JPH01279701A - Production of forged member - Google Patents

Production of forged member

Info

Publication number
JPH01279701A
JPH01279701A JP63108384A JP10838488A JPH01279701A JP H01279701 A JPH01279701 A JP H01279701A JP 63108384 A JP63108384 A JP 63108384A JP 10838488 A JP10838488 A JP 10838488A JP H01279701 A JPH01279701 A JP H01279701A
Authority
JP
Japan
Prior art keywords
powder
forged
alloy
forging
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63108384A
Other languages
Japanese (ja)
Inventor
Makoto Fujita
誠 藤田
Yukio Yamamoto
幸男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63108384A priority Critical patent/JPH01279701A/en
Publication of JPH01279701A publication Critical patent/JPH01279701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To manufacture a forged member having excellent strength and wear resistance by mixing at least one kind of Ni, Cu and Fe powder with Al alloy powder and executing heat treatment after forge-forming into the desired shape. CONSTITUTION:The super fine particle-state of Ni having 200Angstrom average particle size is mixed with the Al alloy powder manufactured by rapid cooled solidifying method at 3-6wt.% and this mixed material is pre-formed by vacuum hot press method. Successively, the pre-formed material is heated and after hot- extruding, machining work is executed to form a raw material for forging, and successively, it is forged at 450Angstrom . Solution treatment is executed to the forged product and after improving the hardness by developing an intermetallic compound between Al and Ni, the finishing machining is applied, to manufacture the forged product having the prescribed shape and excellent strength and wear resistance. In this case, further, Cu and Fe powders besides Ni may be mixed as complexing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Alを主要素材として、エンジンのバルブア
ッパシート等の各種鍛造部材を鍛造成形する鍛造部材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a forged member, in which various forged members such as an engine valve upper seat are forged using Al as a main material.

〔従来の技術〕[Conventional technology]

従来、第3図に示すように、エンジンにおける吸気用又
は排気用バルブ1に分割コレット2を介して取り付けら
れ、バルブスプリング3の上端を支持するバルブアッパ
シート4は、通常、鋼にて形成されているが、この鋼製
のバルブアッパシート4は慣性質量が大きいので、応答
性が悪くなり、エンジンの最大回転速度も制限されると
いう問題を有していた。そこで、軽量化のために、バル
ブアッパシート4をAl合金製とすることが考えられる
Conventionally, as shown in FIG. 3, a valve upper seat 4, which is attached to an intake or exhaust valve 1 in an engine via a split collet 2 and supports the upper end of a valve spring 3, is usually made of steel. However, this valve upper seat 4 made of steel has a large inertial mass, resulting in poor responsiveness and a problem in that the maximum rotational speed of the engine is also limited. Therefore, in order to reduce the weight, it is considered that the valve upper seat 4 is made of an Al alloy.

ところで、従来、上記のバルブアッパシート4のような
各種のAl合金製部材の製造に際して、Ni多孔体をA
l合金で鋳込む方法が知られているが、この方法では化
合物が過大となって充分な強度が得られないという欠点
があった。又、Al合金の粉末を所望の形状に成形した
後、焼結する、いわゆる粉末冶金法を用いた場合は、製
品内にミクロポロシティ、つまり、微小な空洞が発生し
、やはり強度が乏しくなるという問題があった。
By the way, conventionally, when manufacturing various Al alloy members such as the above-mentioned valve upper seat 4, a Ni porous body is
A method of casting with L alloy is known, but this method has the disadvantage that the compound is too large and sufficient strength cannot be obtained. Furthermore, when using the so-called powder metallurgy method, in which Al alloy powder is molded into a desired shape and then sintered, microporosity, or tiny cavities, occur within the product, resulting in poor strength. There was a problem.

