TWI325896B - Iron-based powder combination - Google Patents

Iron-based powder combination Download PDF

Info

Publication number
TWI325896B
TWI325896B TW095100709A TW95100709A TWI325896B TW I325896 B TWI325896 B TW I325896B TW 095100709 A TW095100709 A TW 095100709A TW 95100709 A TW95100709 A TW 95100709A TW I325896 B TWI325896 B TW I325896B
Authority
TW
Taiwan
Prior art keywords
powder
iron
alloyed
weight
core particles
Prior art date
Application number
TW095100709A
Other languages
Chinese (zh)
Other versions
TW200632111A (en
Inventor
Mats Larsson
Original Assignee
Hoganas Ab Publ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas Ab Publ filed Critical Hoganas Ab Publ
Publication of TW200632111A publication Critical patent/TW200632111A/en
Application granted granted Critical
Publication of TWI325896B publication Critical patent/TWI325896B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

1325896 九、發明說明: 【發明所屬之技術領域】 本發明係關於鐵基粉末冶金組合物及利用該等組合製備 燒結粉末冶金件的方法。更具體言之,本發明係關二利用 該等組合物製.造包含銅、鎳及鉬的燒結件。 【先前技術】 銅、鎳及鉬長期以來就在粉末冶金領域中用作製造高強 度燒結件的合金元素。 燒結鐵基件可藉由混合合金元素與純鐵粉來製造。然 而,此可造成粉塵和分離問題,進而導致燒結件的尺寸及 機械性質的變化。為防止分離’可以將合金元素與鐵粉進 行預合金化或擴散合金化。在一種方法中,係對鉬與鐵粉 進行預合金化並隨後對該預合金化鐵粉與銅及鎳進行擴散 合金化,以自該等含有鉬、銅及鎳的鐵基粉末組合物製造 燒結件。 然而’很明顯,當藉由其中含有預合金化鉬及擴散合金 化銅和鎳之粉末製造燒結鐵基件時,燒結鐵基件中合金元 素的含量與所用擴散合金化粉末中合金元素的含量大體上 是相同的。為了使燒結件中合金元素的含量不同以產生不 同性質,必須使用具有不同合金元素含量的鐵基粉末。 本發明提供了-種方法’該方法不需要針對含有翻、銅 及錄合金元素的燒結鐵基件之每_期望化學組成製造一特 疋泰末。本發明的另—優點係提供一種用於將尺寸變化及 抗拉強度控制至預定值之方法。在一具體實施例中,尺寸 107873-990210.doc 1325896 變化與碳含量及密度無關。 【發明内容】 ,之,本發明係關於由三種不同的鐵基粉末構成的於 物。亥寻鐵基杨末中之第一種係由經鉬預 化並再經銅擴散合金化之 σ 鯽獷敢口金化之鐵核心顆粒組成;第二種 末係由經鉬預合金化並再經鋅 土 i螺擴放合金化之鐵核心顆粒組 成。第二種鐵基粉末基本上由經錮 站頂0隹化之鐵核心顆粒 組成。 本發明還關於兩種擴散合金化鐵基粉末。 一種本發明方法包括如下步驟:以預定量組合該三種鐵 基叙末,將石墨混合於該組合物中;壓實所得到的混合物; 燒結所得到的生坯。 ’ 本發明之另一態樣係關於一種可提供在燒結過程中具有 預疋強度和預定尺寸變化的燒結件的方法。 【實施方式】 S羊言之,本發明之鐵基粉末冶金組合物包括·· -一種鐵基粉末A,其基本上由經鉬預合金化之鐵核心顆粒 組成,其中該等核心顆粒經6-1 5重量%且較佳8_丨2重量%的 銅擴散合金化; -一種鐵基粉末B,其基本上由經鉬預合金化之鐵核心顆粒 組成’其中該等核心顆粒經4 5 - 8重量。/〇且較佳5 _ 7重量%的 鎳擴散合金化;及 -一種鐵基粉末C ’其基本上由經鉬預合金化之鐵核心組成。 顆粒中預合金化鉬在鐵基粉末A、B及C中的量可分別在 107873-990210.doc 1325896 0.3-2重量%之間且較佳在0.5與1.5重量%之間變化。在一個 實施例中,三種粉末皆用相同量的鉬實施預合金化。鉬量 超過2 °/〇並不會獲得與成本增加相應之強度增加。顧量低於 0.3%不會獲得顯著的強度效果。 擴散合金化於核心顆粒中的銅及鎳的量之上限分別為 15%的銅及12%的鎳。擴散合金化於核心顆粒中的銅及鎳的 量之下限應顯著高於燒結件中所需的量以達成本發明之優1325896 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to iron-based powder metallurgical compositions and methods of making sintered powder metallurgy articles using such combinations. More specifically, the present invention is based on the use of such compositions to produce sintered articles comprising copper, nickel and molybdenum. [Prior Art] Copper, nickel and molybdenum have long been used as alloying elements for the manufacture of high-strength sintered parts in the field of powder metallurgy. The sintered iron base member can be produced by mixing alloying elements with pure iron powder. However, this can cause dust and separation problems, which in turn lead to variations in the size and mechanical properties of the sintered part. In order to prevent separation, alloying elements and iron powder may be pre-alloyed or diffusion alloyed. In one method, molybdenum and iron powder are prealloyed and then the prealloyed iron powder is diffusion alloyed with copper and nickel to produce from the iron-based powder composition containing molybdenum, copper and nickel. Sintered parts. However, it is obvious that when a sintered iron base member is produced from a powder