JPH0436410A - Complex sintered tungsten alloy - Google Patents

Complex sintered tungsten alloy

Info

Publication number
JPH0436410A
JPH0436410A JP14286690A JP14286690A JPH0436410A JP H0436410 A JPH0436410 A JP H0436410A JP 14286690 A JP14286690 A JP 14286690A JP 14286690 A JP14286690 A JP 14286690A JP H0436410 A JPH0436410 A JP H0436410A
Authority
JP
Japan
Prior art keywords
core
content
tungsten alloy
sintered tungsten
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14286690A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Okato
岡登 信義
Masao Nakai
中井 将雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP14286690A priority Critical patent/JPH0436410A/en
Publication of JPH0436410A publication Critical patent/JPH0436410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a complex sintered tungsten alloy being durable to impact load and having high hardness by making W content at center part higher than W content at outer peripheral part in the sintered W alloy composed of W at the essential component and the balance of Ni and Fe. CONSTITUTION:In the sintered tungsten alloy composed of W as the essential component and the balance of Ni and Fe (Ni : Fe = about 0.5 - 4), the W content at the center part is made to 93 - 98 wt% and the W content at the outer peripheral part is made to 80 - 92 wt% and the outer peripheral part is made to have ductility higher than that at the center part. Further, added content of Ni and Fe is about 2 - 7 wt% at the center part and about 8 - 20 wt% at the outer peripheral part. By this method, the complex sintered W alloy having excellent resistance to impact load is obtd., and by applying swaging work at 25 - 70% working ratio, this can be made to >=500 Hv hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、外周部が心部より高延性を有する複合構造を
有して衝撃的な負荷のかかる徹甲用弾心材やタイルなど
の用途に好適な複合焼結タングステン合金に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to armor-piercing elastic materials, tiles, etc., which have a composite structure in which the outer peripheral part has higher ductility than the core part and are subjected to impact loads. The present invention relates to a composite sintered tungsten alloy suitable for.

〔従来の技術〕[Conventional technology]

従来、高比重で且つ高延性が要求される弾心材やクイル
などの用途には、W−Ni−Fe系の焼結タングステン
合金が用いられてきたが、同合金における高比重と高延
性とは相反する関係にあり、高比重にすると剛性が向上
する一方で、延性が低下する。このような相反する性能
を満たすものとして、特開昭62wt96306号公報
に複合構造の焼結タングステン合金が開示されている。
Conventionally, W-Ni-Fe-based sintered tungsten alloys have been used for applications such as elastic core materials and quills that require high specific gravity and high ductility. They have a contradictory relationship; when the specific gravity is increased, the rigidity improves, but the ductility decreases. A sintered tungsten alloy having a composite structure is disclosed in Japanese Patent Application Laid-open No. 62WT96306 as a material that satisfies these contradictory properties.

このものは、Wを主成分とし残部がNiとFeとからな
る焼結タングステン合金において、外周部のW含有量を
心部のW含有量より高めることにより、心部が外周部よ
り高延性を有するものとした複層構造を備えている。
This is a sintered tungsten alloy consisting of W as the main component and the balance being Ni and Fe.By increasing the W content in the outer periphery than in the core, the core has higher ductility than the outer periphery. It has a multilayer structure.

また、この心部より外周部のW含有量の方が多い複層構
造を備えた焼結タングステン合金に、加工率5〜20%
でスェージング加工を施して外周部の硬さを向上させる
ことも示されている。
In addition, we have developed a sintered tungsten alloy with a multilayer structure in which the W content is higher in the outer periphery than in the core, with a processing rate of 5 to 20%.
It has also been shown that swaging can be applied to improve the hardness of the outer periphery.

〔発明が解決しようとする課題] しかし、弾心材やタイルでは、実使用時の衝撃的な負荷
による破壊が心部ではなく外周部の表面から生じる。し
たがって、心部より外周部の方の延性を高くした方が実
際的であり、より効果的である。ところが上記従来例の
複合焼結タングステン合金にあっては、「心部が外周部
より高延性を有する」ため、複合構造とした効果が殆ど
発揮されないという問題点があった。
[Problems to be Solved by the Invention] However, in elastic core materials and tiles, breakage due to impact loads during actual use occurs not from the core but from the surface of the outer periphery. Therefore, it is more practical and more effective to make the outer periphery more ductile than the core. However, the conventional composite sintered tungsten alloy has a problem in that "the core has higher ductility than the outer circumference", so that the effect of having a composite structure is hardly exhibited.