そのため、Niを0.5〜4.0重量%含有するAl合
金を、そのまま、又は予備成形した後に鍛造等により成
形するようにしたNi−Al合金製部材の製造方法が提
案されている(特開昭62−44540号公報参照)。
Therefore, a method for manufacturing a Ni-Al alloy member has been proposed in which an Al alloy containing 0.5 to 4.0% by weight of Ni is formed as is or by forging after preforming (especially (Refer to JP-A-62-44540).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述の製造方法を採用した場合、製品の強度
及び耐摩耗性は優れているものの、Ni−Al合金は伸
びが極めて乏しいので、鍛造成形性が悪いという問題が
ある。従って、冷間では容易に割れが生じて鍛造が実際
上困難となるので、上記の製造方法においては、鍛造等
の成形を500℃以下の温度の熱間で行うようにされて
いる。
However, when the above manufacturing method is adopted, although the product has excellent strength and wear resistance, the Ni-Al alloy has extremely poor elongation, so there is a problem that forging formability is poor. Therefore, cracks easily occur in the cold, making forging practically difficult, so in the above manufacturing method, forming such as forging is performed hot at a temperature of 500° C. or lower.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る鍛造部材の製造方法は、上記の課題を解決
して、良好な鍛造成形性を確保するために、急冷凝固A
I!合金粉末にNi粉末、Fe粉末又はCu粉末の内の
少なくとも1種を混合した後、所望の形状に鍛造成形し
、続いて、熱処理を施すことによりAlとN l % 
F e又はCuとの間で金属間化合物を生成するように
したことを特徴とするものである。
The method for manufacturing a forged member according to the present invention solves the above problems and ensures good forging formability.
I! After mixing the alloy powder with at least one of Ni powder, Fe powder, or Cu powder, it is forged into a desired shape, and then heat-treated to reduce Al and N l %.
This is characterized in that an intermetallic compound is formed between Fe and Cu.

〔作 用〕 上記の構成によれば、鍛造成形の段階では、急冷凝固A
7!合金粉末にNi粉末、Fe粉末又はCu粉末が混合
されているのみで、Ni、Fe又はCuが八lとの間で
合金を形成してはいないので、これらの粉末の混合体を
、例えば、冷間においても、比較的容易に所望形状に鍛
造成形することができるようになる。
[Function] According to the above configuration, at the stage of forging, the rapid solidification A
7! Since the alloy powder is only mixed with Ni powder, Fe powder, or Cu powder, and Ni, Fe, or Cu does not form an alloy with 8L, a mixture of these powders, for example, Even in the cold, it can be forged into a desired shape relatively easily.

又、鍛造後にAffとNi、Fe又はCuとの間で金属
間化合物が生成されるので、完成された鍛造部材は強度
及び耐摩耗性に優れたものとなる。
Further, since an intermetallic compound is generated between Aff and Ni, Fe, or Cu after forging, the completed forged member has excellent strength and wear resistance.

〔実施例〕〔Example〕

本発明の一実施例を第1図及び第2図に基づいて説明す
れば、以下の通りである。
An embodiment of the present invention will be described below based on FIGS. 1 and 2.

ここでは、急冷凝固へ1合金粉末とNiの超微粉とを素
材として、エンジンのバルブアッパシート等の鍛造部材
を製造する場合の製造手順につき述べる。
Here, we will describe the manufacturing procedure for manufacturing a forged member such as an engine valve upper seat using rapidly solidified alloy powder and ultrafine Ni powder as raw materials.

まず、Niの超微粉の製造は数乃至数100Torrに
調圧されたH e又はAr等の不活性ガスの雰囲気中で
Niを加熱、蒸発させて水冷式等の冷却面に付着させる
ことにより行う。
First, ultrafine Ni powder is produced by heating and evaporating Ni in an atmosphere of an inert gas such as He or Ar whose pressure is regulated to several to several hundred Torr, and depositing it on the cooling surface of a water-cooled device, etc. .