containing prealloyed molybdenum and diffusion alloyed copper and nickel, the content of alloying elements in the sintered iron base member and the content of alloying elements in the diffused alloyed powder used are It is basically the same. In order to make the content of alloying elements in the sintered parts different to produce different properties, it is necessary to use iron-based powders having different alloying element contents. The present invention provides a method which does not require the manufacture of a special ruthenium for each desired chemical composition of a sintered iron base member containing tumbling, copper and alloying elements. Another advantage of the present invention is to provide a method for controlling dimensional changes and tensile strength to a predetermined value. In one embodiment, the size 107873-990210.doc 1325896 is independent of carbon content and density. SUMMARY OF THE INVENTION The present invention relates to an object composed of three different iron-based powders. The first type of the iron-based poplar is composed of σ 鲫犷 口 口 金 金 core core which is pre-formed by molybdenum and then diffusion-alloyed by copper; the second type is pre-alloyed by molybdenum and then It is composed of zinc core i spiro expansion alloyed iron core particles. The second iron-based powder consists essentially of iron core particles that have been ruminated by the top of the crucible. The invention is also directed to two diffusion alloyed iron-based powders. A method of the present invention comprises the steps of combining the three iron bases in a predetermined amount, mixing graphite into the composition, compacting the resulting mixture, and sintering the resulting green body. Another aspect of the present invention relates to a method of providing a sintered member having a pre-twist strength and a predetermined dimensional change during sintering. [Embodiment] According to S Yang, the iron-based powder metallurgy composition of the present invention comprises an iron-based powder A consisting essentially of iron core particles pre-alloyed by molybdenum, wherein the core particles pass through 6 -1 5 wt% and preferably 8_丨2 wt% of copper diffusion alloying; - an iron-based powder B consisting essentially of iron core particles pre-alloyed by molybdenum, wherein the core particles are subjected to 4 5 - 8 weight. And preferably 5 to 7 wt% of nickel diffusion alloying; and - an iron-based powder C' which consists essentially of an iron core pre-alloyed with molybdenum. The amount of prealloyed molybdenum in the particles in the iron-based powders A, B and C may vary between 107873-990210.doc 1325896 0.3-2% by weight and preferably between 0.5 and 1.5% by weight, respectively. In one embodiment, all three powders are prealloyed with the same amount of molybdenum. A molybdenum content of more than 2 °/〇 does not result in an increase in strength corresponding to an increase in cost. A factor of less than 0.3% does not give a significant strength effect. The upper limit of the amount of copper and nickel diffused alloyed in the core particles is 15% copper and 12% nickel, respectively. The lower limit of the amount of copper and nickel diffused alloyed in the core particles should be significantly higher than the amount required in the sintered part to achieve the superiority of the present invention.