また、スェージング加工による加工硬化を利用して硬度
の向上を図っているが、その加工率が20%を越えるス
ェージング加工を施すと割れが発生し易くなり、弾心材
やタイルに負荷される衝撃的な負荷に耐え得る程の高硬
度を獲得することは難しいという問題点があった。
In addition, hardness is improved by using work hardening due to swaging, but if the swaging process has a processing rate of more than 20%, cracks are likely to occur, and impact loads on elastic materials and tiles are likely to occur. There was a problem in that it was difficult to obtain a hardness high enough to withstand heavy loads.

そこで本発明の目的とするところは、弾心材やタイルの
衝撃的な負荷による破壊の実状況に即し、外周部が心部
より高延性を有する複合焼結タングステン合金を提供す
ることにより、上記従来の問題点を解決することにある
Therefore, an object of the present invention is to provide a composite sintered tungsten alloy in which the outer peripheral part has higher ductility than the core part, in accordance with the actual situation of fracture of elastic core materials and tiles due to impact loads. The purpose is to solve conventional problems.

〔課題を解決するための手段〕 本発明は、Wを主成分とし残部がNiとFeとからなる
焼結タングステン合金であって、心部のW含有量を93
〜98−t%とし、外周部のW含有量を80〜92wt
%とした外周部が心部より高延性を有する複合焼結タン
グステン合金である。
[Means for Solving the Problems] The present invention provides a sintered tungsten alloy consisting of W as the main component and the balance being Ni and Fe, the W content in the core being 93%.
~98-t%, and the W content in the outer periphery is 80-92wt.
This is a composite sintered tungsten alloy whose outer periphery has higher ductility than the core.

また、上記複合焼結タングステン合金に加工率25〜7
0%のスェージング加工を施して、Hv500以上の硬
度を有するものとすることができる。
In addition, the processing rate of 25 to 7 is applied to the above composite sintered tungsten alloy.
It can be subjected to 0% swaging processing to have a hardness of Hv500 or more.

〔作用〕[Effect]

本発明者らは高延性と高比重とを兼備した焼結タングス
テン合金について研究を重ねた結果、焼結タングステン
合金全体の高延性化と高比重化に関して外周部の延性が
支配因子であることを見出した。本発明はこの知見に基
づいてなされたもので、外周部のW含有量は心部より少
ない複層構造としたため、外周部が高延性で、心部は高
比重。
As a result of repeated research on sintered tungsten alloys that have both high ductility and high specific gravity, the present inventors have found that the ductility of the outer periphery is the controlling factor in increasing the ductility and specific gravity of the entire sintered tungsten alloy. I found it. The present invention was made based on this knowledge, and since the outer periphery has a multilayer structure with a lower W content than the core, the outer periphery has high ductility and the core has high specific gravity.

高剛性となり、衝撃的な負荷による破壊が外周部の表面
から生じる弾心材やタイル等の用途に最適なものとなっ
た。
It has high rigidity, making it ideal for applications such as elastic core materials and tiles, where breakage due to impact loads occurs from the outer peripheral surface.

また、外周部を高延性としたため割れを生じることなく
高加工率のスェージング加工を施すことが可能となり、
加工硬化させて衝撃的な負荷に耐え得る程の高硬度を有
する合金を得ることができる。
In addition, since the outer periphery is made highly ductile, it is possible to perform swaging processing at a high processing rate without causing cracks.
By work hardening, an alloy with high hardness that can withstand impact loads can be obtained.

以下、更に詳細に説明する。This will be explained in more detail below.

本発明のタングステン焼結合金の主成分はWでで、残部
がNiとFeである。W含有量は、成形体の心部と外周
部とで異なっており、合金全量に対して心部では93〜
98−t%であるのに対し、外周部は80〜92−t%
とより少なくしている。
The main component of the tungsten sintered alloy of the present invention is W, with the remainder being Ni and Fe. The W content differs between the core and the outer periphery of the molded body, and the W content in the core is 93~93% relative to the total amount of alloy.
98-t%, while the outer periphery is 80-92-t%
and less.