上記の製法により製造されたNiの超微粉は黒色で、結
晶構造は面心立方格子(FCC)であり、例えば、第2
図に示すような粒度分布を有する。このNiの超微粉の
平均粒子径が200人の場合、見掛は密度は0.4g/
cm3、比表面積は69.4m2/gとなる。又、上記
Niの超微粉の平均粒子径が500人の場合、見掛は密
度は0.1 g / c m3、比表面積は18.9m
2/gとなる。なお、鍛造部材の製造に際しては、通常
、平均粒子径が200〜数100人程度のNi超微粉を
使用する。すなわち、Ni粉末の平均粒子径が過大とな
ると、後述する熱処理時に、AlがNi粒子間に侵入し
てNiと化合する割合が大きくなり過ぎ、その結果、粉
末化されてNi粉末と混合されているAl母合金原料の
脆弱化を招くので、Ni粉末の平均粒子径は数100人
程度以下とするのが好ましい。
The ultrafine Ni powder produced by the above method is black in color and has a face-centered cubic lattice (FCC) crystal structure.
It has a particle size distribution as shown in the figure. If the average particle size of this ultra-fine Ni powder is 200, the apparent density is 0.4 g/
cm3, and the specific surface area is 69.4 m2/g. Furthermore, if the average particle size of the ultrafine Ni powder is 500, the apparent density is 0.1 g/cm3, and the specific surface area is 18.9 m3.
2/g. In addition, when producing a forged member, ultrafine Ni powder having an average particle diameter of about 200 to several 100 particles is usually used. In other words, if the average particle size of the Ni powder becomes too large, the rate at which Al penetrates between the Ni particles and combines with Ni becomes too large during the heat treatment described below, and as a result, it becomes powdered and mixed with the Ni powder. It is preferable that the average particle diameter of the Ni powder is approximately several hundred particles or less, since this may cause the Al master alloy raw material to become brittle.

一方、急冷凝固A7!合金粉末はAlの母合金原料を溶
解し、引続き、Arガスを使用したガスアトマイズ法に
より上記Al母合金原料の粉末を形成して104℃/s
ec程度の速度で冷却することにより製造する。この場
合、通常、製造された急冷凝固Al合金粉末の70%程
度は粒径が0〜50μmとなり、残りの30%程度は粒
径が50μm以上となる。
On the other hand, rapidly solidified A7! The alloy powder is obtained by melting the Al master alloy raw material, and then forming the powder of the Al master alloy raw material by a gas atomization method using Ar gas at 104°C/s.
It is manufactured by cooling at a rate of about EC. In this case, usually about 70% of the produced rapidly solidified Al alloy powder has a particle size of 0 to 50 μm, and the remaining about 30% has a particle size of 50 μm or more.

上記のAl母合金原料としては、例えば、第1表に組成
を示すA(1−Cu−Mg系合金や、第2表に組成を示
ずA 1− S i −Cu −M g系合金等を使用
できる。なお、第1表及び第2表中のNiの欄には、上
記のAl母合金原料から製造された急冷凝固Al合金粉
末に添加されるNiの超微粉の混合粉末全体に対する重
量比が示されており、Niは上記A4母合金原料に合金
成分として含まれているものではない。又、第1表及び
第2表中のSi、Cu・・・の欄に示す数値は上記混合
粉末全体に対して各成分が占める重量比を示している。
Examples of the above-mentioned Al master alloy raw materials include A (1-Cu-Mg alloy whose composition is shown in Table 1), A1-Si-Cu-Mg alloy whose composition is not shown in Table 2, etc. In addition, in the column of Ni in Tables 1 and 2, the weight of the ultrafine Ni powder added to the rapidly solidified Al alloy powder produced from the above-mentioned Al master alloy raw material with respect to the entire mixed powder can be used. The ratio is shown, and Ni is not included as an alloying component in the above A4 master alloy raw material.Also, the values shown in the columns of Si, Cu... in Tables 1 and 2 are the same as above. The weight ratio of each component to the entire mixed powder is shown.

第1表 但し、単位は重量% 第2表 次に、急冷凝固Al合金粉末とNiの超微粉とを使用し
た鍛造部材の製造手順につき述べる。
Table 1 (unit: % by weight) Table 2 Next, the manufacturing procedure of a forged member using rapidly solidified Al alloy powder and ultrafine Ni powder will be described.