點。因此,從實用原因考慮,兩種鐵基粉末特別令人感興 趣.一種鐵基粉末基本上由經鉬預合金化之核心顆粒組成 並包括至少6%的擴散合金化於該等核心顆粒中的銅;另一 種鐵基粉末含有經鉬預合金化之核心顆粒並包括至少45% 的擴散合金化於該等核心顆粒中的鎳。 粉末A、B和C分別基本上由經銦預合金化之鐵顆粒組 成疋亦可將其他兀素(除了不可避免的雜質)預合金化於 該等顆粒中。這些元素可以是錄、銅、絡和猛。point. Therefore, for practical reasons, two iron-based powders are of particular interest. An iron-based powder consists essentially of core particles pre-alloyed with molybdenum and comprises at least 6% diffusion alloyed in the core particles. Copper; another iron-based powder containing core particles pre-alloyed with molybdenum and comprising at least 45% nickel diffused into the core particles. Powders A, B and C are each substantially composed of iron particles pre-alloyed by indium, and other alizarins (other than unavoidable impurities) may be pre-alloyed into the particles. These elements can be recorded, copper, complex and fierce.

、為了自本發明之粉末組合物製造燒結件,需要分別確定 L 及c的里並與達到預定強度所需量的石墨混合在 二起。所得到的混合物在壓實、燒結前可與其他添加劑混 二。混合於粉末組合物中之石墨量最高可達 0.3-0.7%。 干乂 1 系 ,/、:添加劑可選自由下列各物組成之群:潤滑劑 β、其他合金元辛、 料、機加工性增強劑。In order to produce a sintered part from the powder composition of the present invention, it is necessary to separately determine the inside of L and c and mix it with the amount of graphite required to reach a predetermined strength. The resulting mixture can be mixed with other additives prior to compaction and sintering. The amount of graphite mixed in the powder composition can be up to 0.3-0.7%. Cognac 1 series, /,: Additives can be selected from the following groups: lubricants β, other alloying elements, materials, machinability enhancers.

Ni。 個貫知例,粉末C基本不含〇^和 107873-9902l0.doc 1325896 較佳地,對粉末A, c之間的比例關 使燒結件中的 乂選擇’以 %,翻含量為〇32” 含量為…重量 重為0.3-2重置%,較佳為〇 51 5重量%。 在一個實施例中,銅含量為〇 2 2%, 鎳含量為。.、吾人意外地發現,在該 燒結過程中的尺寸變化與碳含量和燒結密度無闕。 為製造具有預定尺讀化和強度的燒結件 表(例如圖1-4)分別砝宗榼处> & 要根據圖 疋燒、·Ό件中銅、鎳與碳的量。妙 熟習此項技術者可分別確定粉末A、B&c的需要量。' 將粉末與石墨混合以獲得最終期望的碳含 .麵MPa的壓實壓力下壓實此粉末組 ^ 贈-赠下於保護氣體中將所 :、,在 _ 儿結10-60分 、.里。燒坯可以進行進一步後處理,例如 化、機加工等。 表面緻密 圖1-4所例示的圖形在如下條件下是有效的:壓實壓力為 嶋MPa,在⑽。C燒結3〇分鐘,燒結氣體為9〇%氮氣和㈣ 氫氣。 依據本發明’可以製造具有各種鉬、鋼及鎳含量的燒結 件。該目的可藉由使用三種不同粉末之組合達到,該 種粉末係以不同比例混合以得到一具有實際燒結件^需^ 學組成的粉末。 總之,本發明之特別優點在於可對燒結過程中的尺寸變 化和燒結件的強度加以控制。能夠控制尺寸變化交 黑占將 有利於使用現有的壓製工具。當製造燒結部件時,碳含量 107873-990210.doc 1325896 和密度的某種分散是不可避免的。藉由利用其尺寸變化與 碳含量和密度無關的組合’將會降低燒結後的尺寸分散, 從而減少隨後的機加工和機加工費用。 本發明係藉由如下非限制性實例說明: 實例1 本實例說明如何選擇具有約600 MPa之期望強度和三種 尺寸變化水平(-〇.1%、0.0%和+0.1%)之合金組合物。此分 別針對兩種碳含量水平實施,即〇.5% c和〇 3% c,如表丄 中之粉末組合物所示,其中較低的碳含量可獲得較佳的延 展性,如表2中所示。 本發明之粉末組合物係自如下粉末製備:粉末A,其中 10%的銅擴散合金化至經〇 85%的鉬預合金化之鐵基粉末 的表面;粉末B,其中5%的鎳擴散合金化至經〇 85%的鉬預 。金化之鐵基粉末的表面;及粉末c,經〇85%的鉬預合 化之鐵基粉末。 σ * 將。亥等粉末組合物與作為潤滑劑的〇 8%醯胺蠟及石墨混 合在一起以分別產生〇.3%和〇 5%的燒結碳含量。將所得到 的混合物壓實製成符合15〇 274〇的抗拉試驗試樣。 壓實壓力為600河?3,且燒結條件為:112〇。(:,3〇分鐘, 2/10 /〇 Η2。表2列出了本發明粉末組合物之其他機械 !·生貝很明顯’本發明之粉末組合物具有符合圖3的預定尺 寸變化。 