これにより、より高比重の心部を、より高延性の外周部
が取り巻く複合構造としている。W含有量が心部で93
−t%未満、外周部で80evt%未満の場合には所定
の高比重を満足する合金を得ることができない。一方、
W含有量が心部で98−t%を越え、外周部で92wt
%を越える場合には所定の高延性を満足する合金を得る
ことができない。
This creates a composite structure in which a core with higher specific gravity is surrounded by an outer peripheral part with higher ductility. W content is 93 in the core
If the content is less than -t% or less than 80evt% at the outer periphery, an alloy satisfying a predetermined high specific gravity cannot be obtained. on the other hand,
W content exceeds 98-t% in the core and 92wt in the outer periphery
%, it is impossible to obtain an alloy that satisfies the predetermined high ductility.

NiとFeは、タングステン焼結合金を製造する際の液
相焼結工程において液相を発生して高密度化を促進し、
かつ合金の延性を高める結合材として添加される。その
添加量は、合金全量に対して心部では2〜7wt%、外
周部で8〜20wt%である。2wt%未満では十分な
液相が発生せず、完全に緻密化した合金組織を得ること
ができない。
Ni and Fe generate a liquid phase in the liquid phase sintering process when producing tungsten sintered alloys to promote densification.
It is also added as a binder to increase the ductility of the alloy. The amount added is 2 to 7 wt% in the core and 8 to 20 wt% in the outer periphery, based on the total amount of the alloy. If it is less than 2 wt%, a sufficient liquid phase will not be generated and a completely densified alloy structure cannot be obtained.

心部で7tmt%を越えるとW量が少なくなり過ぎて所
定の比重を得ることができない。外周部では8wt%未
満では所定の延性が得られず、20wt%を越えると、
所定の比重が得られなくなる。又、NiとFeの重量比
率は、液相生成温度を下げて効果的な液相焼結を実施す
るために、Ni:Fe=0.5〜4の範囲内にすること
が好ましい。
If it exceeds 7tmt% in the core, the amount of W becomes too small and a predetermined specific gravity cannot be obtained. At the outer periphery, if it is less than 8 wt%, the desired ductility cannot be obtained, and if it exceeds 20 wt%,
Predetermined specific gravity cannot be obtained. Further, the weight ratio of Ni and Fe is preferably within the range of Ni:Fe=0.5 to 4 in order to lower the liquid phase generation temperature and carry out effective liquid phase sintering.

本発明の複合焼結タングステン合金の製造は、原料粉末
の混合、成形、焼結、熱処理等の工程を経て行う。混合
工程で、W粉末80〜92wtに。
The composite sintered tungsten alloy of the present invention is manufactured through steps such as mixing raw material powder, molding, sintering, and heat treatment. In the mixing process, W powder becomes 80-92wt.

残部がNiとFeの各粉末(Ni;Fe=0.5〜4重
量比)からなる心部配合原料と、W粉末93〜98−t
%、残部がNiとFeの各粉末(同上重量比)からなる
外周部配合原料とを、それぞれ別にミキサーで均一に混
合する。
A core compound raw material with the remainder consisting of Ni and Fe powders (Ni; Fe = 0.5 to 4 weight ratio) and W powder 93 to 98-t
%, the balance being Ni and Fe powders (same weight ratios as above) and the outer peripheral part compound raw materials are uniformly mixed separately using a mixer.

次に成形工程では、上記の混合した心部配合原料を所定
の成形型の心部に、外周部配合原料をその周囲に、両者
が混ざり合わないようにして二層に充填した後、静水圧
圧縮成形する。静水圧の大きさは1〜4ton/cjと
する。1ton/cII未満の圧力では液相焼結を行っ
ても2〜3%の気孔が残留し、成形体の密度が小さすぎ
て完全には緻密化できずに延性が低下する。一方、4t
on/d越える成形では、逆に密度あが高(なりすぎて
成形体中にクローズドボアが生じ、結局完全な緻密化が
できない。加圧に際して通常の一軸圧縮ではなく静水圧
を用いるのは、四方から万遍なく加圧することにより、
合金の均質性を高め、ひいては延性を高めるためである
Next, in the molding process, the mixed core raw material is filled into the core of a predetermined mold, and the outer peripheral raw material is filled around it in two layers so that the two do not mix, and then hydrostatic pressure is applied. Compression mold. The magnitude of the hydrostatic pressure is 1 to 4 ton/cj. At a pressure of less than 1 ton/cII, 2 to 3% of pores remain even if liquid phase sintering is performed, and the density of the compact is too small to be completely densified, resulting in a decrease in ductility. On the other hand, 4t
On the contrary, when molding exceeds on/d, the density increases (so much so that closed bores occur in the molded product, and complete densification cannot be achieved.When pressurizing, hydrostatic pressure is used instead of normal uniaxial compression. By applying pressure evenly from all sides,
This is to improve the homogeneity of the alloy and thus its ductility.