第1図に示すように、まず、上述した急冷凝固Al合金
粉末と平均粒子径が200人のNiの超微粉とを混合し
くSt)、続いて、混合した粉末を予備成形する(S2
)。この予備成形は、例えば、温度350℃程度、圧力
1〜2ton 7cm”程度の条件で真空ホットプレス
法により1時間程度行う。
As shown in FIG. 1, first, the rapidly solidified Al alloy powder described above and ultrafine Ni powder with an average particle size of 200 mm are mixed (S2), and then the mixed powder is preformed (S2).
). This preforming is performed, for example, by a vacuum hot press method at a temperature of about 350° C. and a pressure of about 1 to 2 tons and 7 cm” for about one hour.

次に、予備成形体を350℃程度の温度で、かつ、1:
15程度の押出し比で熱間押出しくS3)を行った後、
機械加工(S4)を施すことにより、鍛造用素材を形成
しくS5)、引続き、上記鍛造用素材に鍛造を施す(S
6)。ここで鍛造温度を450℃以上とすると、Alと
Niとの間で化合物が形成され、鍛造成形性が悪くなる
ことがあるので、鍛造温度は450℃より低くする。
Next, the preform was heated to a temperature of about 350°C and 1:
After performing hot extrusion S3) at an extrusion ratio of about 15,
By performing machining (S4), a forging material is formed (S5), and subsequently, forging is performed on the forging material (S5).
6). If the forging temperature is set to 450° C. or higher, a compound may be formed between Al and Ni, resulting in poor forging formability, so the forging temperature is set lower than 450° C.

続いて、鍛造品に熱処理(溶体化処理)を施すことによ
り、鍛造品中のAj?、:!:Niとの間に金属間化合
物を生成させる(S7)。この際、(i)450〜55
0℃で1〜4時間熱処理を行うと、A7!とNiとの間
で生成される化合物は大部分がNiAlで、他に微量の
Ni、Aj!が生成される。なお、上記の条件で熱処理
を施された鍛造品の硬度はビッカース硬さで400とな
る。
Subsequently, by applying heat treatment (solution treatment) to the forged product, Aj? , :! : Generate an intermetallic compound with Ni (S7). In this case, (i) 450 to 55
When heat treated at 0°C for 1 to 4 hours, A7! The compound formed between Ni and Ni is mostly NiAl, with trace amounts of Ni and Aj! is generated. The hardness of the forged product heat-treated under the above conditions is 400 on the Vickers scale.

又、(ii )  550℃以上の温度で1〜4時間熱
処理を行うと、AI!とNiとの間で生成される化合物
はNiz A l 3であり、この場合、鍛造品の硬度
はピンカース硬さで850となる。
Also, (ii) when heat treatment is performed at a temperature of 550°C or higher for 1 to 4 hours, AI! The compound produced between Ni and Ni is Niz Al 3, and in this case, the hardness of the forged product is 850 on the Pinkers hardness.

熱処理が終了すると、続いて、鍛造品に最終的な機械加
工を施しくS8)、所定の鍛造部材を完成する(S9)
。なお、上記の熱処理後に、必要に応じて、時効処理(
焼戻し)を行うようにしても良い。
When the heat treatment is completed, the forged product is then subjected to final machining (S8), and a predetermined forged member is completed (S9).
. In addition, after the above heat treatment, aging treatment (
Tempering) may also be performed.

上記した鍛造部材の製造方法においては、鍛造成形の段
階では、AIとNiとは合金或いは化合物を形成してい
ないので、良好な鍛造成形性を得ることができ、これに
より、確実に所望形状の鍛造部材を製造することができ
るようになる。又、鍛造後にANとNiとの間で金属間
化合物を生成させることにより、完成した鍛造部材に充
分な強度と耐摩耗性を付与することが可能となる。
In the above-described method for producing a forged member, since AI and Ni do not form an alloy or a compound at the forging stage, good forging formability can be obtained, thereby ensuring that the desired shape is obtained. It becomes possible to manufacture forged parts. Furthermore, by generating an intermetallic compound between AN and Ni after forging, it is possible to impart sufficient strength and wear resistance to the completed forged member.