107873-9902I0.doc 1325896 表1Ni. As a whole, powder C is substantially free of 〇^ and 107873-9902l0.doc 1325896. Preferably, the ratio between the powders A, c is such that the enthalpy in the sintered part is selected to be '%, and the turbulent content is 〇32'. The content is...the weight is 0.3-2% by weight, preferably 〇515% by weight. In one embodiment, the copper content is 〇22%, the nickel content is .., we have unexpectedly found that in the sintering The dimensional change in the process is inconsistent with the carbon content and the sintered density. To produce a sintered part table with predetermined sizing and strength (for example, Figure 1-4), respectively, 砝宗榼处&&; The amount of copper, nickel and carbon in the parts. Those skilled in the art can determine the amount of powder A, B & c separately. ' Mix the powder with graphite to obtain the final desired carbon content. Compaction pressure of surface MPa The compacted powder group is given up and given in the protective gas: ,, in the _ children's knot 10-60 minutes, in. The billet can be further post-treated, such as chemical processing, machining, etc. Surface dense map The patterns exemplified in 1-4 are effective under the following conditions: compaction pressure is 嶋MPa, and sintering is performed at (10) C. The sintering gas is 9% nitrogen and (4) hydrogen. According to the invention, sintered parts having various molybdenum, steel and nickel contents can be produced. This object can be achieved by using a combination of three different powders, which are different. The ratio is mixed to obtain a powder having the actual sintered composition. In summary, the special advantage of the present invention is that the dimensional change during sintering and the strength of the sintered part can be controlled. It is advantageous to be able to control the dimensional change. The use of existing pressing tools. When manufacturing sintered parts, a certain dispersion of carbon content 107873-990210.doc 1325896 and density is unavoidable. By using a combination of dimensional changes independent of carbon content and density 'will decrease The size after sintering is dispersed, thereby reducing subsequent machining and machining costs. The present invention is illustrated by the following non-limiting examples: Example 1 This example illustrates how to select a desired strength of about 600 MPa and three levels of dimensional change (-合金.1%, 0.0%, and +0.1%) of the alloy composition. This is implemented for two carbon content levels, namely 〇.5% c and 〇 3% c, as shown in the powder composition of the watch, wherein the lower carbon content gives better ductility, as shown in Table 2. The powder composition of the present invention is prepared from the following powder: Powder A 10% of the copper diffusion alloyed to the surface of the 85% molybdenum prealloyed iron-based powder; powder B, of which 5% of the nickel was diffusion alloyed to 85% of the molybdenum pretreated. The surface of the base powder; and the powder c, an iron-based powder pre-combined with 85% of molybdenum. σ * The powder composition such as hai and the 〇 醯 amide wax and graphite as a lubricant are separately mixed Produced 烧结.3% and 〇5% of the sintered carbon content. The resulting mixture was compacted into a tensile test specimen conforming to 15 〇 274 Torr. The compaction pressure is 600 rivers? 