上記の成形工程における心細配合原料と外周部配合原料
との比率で、本複合焼結タングステン合金の外周部と心
部との比率が定まる。この比率は、W含有量がより少な
い外周部が増えるにつれて延性が高くなり、反対にW含
有量のより多い心部が増えるにつれて比重が高くなるが
、粉末充填上の制約のため、例えば棒状成形体であれば
径に対して外周部二心部=8:2〜2:8を限度とし、
好ましくは外周部二心部=6:4〜4:6の範囲である
The ratio between the outer periphery and the core of the present composite sintered tungsten alloy is determined by the ratio of the fine blended raw material and the outer periphery blended raw material in the above forming process. This ratio increases as the periphery with lower W content increases, while the specific gravity increases as the core with higher W content increases, but due to powder filling constraints, e.g. If it is a body, the limit is 8:2 to 2:8 for the diameter of the outer peripheral part,
Preferably, the ratio of the outer peripheral portion to the two core portions is in the range of 6:4 to 4:6.

焼結工程では、H2気流中でNi、Fe成分が液相を生
成する1430°C以上の温度に加熱して液相焼結する
。液相焼結時間は、完全に緻密化が進行するに必要な2
0分間以上を要し、また焼結中に粗大ポロシティを生じ
させないためには60分間以下が望ましい。液相焼結の
終了後の熱処理工程は、上記焼結体に望ましい延性を付
与するために行うもので、真空中で700〜1400°
Cの温度で2〜10時間加熱保持し、その後急冷する。
In the sintering process, liquid phase sintering is performed by heating the Ni and Fe components to a temperature of 1430° C. or higher to form a liquid phase in an H2 gas flow. The liquid phase sintering time is 2 times the time required for complete densification.
The sintering time is preferably 60 minutes or less in order to prevent coarse porosity from occurring during sintering. The heat treatment step after the completion of liquid phase sintering is carried out in order to impart desired ductility to the sintered body, and is performed at 700 to 1400° in vacuum.
The mixture is heated and maintained at a temperature of C for 2 to 10 hours, and then rapidly cooled.

これにより焼結工程で焼結体中に固溶した過剰の水素が
低減されると共に、W粒界への析出物の生成が防止され
て延性の向上が図れる。
This reduces the excess hydrogen solidly dissolved in the sintered body during the sintering process, and prevents the formation of precipitates at W grain boundaries, thereby improving ductility.

複合焼結タングステン合金を例えば徹甲弾に使用する場
合などは、貫徹力を向上させるべく外周部の硬さを向上
させるのに、熱処理後にスェージング加工を施すと良い
。その場合、スェージング加工率は25〜70%とし、
これにより成形体の合金硬度をHv500以上にする。
When a composite sintered tungsten alloy is used, for example, in an armor-piercing bullet, it is recommended to perform a swaging process after heat treatment to improve the hardness of the outer periphery in order to improve the penetration force. In that case, the swaging rate should be 25-70%,
As a result, the alloy hardness of the compact is set to Hv500 or higher.

加工率が25%未満では外周部の硬度をHv500以上
にすることができず、貫徹力の向上が果たせない。一方
、70%を越えると心部まで加工硬化して合金の延性が
低下する。
If the processing rate is less than 25%, the hardness of the outer peripheral portion cannot be increased to Hv500 or more, and the penetration force cannot be improved. On the other hand, if it exceeds 70%, work hardening occurs to the core, reducing the ductility of the alloy.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