本発明者は本発明法と従来法における鍛造成形性を比較
する試験を実施した。その試験結果によると、前記第1
表に示す組成のAl母合金原料から製造された急冷凝固
A/合金粉末とNiの超微粉の混合粉末とを円柱状に予
備成形した後、本発明法により室温で自由鍛造を施した
場合の据え込み率、つまり、軸方向に圧縮した際に割れ
を生じないで最大限に断面積が増加する割合が60%で
あるのに対して、第1表に示す組成のAl母合金原料に
同表中に示す割合だけNiを予め合金成分として含有し
たAj!−Cu−Mg−N i合金からなる円柱体に室
温で自由鍛造を施した場合の据え込み率は40%であっ
た。
The present inventor conducted a test to compare the forging formability between the method of the present invention and the conventional method. According to the test results, the first
After preforming a mixed powder of rapidly solidified A/alloy powder produced from Al master alloy raw material having the composition shown in the table and ultrafine Ni powder into a cylindrical shape, free forging was performed at room temperature using the method of the present invention. The upsetting rate, that is, the maximum increase in cross-sectional area without cracking when compressed in the axial direction, is 60%, while the Al master alloy raw material with the composition shown in Table 1 has the same Aj containing Ni as an alloy component in advance in the proportion shown in the table! When a cylindrical body made of -Cu-Mg-Ni alloy was subjected to free forging at room temperature, the upsetting rate was 40%.

同様に、第2表に示す組成のAJ母合金原料から製造き
れた急冷凝固Al合金粉末とNiの超微粉との混合粉末
を円柱状に予備成形した後、本発明法により室温で自由
鍛造を施した場合の据え込み率が55%であるのに対し
て、第2表に示す組成のAl母合金原料に同表中に示す
割合だけNiを予め合金成分として含有したA#51−
CuMg  Ni合金からなる円柱体に室温で自由鍛造
を施した場合の据え込み率は30%であった。
Similarly, after preforming a mixed powder of rapidly solidified Al alloy powder and ultrafine Ni powder produced from AJ master alloy raw materials having the composition shown in Table 2 into a cylindrical shape, free forging was performed at room temperature using the method of the present invention. The upsetting rate is 55% in the case of A#51-, which contains Ni as an alloy component in advance in the Al master alloy raw material having the composition shown in Table 2 in the proportion shown in the same table.
When a cylindrical body made of a CuMg Ni alloy was subjected to free forging at room temperature, the upsetting rate was 30%.

以上の結果から本発明法においては、鍛造成形性が大幅
に向上していることが実証された。
The above results demonstrate that the method of the present invention significantly improves forging formability.

又、本発明者は、本発明法と従来法とにより鍛造成形さ
れたピンについて、それぞれ摩耗試験を実施した。すな
わち、本発明法によるピンは、次頁の第3表に示すよう
に、Cu、Mg及びSiを所定量含有するAl母合金原
料から製造された急冷凝固Al合金粉末にNiの超微粉
を2.0重量%混合してなる混合粉末をもとに、本発明
法により鍛造成形したものである。一方、従来法による
ピンは、上記の急冷凝固AI!合金粉末にNiの超微粉
を混合しないで、鍛造成形したものである。この場合N
iはAl母合金原料にも含有されていない。
The inventor also conducted wear tests on pins forged by the method of the present invention and by the conventional method. That is, as shown in Table 3 on the next page, the pin made by the method of the present invention is made by adding 2 ultra-fine Ni powder to rapidly solidified Al alloy powder produced from an Al master alloy raw material containing predetermined amounts of Cu, Mg, and Si. It is forged and formed by the method of the present invention based on a mixed powder obtained by mixing .0% by weight. On the other hand, pins made using the conventional method are made using the rapid solidification AI! It is forged and formed without mixing ultrafine Ni powder with alloy powder. In this case N
i is not contained in the Al master alloy raw material either.