3, and the sintering conditions are: 112 〇. (:, 3 〇 minutes, 2/10 / 〇Η 2. Table 2 lists other machines of the powder composition of the present invention! • Raw shells are clearly 'the powder composition of the present invention has a predetermined dimensional change in accordance with Fig. 3. 107873- 9902I0.doc 1325896 Table 1

Cu Ni Mo C 燒結密度 尺寸變化 (%) (%) (%) (%) (β/cm3) (%) 粉末組合物(1) 0.6 1.3 0.83 0.5 7.08 -0.104 粉末組合物(2) 1.15 0.8 0.83 0.5 7.06 0.004 粉末組合物(3) 1.55 0.4 0.83 0.5 7.04 0.096 粉末組合物(4) 0.9 2.3 0.83 0.3 7.11 -0.096 粉末組合物(5) 1.3 2 0.83 0.3 7.09 0.007 粉末組合物(6) 1.6 1.7 0.83 0.3 7.07 0.095 表2 硬度 抗拉強度 屈服強度 楊氏模量 延伸率 HV10 (MPa) (MPa) (GPa) (%) 粉末組合物(1) 219 599 413 139 2.0 粉末組合物(2) 223 601 429 139 1.8 粉末組合物(3) 219 602 447 139 1.6 粉末組合物(4) 207 601 397 138 2.4 粉末組合物(5) 209 604 408 137 2.2 粉末組合物(6) 206 602 417 137 2.1 實例2 本實例闡釋了包括0.6% Cu和2% Ni的本發明粉末組合物 以及其尺寸變化與碳含量和燒結密度無關的一個具體實施 例(如表3所示)。將使用這些組合物得到的結果與使用 Distaloy AB(可賭自H0ganSs AB,瑞典)以及與使用一與本 發明粉末組合物具有相同化學組成但是其中經鉬預合金化 鐵基粉末的表面經銅和鎳擴散合金化之粉末(表3中命名為 "固定組合物”得到的結果加以比較。 本發明之粉末組合物係由如下粉末所製備:粉末A,其中 10%的銅擴散合金化至經0.85%的鉬預合金化之鐵基粉末 的表面;粉末B,其中5%的鎳擴散合金化至經0.85%的鉬預 合金化之鐵基粉末的表面;及粉末C,其由經0.85%的鉬預 合金化之鐵基粉末組成。 107873-990210.doc -10- 1325896 表3顯示一個具體實例,其中對由粉末A、粉末B和粉末C 構成的一混合物(其總含銅量為0.6%,總含錦量為2%,總含 鉬量為0.83%)與一種已知粉末Distaloy AB及一種經0.83% 的鉬預合金化且表面經0.6%的銅和2%的鎳擴散合金化的 鐵基粉末進行比較。如表3所揭示,與已知粉末Distaloy AB 或經銅和鎳擴散合金化的鐵基粉末相比,由本發明粉末組 合物製造的燒結樣本的尺寸變化基本上與碳含量和密度無 關。 將此等粉末組合物與作為潤滑劑的0.8%醯胺蠟及石墨混 合在一起以產生表3中的燒結碳含量。在表3所示的不同壓 實壓力下將所得混合物壓實製成符合ISO 2740的抗拉試驗 試樣。在90%氮氣和10%氫氣氣體中及1120°C下將此等抗拉 試驗試樣燒結30分鐘。表4列出了其他機械性質。 表3 粉末組合物(7)* 粉末組合物(8)* 粉末組合物(9)* 粉末組合物(10)* 粉末組合物(11)* 固定混合物(1) 固定混合物(2) 固定混合物(3) 固定混合物(4) 固定混合物(5) Distaloy AB (2) Distaloy AB (3) Distaloy AB (4) Distaloy AB (5) Distaloy AB (6) o 666666666655555 2 2 2 2 2 2 2 5 5 5 5 5 7 7 7 7 7 844531081954343 357552570^4^357^55 °·0·0·0·0·0·0·0·0·0·0·0·0·0·0· 83838383838383838383·5·5·5·5·5 0·0·0·0·0·0·0·0·0·°·οοοοο ooooooooooooooo ooooooooooooooo 666486664866648 ί 一 Jc V—--i ic·▲ n ¢-/1 Jt » \ . I w- 00721107200071 7·7·6·7·7·7·7·6·7·7·7·7·6·7· -0.117 -0.118 -0.117 -0.114 -0.129 -0.155 -0.147 -0.118 -0.134 -0.163 -0.012 -0.034 -0.056 -0.048 -0.027 壓實 燒結 尺寸 Cu Ni Mo C 壓力 密度 變化 (%) (%) (%) (%) (MPa) (g/cm3) (%) 物 合 (*)本發明之粉末 107873-990210.doc -11 - 1325896 表4 硬度 抗拉強度 HV10 (MPa) 屈服強度 (MPa) 揚氏模量 (GPa) 延伸率 (%) 粉末組合物(7)* 粉末組合物(8)* 粉末組合物(9)* 粉末組合物(10)* 粉末組合物(11)* 固定組合物(1) 固定組合物(2) 固定組合物(3) 固定組合物(4) 固定組合物(5) Distaloy AB (2) Distaloy AB (3) Distaloy AB (4) Distaloy AB (5) Distaloy AB (6) 3 6 4 1 4 3 0 9 8 0 0 8 0 4 7 3 - 1 - - - 6 8 16 0 12212 2 112 12 0 2 9 7 2 9 2 8 6 3 8 7 3 6 0 7 - 4 - - _ 6 12 2 5 56656 6 56656 1 3 5 3 0 7 3 2 7 4 1 93865 -3 - - - 393Φ1 3 4 4 3 4 4 3 3 4 3 4 •i · κ Z \ · I Jc (> 4 ^ ^ 3 3 3 1 4 -3 - - - 3 3 3 14 1111 11 1 11111 ^^1-13 1 - 2 8 2 10 8 3·2·1·1·2· (*)本發明之粉末組合物 【圖式簡單說明】 圖1 -4繪示了確定粉末冶金組合中的銅及鎳含量以獲得 ^ 預定的強度及尺寸變化。 - 12· 107873-990210.docCu Ni Mo C Sintering Density Dimensional Change (%) (%) (%) (%) (β/cm3) (%) Powder Composition (1) 0.6 1.3 0.83 0.5 7.08 -0.104 Powder Composition (2) 1.15 0.8 0.83 0.5 7.06 0.004 Powder composition (3) 1.55 0.4 0.83 0.5 7.04 0.096 Powder composition (4) 0.9 2.3 0.83 0.3 7.11 -0.096 Powder composition (5) 1.3 2 0.83 0.3 7.09 0.007 Powder composition (6) 1.6 1.7 0.83 0.3 7.07 0.095 Table 2 Hardness Tensile Strength Yield Strength Young's Modulus Elongation HV10 (MPa) (MPa) (GPa) (%) Powder Composition (1) 219 599 413 139 2.0 Powder Composition (2) 223 601 429 139 1.8 Powder composition (3) 219 602 447 139 1.6 Powder composition (4) 207 601 397 138 2.4 Powder composition (5) 209 604 408 137 2.2 Powder composition (6) 206 602 417 137 2.1 Example 2 Interpretation of this example A powder composition of the present invention comprising 0.6% Cu and 2% Ni and a specific embodiment in which the dimensional change is independent of the carbon content and the sintered density (as shown in Table 3). The results obtained using these compositions are the same as those using Distalo AB (commercially from H0ganSs AB, Sweden) and with the use of a powder composition of the invention, but in which the surface of the iron-based powder pre-alloyed by molybdenum is copper and The results obtained by the nickel diffusion alloyed powder (named "fixed composition in Table 3) are compared. The powder composition of the present invention is prepared from a powder A in which 10% of copper is diffusion-alloyed to 0.85% of the surface of the molybdenum prealloyed iron-based powder; powder B, wherein 5% of the nickel is diffusion alloyed to the surface of the 0.85% molybdenum prealloyed iron-based powder; and the powder C is 0.85% Composition of molybdenum prealloyed iron-based powder 107873-990210.doc -10- 1325896 Table 3 shows a specific example in which a mixture of powder A, powder B and powder C has a total copper content of 0.6. %, total content of 2%, total molybdenum content of 0.83%) alloyed with a known powder Distaloy AB and a 0.83% molybdenum pre-alloyed with 0.6% copper and 2% nickel diffusion. Iron-based powders are compared. As shown in Table 3 It is shown that the dimensional change of the sintered sample made from the powder composition of the present invention is substantially independent of the carbon content and density as compared to the known powder Distaloy AB or iron-based powder which is diffusion alloyed with copper and nickel. It was mixed with 0.8% amide wax and graphite as a lubricant to produce the sintered carbon content in Table 3. The resulting mixture was compacted to a tensile test in accordance with ISO 2740 under the different compaction pressures shown in Table 3. Samples. These tensile test specimens were sintered in 90% nitrogen and 10% hydrogen gas at 1120 ° C for 30 minutes. Table 4 lists other