JPH02122048A - Sintered tungsten alloy having high ductility at low temperature - Google Patents

Sintered tungsten alloy having high ductility at low temperature

Info

Publication number
JPH02122048A
JPH02122048A JP27507288A JP27507288A JPH02122048A JP H02122048 A JPH02122048 A JP H02122048A JP 27507288 A JP27507288 A JP 27507288A JP 27507288 A JP27507288 A JP 27507288A JP H02122048 A JPH02122048 A JP H02122048A
Authority
JP
Japan
Prior art keywords
tungsten
alloy
sintered
ductility
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27507288A
Other languages
Japanese (ja)
Inventor
Kazuo Ebato
江波戸 和男
Nobuyoshi Okato
岡登 信義
Masao Nakai
中井 将雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP27507288A priority Critical patent/JPH02122048A/en
Publication of JPH02122048A publication Critical patent/JPH02122048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high-density sintered W alloy having high ductility at low temp. by specifying a composition consisting of W with a specific grain size as a principal component and the balance Ni and Fe and also specifying the compositional relations among the above components. CONSTITUTION:In a sintered W alloy having a composition consisting of, by weight, 85-97% W with <40mum grain size and the balance Ni and Fe, the quantitative relations among the above components are regulated so that they satisfy an inequality 5/6X-20<=100Y/(Y+Z)<=-5/12X+115 (where X, Y, and Z represent W, Ni, and Z contents(wt.%)), respectively. By this method, the sintered W alloy, in which Ni and Fe are rapidly infiltrated through the W grains at the time of sintering and act as binder and sufficient ductility is provided even at low temp. while maintaining prescribed high density, can be obtained. By using this alloy, projectiles, high-speed rotors, etc., free from fracture even it used in a cold district can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寒冷地で使用される高速回転体又は防護物を
貫通する発射体などに有用な、低温で高延性を有するタ
ングステン焼結合金に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a tungsten sintered alloy that has high ductility at low temperatures and is useful for high-speed rotating bodies used in cold regions or projectiles that penetrate protective objects. Regarding.

〔従来の技術〕[Conventional technology]

高速回転体は、高度の引張り強さ、ヤング率を有し、し
かも高速回転時に破壊しないような十分な靭性を有して
いなければならない。又、上記発射体は、高度の引張り
強さ、密度、硬さを有し、しかも発射体が防護物を完全
に貫通する前に破壊しないように十分の延性、靭性を有
することが必要である。
A high-speed rotating body must have high tensile strength and Young's modulus, and must also have sufficient toughness so as not to break during high-speed rotation. Additionally, the projectile must have a high degree of tensile strength, density, and hardness, as well as sufficient ductility and toughness so that the projectile does not break before completely penetrating the protective material. .

このような要求に応するべく高比重、高延性のタングス
テン合金が、特開昭62−185843号公報に開示さ
れている。このものは、タングステン粉末85〜97%
および残部がニッケルと鉄の粉末からなる混合粉末を1
〜4ton/c4の静水圧下で圧粉し、得られた圧粉体
を水素気流中で液相焼結した後、該焼結体を真空中にお
いて加熱後急冷する熱処理を施すという工程を経て製造
されたタングステン合金である。
In order to meet these demands, a tungsten alloy with high specific gravity and high ductility is disclosed in Japanese Patent Application Laid-Open No. 185843/1983. This stuff is tungsten powder 85-97%
and the balance is nickel and iron powder.
The powder is compacted under a hydrostatic pressure of ~4 ton/c4, and the resulting compact is liquid-phase sintered in a hydrogen stream.The sintered compact is heated in a vacuum and then rapidly cooled. It is a manufactured tungsten alloy.

上記焼結後に真空中で加熱・急、冷の熱処理を施すこと
により、焼結体中に過剰に固溶した水素が除去され、又
脆化の原因となる不純物の粒界析出を防止できるため高
延性が得られるとされている。
By applying heating, rapid, and cold heat treatment in a vacuum after the above sintering, excessive hydrogen solidly dissolved in the sintered body can be removed, and grain boundary precipitation of impurities that can cause embrittlement can be prevented. It is said that high ductility can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来のタングステン合金製の高速回転体や防護物を
貫通する発射体が、寒冷地において使用される場合は、
寒冷温度下にあっても十分高度の延性、じん性、引張り
強さ等が当然に必要とされる。
When the above-mentioned conventional tungsten alloy high-speed rotating bodies and projectiles that penetrate protective objects are used in cold regions,
Naturally, a sufficiently high degree of ductility, toughness, tensile strength, etc. is required even under cold temperatures.