第3表 第4表 そして、第4表に組成を示すA390合金をもとに形成
され、T6の処理が施されたディスクを回転させながら
、このディスクに上記本発明法及び従来法によるビンを
押し当て、焼付が生じない限界の面圧を測定した。それ
によると、焼付が生じない限界の面圧は、従来法による
ビンでは100kg7cm2であるのに対し、本発明法
によるビンでは145k g/ c m2であり、本発
明法では、製品の耐摩耗性が向上していることが確認さ
れた。なお、上記の摩耗試験において、ディスクに対す
るビンの摺動速度は8 m / s 、使用した潤滑油
は4サイクルガソリンエンジン油のl0W−30、潤滑
油の温度は100℃であった。
Table 3 Table 4 Then, while rotating the disk formed from A390 alloy whose composition is shown in Table 4 and subjected to T6 treatment, the bottles according to the above-mentioned method of the present invention and the conventional method were attached to the disk. The limit surface pressure at which no seizure occurred was measured. According to this, the limit surface pressure at which seizure does not occur is 100 kg/cm2 for bottles made using the conventional method, while it is 145 kg/cm2 for bottles made using the method of the present invention. was confirmed to have improved. In the above wear test, the sliding speed of the bottle with respect to the disk was 8 m/s, the lubricating oil used was l0W-30 4-cycle gasoline engine oil, and the temperature of the lubricating oil was 100°C.

なお、上記の実施例では、急冷凝固AA合金粉末にNi
粉末を混合して予備成形を施したものを鍛造用素材とし
て使用したが、それに代えて、急冷凝固AI!合金粉末
にFe粉末(硬度: Hv 50)又はCu粉末(硬度
:Hv80)を混合したり、急冷凝固Al合金粉末にN
i粉末、Fe粉末又はCu粉末の内の2種以上を混合し
て予備成形を施したものを鍛造用素材として使用するよ
うにしても良く、Fe粉末を使用した際には、熱処理に
よりHv LOOO−1200の硬度を有するFeとA
j2との金属間化合物を得ることができ、一方、Cu粉
末を使用した際には熱処理によりHv570〜730の
硬度を有するCuとAlとの金属間化合物を得ることが
できるもので、Ni粉末と同様に強度及び耐摩耗性を向
上させることができる。“〔発明の効果〕 本発明に係る鍛造部材の製造方法は、以上のように、急
冷凝固/1合金粉末にNi粉末、Fe粉末又はCu粉末
の内の少なくとも1種を混合した後、所望の形状に鍛造
成形し、続いて、熱処理を施すことによりANとNi、
Fe又はCuとの間で金属間化合物を生成するようにし
た構成である。
In the above example, Ni was added to the rapidly solidified AA alloy powder.
A mixture of powders and preforming was used as the forging material, but instead of that, rapidly solidified AI! Mixing Fe powder (hardness: Hv 50) or Cu powder (hardness: Hv 80) with alloy powder, or adding N to rapidly solidified Al alloy powder
A mixture of two or more of I powder, Fe powder, or Cu powder and preforming may be used as the forging material. When Fe powder is used, Hv LOOO is reduced by heat treatment. -Fe and A with hardness of 1200
On the other hand, when Cu powder is used, an intermetallic compound of Cu and Al having a hardness of Hv570 to 730 can be obtained by heat treatment. Similarly, strength and wear resistance can be improved. “[Effects of the Invention] As described above, in the method for manufacturing a forged member according to the present invention, after mixing at least one of Ni powder, Fe powder, or Cu powder into the rapidly solidified/1 alloy powder, the desired AN and Ni are formed by forging into a shape, followed by heat treatment.
This structure is designed to generate an intermetallic compound with Fe or Cu.

これにより、鍛造成形の段階では、急冷凝固Al合金粉
末にNi粉末、Fe粉末又はCu粉末が混合されている
のみで、Ni、Fe又はCuがAlとの間で合金或いは
化合物を形成してはいないので、良好な鍛造成形性を得
ることができるようになるという効果を奏する。
As a result, at the stage of forging, only Ni powder, Fe powder, or Cu powder is mixed with rapidly solidified Al alloy powder, and Ni, Fe, or Cu does not form an alloy or compound with Al. Therefore, it is possible to obtain good forging formability.