mechanical properties. Table 3 Powder Composition (7) * Powder Combination (8)* powder composition (9)* powder composition (10)* powder composition (11)* fixed mixture (1) fixed mixture (2) fixed mixture (3) fixed mixture (4) fixed mixture (5 Distaloy AB (2) Distaloy AB (3) Distaloy AB (4) Distaloy AB (5) Distaloy AB (6) o 666666666655555 2 2 2 2 2 2 2 5 5 5 5 5 7 7 7 7 7 844531081954343 357552570^4^ 357^55 °·0·0·0·0·0·0·0·0·0·0·0·0·0·0· 83838383838383838383·5·5·5·5·5 0· 0·0·0·0·0·0·0·0·°·οοοοο ooooooooooooooo ooooooooooooooo 666486664866648 ί 一Jc V—-i ic·▲ n ¢-/1 Jt » \ . I w- 00721107200071 7·7· 6·7·7·7·7·6·7·7·7·7·7·7·717 -0.118 -0.117 -0.114 -0.129 -0.155 -0.147 -0.118 -0.134 -0.163 -0.012 -0.034 -0.056 -0.048 -0.027 Compacted Sintering Size Cu Ni Mo C Pressure Density Change (%) (%) (%) (%) (MPa) (g/cm3) (%) Physical (*) Powder 107873-990210 of the Invention .doc -11 - 1325896 Table 4 Hardness tensile strength HV10 (MPa) Yield strength (MPa) Young's modulus (GPa) Elongation (%) Powder composition (7)* Powder composition (8)* Powder composition (9)* Powder composition (10)* Powder composition (11)* Fixing composition (1) Fixing composition (2) Fixing composition (3) Fixing composition (4) Fixing composition (5) Distaloy AB (2) Distaloy AB (3) Distaloy AB (4) Distaloy AB (5) Distaloy AB (6) 3 6 4 1 4 3 0 9 8 0 0 8 0 4 7 3 - 1 - - - 6 8 16 0 12212 2 112 12 0 2 9 7 2 9 2 8 6 3 8 7 3 6 0 7 - 4 - - _ 6 12 2 5 56656 6 56656 1 3 5 3 0 7 3 2 7 4 1 93865 -3 - - - 393Φ1 3 4 4 3 4 4 3 3 4 3 4 •i · κ Z \ · I Jc (> 4 ^ ^ 3 3 3 1 4 -3 - - - 3 3 3 14 1111 11 1 11111 ^^1-13 1 - 2 8 2 10 8 3·2·1·1·2· (*) Powder composition of the present invention [Simple description of the drawings] Figure 1-4 illustrates the determination of copper and nickel content in a powder metallurgical combination to obtain a predetermined strength and Size changes. - 12· 107873-990210.doc

Claims (1)

修正替換本 十、申請專利範圍: 1 ·—種粉末冶金組合物,其包括: -一鐵基粉末A,其基本由經钥預合金化的鐵核心顆粒 組成,其中粉末A之6-15重量%是擴散合金化至該等核心 顆粒的銅, -一鐵基粉末B ’其基本由經钥預合金化的鐵核心顆粒 組成’其中粉末B之4.5-8重量%是擴散合金化至該等核心 顆粒的鎳,及 _ 一鐵基粉末C ’其基本由經鉬預合金化的鐵顆粒組 成’粉末A,B與C係以比例混合以達成一混合粉末,其具 有用以提供一包含〇.3_2%重量%的鉬、0·2-2°/〇重量。/。的銅 及0.1-4。/。重量%的鎳的燒結件之一需求化學組成。 2.如3月求項1之粉末冶金組合物,其中粉末a中之銅含量係 8-12重量%。 3'如請求項1之粉末冶金組合物,其中粉末B中之鎳含量係 5·7重量%。 4·如s青求項1之粉末冶金組合物,其中各粉末a、B或C中之 鉬含量係0.5-1.5重量°/〇。 5.如请求項1之粉末冶金組合物,其中各粉末a、B或C中之 鉬含量基本相同。 6·如5青求項1之粉末冶金組合物,其中該組合中之銅含量在 〇·4-0·8重量%範圍内。 7·如明求項1之粉末冶金組合物,其進一步包括最高達1重 量%的石墨。 107873-990210.doc 1325896 8. 如請求項1之粉末冶金組合物,其進一步包括〇 3_〇7重量 %的石墨。 9. 如請求項1之粉末冶金組合物,包括選自由潤滑劑、黏結 劑、其他合金元素、硬質相材料、機器加工性增強劑組 成之群之其他添加劑。 10. 如請求項丨之粉末冶金組合物,其中粉末C基本上不含鋼 和錄。 11· 一種擴散合金化鐵基粉末,其基本由經〇3_2重量%的銷預 合金化的鐵核心顆粒組成,其中該粉末之6-15重量%是擴 散合金化至該等核心顆粒的銅。 12.如請求項1丨之擴散合金化鐵基粉末,其基本由經0^ $ 重量%的錮預合金化的鐵核心顆粒組成。 13_如請求項11之擴散合金化鐵基粉末,其基本由經〇7ι〇 重置%的翻預合金化的鐵核心顆粒組成。 14. 如請求項1丨之擴散合金化鐵基粉末,其中該粉末之8_12 重量%是擴散合金化至該等核心顆粒的銅。 15. —種擴散合金化鐵基粉末,其基本由經〇3_2重量%的銦預 合金化的鐵核心顆粒組成,其中該粉末之4 5_8重量%是擴 散合金化至該等核心顆粒的鎳。 16. 如請求項15之擴散合金化鐵基粉末,其基本由經0 5-卜$ 重量°/。的鉬預合金化的鐵核心顆粒組成。 17. 如請求項15之擴散合金化鐵基粉末,其基本由經 重量%的鉬預合金化的鐵核心顆粒組成。 