しかしながら、従来のタングステン合金にあっては、常
温で十分な延性等を有していても、例えば−40°Cと
いう低温度では延性が十分ではなくり、高速回転時や防
護物貫通時に破壊してしまうという問題点があった。
However, even if conventional tungsten alloys have sufficient ductility at room temperature, they do not have sufficient ductility at temperatures as low as -40°C, and may break during high-speed rotation or when penetrating protective objects. There was a problem that the

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とする所は、低温度下でも十分な
延性を有するタングステン合金を提供し、寒冷地で使用
される発射体、高速回転体の製造を可能とすることにあ
る。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to provide a tungsten alloy that has sufficient ductility even at low temperatures, and to provide a tungsten alloy that can be used in projectiles used in cold regions. The purpose of this invention is to enable the manufacture of high-speed rotating bodies.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、粒径が40μm未
満のタングステン85〜97重量%、残部がニッケルと
鉄からなり、各成分の量的関係が次式で表わされること
を特徴とする低温で高延性を有するタングステン焼結合
金である。
In order to achieve the above object, the present invention provides a low-temperature method comprising 85 to 97% by weight of tungsten with a particle size of less than 40 μm, the balance being nickel and iron, and the quantitative relationship of each component is expressed by the following formula: It is a tungsten sintered alloy with high ductility.

但し、 X:タングステン含有量(重量%)Y:ニッケ
ル含有量(重量%) Z:鉄   含有量(重量%) 以下、更に詳細に説明する。
However, X: Tungsten content (wt%) Y: Nickel content (wt%) Z: Iron content (wt%) A more detailed explanation will be given below.

本発明は、W−Ni−Fe系焼結合金の成分間の量的関
係、及び合金中のタングステン粒径の大小が、当該合金
の低温度下での延性に影響する事実に注目してなされた
ものである。
The present invention was made by focusing on the fact that the quantitative relationship between the components of a W-Ni-Fe sintered alloy and the size of tungsten grains in the alloy affect the ductility of the alloy at low temperatures. It is something that

本発明のW−Ni−Fe系焼結合金の組成は、タングス
テンが85〜97重量%で、残部がニッケルと鉄である
。タングステンの重量%を増すことにより高い比重を得
ることができる。本発明のタングステン含有量は、所定
の高密度を保つために85重量%以上が必要である。8
5重重量を下回ると、液相焼結中に合金の変形がおこる
。一方又、タングステン含有量が97%を超えると、ニ
ッケルー鉄からなるバインダ相が少なくなり、所定のし
ん性が得られない。
The composition of the W-Ni-Fe based sintered alloy of the present invention is 85 to 97% by weight of tungsten, and the balance is nickel and iron. Higher specific gravity can be obtained by increasing the weight percentage of tungsten. The tungsten content of the present invention is required to be 85% by weight or more in order to maintain a predetermined high density. 8
Below 5 weights, deformation of the alloy occurs during liquid phase sintering. On the other hand, if the tungsten content exceeds 97%, the binder phase consisting of nickel-iron decreases, making it impossible to obtain the desired toughness.

タングステンの含有量が増す程、焼結の際、均一な組成
のバインダを迅速にタングステン粒界に満たしてやるこ
とが必要で、バインダであるニッケルー鉄焼結相の流動
性を高くする必要がある。
As the tungsten content increases, it is necessary to rapidly fill the tungsten grain boundaries with a binder of uniform composition during sintering, and it is necessary to increase the fluidity of the nickel-iron sintered phase that is the binder.

本発明の発明者らは、こうした点に配慮しつつ種々の合
金組成につき液相線、固相線を調べて、研究した。その
結果、成るタングステン憧χに対しニッケル量Y、鉄量
Zとの間に上記(1)弐の関係が成立するときに、液相
線、固相線の温度が最も低くなり、かつ固液共存相の領
域が狭くなることが判明した。
The inventors of the present invention conducted research by examining liquidus lines and solidus lines for various alloy compositions while taking these points into consideration. As a result, when the relationship (1) 2 above holds between the tungsten temperature χ, the nickel content Y, and the iron content Z, the liquidus and solidus temperatures are the lowest, and the solid-liquid It was found that the region of coexisting phases became narrower.

このことは、焼結を行ったときニッケル、鉄が迅速にタ
ングステン粒間に侵入し、バインダとして作用すること
を示している。
This shows that when sintering is performed, nickel and iron quickly penetrate between the tungsten grains and act as a binder.

又、このニッケルー鉄相は均一であるため低温の延性に
寄与する。
Moreover, since this nickel-iron phase is uniform, it contributes to low-temperature ductility.

タングステンの粒径は、焼結時の温度と時間により変化
し、焼結時間の経過と共にタングステン粒が成長する。
The grain size of tungsten changes depending on the temperature and time during sintering, and the tungsten grains grow as the sintering time progresses.

