder consisting of Ni and unavoidable impurities (wt%), and powder on a base consisting essentially of Ni-Cu or Ni-Cu-Al alloy. Ni-Cu characterized by having a structure in which a ring-shaped hard phase mainly composed of fine aluminum oxide agglomerated in an annular shape exists between the powder center and the powder periphery in every cross section passing through the center. alloy powder.
(2)Al:1.5〜10%、Cu:1〜44%、を含
有し、残りがNiと不可避不純物からなる組成(以上重
量%)を有するNi−Cu−Al合金原料粉末に、 酸化性雰囲気中、900〜1300℃の温度に加熱保持
、 の条件で酸化処理を施して、主体がNiとCuの複合酸
化物からなる素地に、粉末中心部を通るあらゆる断面に
おいて、粉末中心部と粉末周辺部との間に、微細なNi
とCuとAlの複合酸化物が環状に凝集してなる環状複
合酸化物相が存在する組織をもった酸化物粉末を形成し
、 ついで、上記酸化物粉末に、 還元性雰囲気中、200〜500℃の温度に加熱保持、 の条件で還元処理を施して、上記酸化物粉末の素地を実
質的にNi−CuまたはNi−Cu−Al合金とすると
共に、上記環状複合酸化物相を微細な酸化アルミニウム
を主体とした環状硬質相とすることを特徴とするNi−
Cu系合金粉末の製造法。
(2) Ni-Cu-Al alloy raw material powder containing 1.5 to 10% Al, 1 to 44% Cu, and the remainder consisting of Ni and unavoidable impurities (weight percent) is oxidized. Oxidation treatment is performed under the conditions of heating and holding at a temperature of 900 to 1,300°C in a neutral atmosphere, and the powder core is oxidized to the base material mainly composed of a composite oxide of Ni and Cu in all cross sections passing through the powder core. Fine Ni is placed between the powder and the surrounding area.
A composite oxide of Cu and Al is aggregated into a ring to form an oxide powder having a structure in which a cyclic composite oxide phase exists. By heating and holding at a temperature of Ni- characterized by having an annular hard phase mainly composed of aluminum.
A method for producing Cu-based alloy powder.
(3)上記酸化処理が、上記Ni−Cu−Al合金原料
粉末を流動化させながら行なわれることを特徴とする上
記特許請求の範囲第(2)項記載のNi−Cu系合金粉
末の製造法。
(3) A method for producing a Ni-Cu alloy powder according to claim (2), wherein the oxidation treatment is performed while fluidizing the Ni-Cu-Al alloy raw material powder. .
JP2208558A 1990-08-07 1990-08-07 Ni-cu series alloy powder and manufacture thereof Pending JPH0499102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208558A JPH0499102A (en) 1990-08-07 1990-08-07 Ni-cu series alloy powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208558A JPH0499102A (en) 1990-08-07 1990-08-07 Ni-cu series alloy powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0499102A true JPH0499102A (en) 1992-03-31

Family

ID=16558175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208558A Pending JPH0499102A (en) 1990-08-07 1990-08-07 Ni-cu series alloy powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0499102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756244A (en) * 2016-12-29 2017-05-31 沈阳大陆激光工程技术有限公司 A kind of laser manufacture and the transition zone alloy material for remanufacturing copper plate of crystallizer
US20210043943A1 (en) * 2014-10-16 2021-02-11 Energizer Brands, Llc Buckling resistant current collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043943A1 (en) * 2014-10-16 2021-02-11 Energizer Brands, Llc Buckling resistant current collector
CN106756244A (en) * 2016-12-29 2017-05-31 沈阳大陆激光工程技术有限公司 A kind of laser manufacture and the transition zone alloy material for remanufacturing copper plate of crystallizer

Similar Documents

Publication Publication Date Title
US9972410B2 (en) Ti-included oxide dispersion strengthened copper alloy and method for manufacturing dispersed copper
JPH11501700A (en) Stainless steel powder and products manufactured by powder metallurgy from the powder
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
JPS6366362B2 (en)
US4587096A (en) Canless method for hot working gas atomized powders
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JPH0499102A (en) Ni-cu series alloy powder and manufacture thereof
JP2748667B2 (en) Ni alloy powder and method for producing the same
JP2003027109A (en) Method for producing oxide dispersion type alloy
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP2748666B2 (en) Cu alloy powder and method for producing the same
JPH0499101A (en) Cu-ni series alloy powder and manufacture thereof
JPH04128302A (en) Fe-base alloy powder and manufacture thereof
JPH04128301A (en) Co-base alloy powder and manufacture thereof
JPS62287026A (en) Manufacture of aluminum-alloy sintered and forged product
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPH04183835A (en) Manufacture of ni-ti alloy member
JP2556113B2 (en) High strength and high toughness Cu-based sintered alloy with excellent wear resistance
JPH01132701A (en) Alloy steel powder for powder metallurgy
JPS60121257A (en) Alloy steel powder for sintered high-speed steel
JPH01279701A (en) Production of forged member