W、Ni、Feの各原料粉末を心細配合原料と外周部配
合原料とそれぞれ別々に■型ミキサーで均一に混合して
、種々の配合の配合原料を調整した。次に冷間静水圧プ
レスを用い、2ton/cfflの圧力で外径18m、
長さ150閣の成形体を成形した。この成形に際して、
成形型の外周部には均一に混合した外周部配合原料を、
成形型の心部には均一に混合した心細配合原料を互いに
混ざり合うことなく二層に充填して加圧成形した。心部
と外周部とのW量の重量比率および直径の割合は表1に
示すように構成した。
Raw material powders of W, Ni, and Fe were uniformly mixed separately with a core blend raw material and an outer peripheral blend raw material using a ■-type mixer to prepare blended raw materials with various blends. Next, using a cold isostatic press, the outer diameter was 18 m at a pressure of 2 tons/cffl.
A molded body with a length of 150 mm was molded. During this molding,
The outer periphery of the mold is filled with uniformly mixed raw materials.
The core of the mold was filled with two layers of uniformly mixed raw materials without mixing with each other, and pressure molded. The weight ratio of the W amount and the diameter ratio between the core and the outer periphery were configured as shown in Table 1.

こうして得た成形体を、ブツシャ一連続焼結炉を用いて
H2気流中で焼結温度1500″C2焼結時間60分間
で液相焼結し、冷却した。次いで、真空度10−’To
 r rO下で1200°C,2時間の真空熱処理を行
ない、その後Arガスにより20℃/mjnの冷却速度
で冷却し複数個の被試験体を得た。更に、スェージング
加工の効果を確認するため、複数の被試験体に異なる加
工率でスェージング加工を施した。
The thus obtained compact was liquid-phase sintered in a H2 gas flow at a sintering temperature of 1500''C2 for 60 minutes using a continuous sintering furnace, and then cooled.
A vacuum heat treatment was performed at 1200°C for 2 hours under r rO, and then cooling was performed with Ar gas at a cooling rate of 20°C/mjn to obtain a plurality of specimens. Furthermore, in order to confirm the effect of swaging, multiple test specimens were subjected to swaging at different processing rates.

表1に被試験体の組成(心部と外周部とのW成分の重量
比率)とスェージング加工の加工率を示す。No、 1
〜10は本発明の実施例であり、これに対してNo、1
1〜16は比較例である。
Table 1 shows the composition of the test object (the weight ratio of the W component between the core and the outer periphery) and the processing rate of the swaging process. No. 1
-10 are examples of the present invention, whereas No. 1
1 to 16 are comparative examples.

このように形成した複数種の被試験体のそれぞれにつき
、加工後の状態、比重、抗折力、及び心部と外周部との
硬度(Hv3゜)を測定し、試験結果を表1に併記した
。なお、抗折力は被試験体を支点闇路H100III1
11で水平に支持し、その中間に反対側からアムスラー
万能試験機を用いて荷重を負荷する3点曲げ試験を行っ
て求めた値である。
For each of the multiple types of test specimens formed in this way, the state after processing, specific gravity, transverse rupture strength, and hardness (Hv3°) of the core and outer periphery were measured, and the test results are also listed in Table 1. did. In addition, the transverse rupture force is determined by using the test object as the fulcrum dark road H100III1.
This value was obtained by performing a three-point bending test in which the sample was supported horizontally at a point 11 and a load was applied from the opposite side in the middle using an Amsler universal testing machine.

表1より、本発明の実施例である階1〜10の複合焼結
タングステン合金は、比較例のものに比べて抗折力が格
段に大きく衝撃的な荷重に対する優れた抵抗力を有して
いることが明らかである。
From Table 1, the composite sintered tungsten alloys of grades 1 to 10, which are examples of the present invention, have significantly higher transverse rupture strengths and excellent resistance to impact loads than those of comparative examples. It is clear that there are

更に、高加工率のスェージング加工を施した場合は、顕
著な抗折力とHv500以上の硬度が得られ弾心材に好
適である。
Furthermore, when swaging processing is performed at a high processing rate, remarkable transverse rupture strength and hardness of Hv500 or more are obtained, making it suitable for elastic core materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、複合焼結タング
ステン合金の外周部のW含有量を心細のW含有量より高
めることにより、心細が外周部より高延性を有するもの
とし、また必要に応じて25〜70%のスェージング加
工を施し硬度をHv500以上にした。
As explained above, according to the present invention, by increasing the W content in the outer peripheral part of the composite sintered tungsten alloy than the W content in the thin core, the fine core has higher ductility than the outer peripheral part. Accordingly, a swaging process of 25 to 70% was performed to increase the hardness to Hv500 or higher.