このタングステン粒の成長に伴い、粗大ポロシティが発
生し易い。この粗大ポロシティは、低温の延性に特に悪
影響を及ぼす。そのためタングステン粒は、その粒径を
40μm未満にすることが必要である。
Coarse porosity is likely to occur as the tungsten grains grow. This coarse porosity has a particularly negative effect on low temperature ductility. Therefore, it is necessary for the tungsten grains to have a grain size of less than 40 μm.

本発明の焼結合金の製造方法は特に規定されるものでは
ないが、次に示す方法で製造できる。
Although the method for producing the sintered alloy of the present invention is not particularly limited, it can be produced by the following method.

すなわち、まず高強度タングステン、ニッケル。Namely, first of all, high strength tungsten and nickel.

鉄の原料粉末の混合物を静水圧下で圧縮成形する。A mixture of raw iron powders is compression molded under hydrostatic pressure.

その加圧力は1〜4ton/c+a程度とするのが好ま
しい。l t o n /ci未満での成形では、圧縮
成形体の密度が小さすぎて、液相焼結を行っても2〜3
%の気孔が残留し、完全に緻密化できず、延性が落ちる
。また4ton/c+flを越える成形では、逆に密度
が高くなりすぎて圧縮成形体中にクローズドボアが生じ
、結局完全な緻密化が難しいからである。
The pressing force is preferably about 1 to 4 tons/c+a. When molding is performed at less than l ton /ci, the density of the compression molded product is too small, and even if liquid phase sintering is performed,
% of pores remain, complete densification is not possible, and ductility is reduced. On the other hand, when molding exceeds 4 ton/c+fl, the density becomes too high and closed bores occur in the compression molded product, making it difficult to achieve complete densification.

加圧に際して、通常の一軸圧縮ではなく静水圧力を用い
ると、四方から万遍なく加圧することにより合金の均質
性を高め、ひいては延性を高めることができる。
If hydrostatic pressure is used instead of the usual uniaxial compression during pressurization, the homogeneity of the alloy can be improved by applying pressure evenly from all sides, and the ductility can be improved.

液相焼結は、水素中で、ニッケル・鉄成分が液相を生成
する温度である1430°C以上で行うとよい。
The liquid phase sintering is preferably performed in hydrogen at a temperature of 1430° C. or higher, which is the temperature at which the nickel and iron components form a liquid phase.

焼結時間は完全に緻密化が進行するに必要な時間、すな
わち20分間以上を要し、しかして焼結中に粗大ポロシ
ティを生じさせないためには、60分間以下が望ましい
The sintering time requires a time necessary for complete densification, that is, 20 minutes or more, and is preferably 60 minutes or less in order to prevent coarse porosity from occurring during sintering.

本発明によれば、W−Ni−F系焼結合金において、タ
ングステン、ニッケル、鉄の成分比を上記(1)式の関
係を満足させる範囲とすることによって、低温で高延性
を付与することができた。
According to the present invention, in a W-Ni-F based sintered alloy, high ductility can be imparted at low temperatures by setting the component ratio of tungsten, nickel, and iron to a range that satisfies the relationship of equation (1) above. was completed.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

タングステン粉、ニッケル粉、鉄粉を種々の組成に配合
し、■型混合機を用いて混合した。得られた混合粉を2
ton/cfflの静水圧下に圧縮成形し、その成形体
を水素中で1530°Cで液相焼結した。焼結時間は複
数種とすることで、タングステン粒径を種々変化させた
焼結体を得た。つづいて焼結体を1200°Cで2時間
、真空中で熱処理した後に、引張り試験片に機械加工し
た。
Tungsten powder, nickel powder, and iron powder were blended into various compositions and mixed using a ■ type mixer. 2 of the obtained mixed powder
Compression molding was performed under hydrostatic pressure of ton/cffl, and the molded body was liquid-phase sintered at 1530°C in hydrogen. By varying the sintering time, sintered bodies with various tungsten particle sizes were obtained. Subsequently, the sintered body was heat treated in vacuum at 1200°C for 2 hours, and then machined into a tensile test piece.

この引張り試験片を−40’Cの低温度下で引張り言式
験した。
This tensile test piece was subjected to a tensile test at a low temperature of -40'C.

第1表に各試験片の成分組成、タングステン粒径、引張
り試験結果を示す。
Table 1 shows the component composition, tungsten particle size, and tensile test results of each test piece.

第1表より、成分組成比及びタングステン粒径が本実施
例の範囲内にあるタングステン焼結合金は、範囲外のも
のより優れた低温延性を示すことがわかる。
From Table 1, it can be seen that tungsten sintered alloys whose component composition ratios and tungsten particle diameters are within the ranges of this example exhibit superior low-temperature ductility than those outside the ranges.