又、鍛造後にAlとNi、Fe又はCuとの間で金属間
化合物が生成されるので、完成された鍛造部材は強度及
び耐摩耗性の優れたものとなる。
Further, since an intermetallic compound is generated between Al and Ni, Fe, or Cu after forging, the completed forged member has excellent strength and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例を示すものであって
、第1図は鍛造部材の製造手順を示すフローチャート、
第2図は鍛造部材の製造に使用されるNiの超微粉の粒
度分布を示すグラフ、第3図はエンジンのパルプ駆動部
を示す概略断面図である。 4はバルブアッパシート(鍛造部材)である。 第1図 第 2rM 末九手経〔入〕 第3図
1 and 2 show an embodiment of the present invention, and FIG. 1 is a flowchart showing the manufacturing procedure of a forged member;
FIG. 2 is a graph showing the particle size distribution of ultrafine Ni powder used for manufacturing forged parts, and FIG. 3 is a schematic cross-sectional view showing the pulp drive section of the engine. 4 is a valve upper seat (forged member). Fig. 1 Fig. 2rM Last nine manual sutra [in] Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、急冷凝固Al合金粉末にNi粉末、Fe粉末又はC
u粉末の内の少なくとも1種を混合した後、所望の形状
に鍛造成形し、続いて、熱処理を施すことによりAlと
Ni、Fe又はCuとの間で金属間化合物を生成するよ
うにしたことを特徴とする鍛造部材の製造方法。
1. Adding Ni powder, Fe powder or C to the rapidly solidified Al alloy powder
After mixing at least one type of u powder, forging into a desired shape, and then heat treatment is performed to generate an intermetallic compound between Al and Ni, Fe, or Cu. A method for manufacturing a forged member, characterized by:
JP63108384A 1988-04-30 1988-04-30 Production of forged member Pending JPH01279701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108384A JPH01279701A (en) 1988-04-30 1988-04-30 Production of forged member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108384A JPH01279701A (en) 1988-04-30 1988-04-30 Production of forged member

Publications (1)

Publication Number Publication Date
JPH01279701A true JPH01279701A (en) 1989-11-10

Family

ID=14483403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108384A Pending JPH01279701A (en) 1988-04-30 1988-04-30 Production of forged member

Country Status (1)

Country Link
JP (1) JPH01279701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member
US5701576A (en) * 1993-06-03 1997-12-23 Mazda Motor Corporation Manufacturing method of plastically formed product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299425A (en) * 1985-10-24 1987-05-08 Showa Alum Corp Manufacture of malleable material of al-base intermetallic compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299425A (en) * 1985-10-24 1987-05-08 Showa Alum Corp Manufacture of malleable material of al-base intermetallic compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member
US5701576A (en) * 1993-06-03 1997-12-23 Mazda Motor Corporation Manufacturing method of plastically formed product

Similar Documents

Publication Publication Date Title
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JPS6365051A (en) Manufacture of ferrous sintered alloy member excellent in wear resistance
JPH04228506A (en) Preparation of at least wear layer of high-loadable sintered part
JPH11500784A (en) Powder metallurgy production of composite materials
US4452756A (en) Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy
JPH0472027A (en) Valve seat material for outboard motor and its production
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
DE102004002714B3 (en) To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
JPH01279701A (en) Production of forged member
EP0746633B1 (en) Aluminium alloys
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
JP3362066B2 (en) High density powder sintered titanium alloy valve spring retainer for internal combustion engine and method of manufacturing the same
US4959195A (en) Method of forming large-sized aluminum alloy product
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JP2748667B2 (en) Ni alloy powder and method for producing the same
JPS61238947A (en) Manufacture of al-si alloy blank
CN110016622B (en) Powder metallurgy material and application thereof
JPS63286535A (en) Manufacture of worked product of hard-to-work alloy
JPH0421730A (en) Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
JPS635441B2 (en)
JPH0436410A (en) Complex sintered tungsten alloy
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPH0543915A (en) Fe base sintered alloy valve seat with high strength