Claims (2)

【特許請求の範囲】[Claims] (1)Wを主成分とし残部がNiとFeとからなる焼結
タングステン合金であって、心部のW含有量を93〜9
8wt%とし、外周部のW含有量を80〜92wt%と
した外周部が心部より高延性を有することを特徴とする
複合焼結タングステン合金。
(1) A sintered tungsten alloy consisting of W as the main component and the balance being Ni and Fe, with a core W content of 93 to 9
A composite sintered tungsten alloy characterized in that the outer peripheral part has higher ductility than the core part, and the W content in the outer peripheral part is 80 to 92 wt%.
(2)請求項(1)記載の複合焼結タングステン合金に
加工率25〜70%のスエージング加工を施してなるH
v500以上の硬度を有することを特徴とする複合焼結
タングステン合金。
(2) H obtained by subjecting the composite sintered tungsten alloy according to claim (1) to swaging processing at a processing rate of 25 to 70%.
A composite sintered tungsten alloy characterized by having a hardness of v500 or more.
JP14286690A 1990-05-31 1990-05-31 Complex sintered tungsten alloy Pending JPH0436410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14286690A JPH0436410A (en) 1990-05-31 1990-05-31 Complex sintered tungsten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14286690A JPH0436410A (en) 1990-05-31 1990-05-31 Complex sintered tungsten alloy

Publications (1)

Publication Number Publication Date
JPH0436410A true JPH0436410A (en) 1992-02-06

Family

ID=15325427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14286690A Pending JPH0436410A (en) 1990-05-31 1990-05-31 Complex sintered tungsten alloy

Country Status (1)

Country Link
JP (1) JPH0436410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333534A (en) * 1991-05-09 1992-11-20 Japan Steel Works Ltd:The Production of sintered w alloy
KR100375944B1 (en) * 2000-07-08 2003-03-10 한국과학기술원 Process for Making Oxide Dispersion Strengthened Tungsten Heavy Alloy by Mechanical Alloying
CN111394603A (en) * 2020-04-14 2020-07-10 东莞市金材五金有限公司 Production process method of powder metallurgy W-Ni-Fe tungsten-nickel-iron alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333534A (en) * 1991-05-09 1992-11-20 Japan Steel Works Ltd:The Production of sintered w alloy
KR100375944B1 (en) * 2000-07-08 2003-03-10 한국과학기술원 Process for Making Oxide Dispersion Strengthened Tungsten Heavy Alloy by Mechanical Alloying
CN111394603A (en) * 2020-04-14 2020-07-10 东莞市金材五金有限公司 Production process method of powder metallurgy W-Ni-Fe tungsten-nickel-iron alloy

Similar Documents

Publication Publication Date Title
AU606759B2 (en) Heavy tungsten-nickel-iron alloys with very high mecanical characteristics and process for the production of said alloys
KR920004706B1 (en) PROCESS FOR MAKING THE W-Ni-Fe ALLOY
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
CN108396199B (en) Cobalt-chromium-nickel alloy material and powder metallurgy preparation method thereof
JPH044362B2 (en)
CN116288027B (en) Low-density maraging steel and preparation method thereof
JPH0436410A (en) Complex sintered tungsten alloy
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
DE102004002714B3 (en) To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
US3472709A (en) Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
JPS62196306A (en) Production of double layer tungsten alloy
US4198234A (en) Sintered metal articles
KR20200075463A (en) Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel
JPH0382732A (en) Aluminum alloy sintered product and its manufacture
US3676084A (en) Refractory metal base alloy composites
US5306364A (en) High toughness tungsten based heavy alloy containing La and Ca. manufacturing thereof
CN118147502A (en) High-hardness niobium alloy and preparation method thereof
JPS6138257B2 (en)
JPH02122048A (en) Sintered tungsten alloy having high ductility at low temperature
KR101858795B1 (en) Light sintered body having high strength and toughness and manufacturing method thereof
CN115592129A (en) SLM forming method of SiC particle reinforced aluminum alloy composite material
JPH0362762B2 (en)
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JPH01312056A (en) Manufacture of sintered compact of alloy steel having high density and high strength