但し*は、 十Z を満足するものをO1満足しないものを×とした。However, * is 10Z Those that satisfied the following were marked as O1, and those that did not satisfy were marked as ×.

(発明の効果〕 以上説明したように、本発明によれば、粒径が40μm
未満のタングステン85〜97重量%、残部がニッケル
と鉄からなり゛、各成分の量的関係が式 但し、 χ;タングステン含有量(重量%)Y:ニッケ
ル含有量(重量%) Z:鉄   含有量(重量%) で表わされるものとした。そのため、タングステン焼結
合金の低温における延性を著しく高めることができ、寒
冷地で使用される優れた発射体、高速回転体が得られる
という効果がある。
(Effects of the Invention) As explained above, according to the present invention, the particle size is 40 μm.
The quantitative relationship between each component is as follows: χ: Tungsten content (wt%) Y: Nickel content (wt%) Z: Iron content It was expressed as the amount (% by weight). Therefore, the ductility of the tungsten sintered alloy at low temperatures can be significantly increased, and there is an effect that excellent projectiles and high-speed rotating bodies that can be used in cold regions can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)粒径が40μm未満のタングステン85〜97重
量%、残部がニッケルと鉄からなり、各成分の量的関係
が次式で表わされることを特徴とする低温で高延性を有
するタングステン焼結合金。 (5/6)X−20≦100[Y/(Y+Z)]≦−(
5/12)X+115 但し、X:タングステン含有量(重量%) Y:ニッケル含有量(重量%) Z:鉄含有量(重量%)
(1) A tungsten sintered bond with high ductility at low temperatures, consisting of 85 to 97% by weight of tungsten with a particle size of less than 40 μm, the balance being nickel and iron, and the quantitative relationship of each component is expressed by the following formula: Money. (5/6)X-20≦100[Y/(Y+Z)]≦-(
5/12) X+115 However, X: Tungsten content (wt%) Y: Nickel content (wt%) Z: Iron content (wt%)
JP27507288A 1988-10-31 1988-10-31 Sintered tungsten alloy having high ductility at low temperature Pending JPH02122048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27507288A JPH02122048A (en) 1988-10-31 1988-10-31 Sintered tungsten alloy having high ductility at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27507288A JPH02122048A (en) 1988-10-31 1988-10-31 Sintered tungsten alloy having high ductility at low temperature

Publications (1)

Publication Number Publication Date
JPH02122048A true JPH02122048A (en) 1990-05-09

Family

ID=17550444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27507288A Pending JPH02122048A (en) 1988-10-31 1988-10-31 Sintered tungsten alloy having high ductility at low temperature

Country Status (1)

Country Link
JP (1) JPH02122048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084749A1 (en) * 2011-12-07 2013-06-13 株式会社アライドマテリアル Sintered tungsten alloy
EP3643429A1 (en) * 2018-10-23 2020-04-29 Bayerische Metallwerke GmbH Tungsten alloy product and method of preparation and use for a tungsten alloy product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913037A (en) * 1982-07-09 1984-01-23 Sumitomo Electric Ind Ltd Production of w-ni-fe sintered alloy
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913037A (en) * 1982-07-09 1984-01-23 Sumitomo Electric Ind Ltd Production of w-ni-fe sintered alloy
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084749A1 (en) * 2011-12-07 2013-06-13 株式会社アライドマテリアル Sintered tungsten alloy
JPWO2013084749A1 (en) * 2011-12-07 2015-04-27 株式会社アライドマテリアル Tungsten sintered alloy
EP3643429A1 (en) * 2018-10-23 2020-04-29 Bayerische Metallwerke GmbH Tungsten alloy product and method of preparation and use for a tungsten alloy product

Similar Documents

Publication Publication Date Title
TWI325896B (en) Iron-based powder combination
US4799955A (en) Soft composite metal powder and method to produce same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US3525610A (en) Preparation of cobalt-bonded tungsten carbide bodies
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
US4801330A (en) High strength, high hardness tungsten heavy alloys with molybdenum additions and method
JPH02197535A (en) Manufacture of intermetallic compound
US2617723A (en) Sintered high energy permanent magnets
JPH02122048A (en) Sintered tungsten alloy having high ductility at low temperature
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
Gurwell Solid-state sintering of tungsten heavy alloys
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
US4138252A (en) Cubic boron nitride in a binder and method for its production
JPS62196306A (en) Production of double layer tungsten alloy
US3985557A (en) Method of producing a high strength composite of zircon
JPS5891140A (en) High tensile metal alloy material and production thereof
US4986961A (en) Fine grain tungsten heavy alloys containing additives
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH0436410A (en) Complex sintered tungsten alloy
JPH0688153A (en) Production of sintered titanium alloy
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPS6331540B2 (en)
JPS62961B2 (en)
JPS6330391B2 (en)