18. 如請求項15之擴散合金化鐵基粉末,其中該粉末之5_7重 107873-990210.doc 1325896 量%是擴散合金化至該等核心顆粒的鎳。 19. 一種製備鐵基燒結件的方法,該鐵基燒結件包括〇夂2重 量%的顏、0.2-2重量%的銅和〇」_4重量%的鎮該方法包 含以下步驟: -混合如請求項H0中任一項之粉末a、b c與石墨以 獲得最終含碳需求量的該燒結件, -麼實該混合物以製成一壓實这, -燒結該坦。 20.如明求項1 9之製備鐵基燒結件的方法,該燒結件包括 0.5-1.5重量%的鉬。 2 1.如明求項19之製備鐵基燒結件的方法,該燒結件包括 0.4-0.8重量%的銅。 22. -種獲得在燒結過程中具有預定強度和預定尺寸變化的 燒結件的方法,其包括如下步驟: -測定該燒結件巾為料職強度和尺寸變化所需的 銅、錄、翻和碳的量; 測疋如叫求項丨至10中任一項之粉末a、^及c的相應 量; -將所測定量以獲得在該燒結件的中銘、錄、_及碳的 最終需求量的粉末A、B*C與石墨,和其他可選用之添加 劑混合; -壓實該混合物以製成粉末壓實體;及 _燒結該粉末壓實體。 107873-990210.docAmendment and replacement of this application, patent scope: 1 · a powder metallurgy composition, comprising: - an iron-based powder A, which is basically composed of key pre-alloyed iron core particles, of which 6-15 weight of powder A % is copper diffused alloyed to the core particles, - an iron-based powder B 'which consists essentially of key pre-alloyed iron core particles 'where 4.5-8 wt% of powder B is diffusion alloyed to these The core particles of nickel, and _ an iron-based powder C' which consists essentially of iron particles pre-alloyed by molybdenum 'powder A, B and C are mixed in proportion to achieve a mixed powder having a yttrium containing .3_2% by weight of molybdenum, 0·2-2°/〇 weight. /. Copper and 0.1-4. /. One of the sintered parts of the weight % nickel requires a chemical composition. 2. A powder metallurgy composition according to claim 1, wherein the copper content in the powder a is from 8 to 12% by weight. 3' The powder metallurgy composition of claim 1, wherein the nickel content in the powder B is 5.7 wt%. 4. A powder metallurgy composition according to the invention, wherein the content of molybdenum in each of the powders a, B or C is 0.5 to 1.5 wt. 5. The powder metallurgical composition of claim 1, wherein the molybdenum content of each of the powders a, B or C is substantially the same. 6. A powder metallurgy composition according to claim 5, wherein the copper content of the combination is in the range of 〇·4-0·8 wt%. 7. The powder metallurgy composition of claim 1, which further comprises up to 1% by weight of graphite. 107873-990210.doc 1325896 8. The powder metallurgy composition of claim 1, further comprising 〇3_〇7 wt% graphite. 9. The powder metallurgical composition of claim 1 comprising other additives selected from the group consisting of lubricants, binders, other alloying elements, hard phase materials, and machineability enhancers. 10. A powder metallurgy composition as claimed in claim 1, wherein the powder C is substantially free of steel and recorded. 11. A diffusion alloyed iron-based powder consisting essentially of iron core particles pre-alloyed with 3-2 wt% of a pin, wherein 6-15 wt% of the powder is copper that is diffusion alloyed to the core particles. 12. The diffusion alloyed iron-based powder of claim 1 which consists essentially of iron core particles pre-alloyed with 0% by weight of niobium. 13_ The diffusion alloyed iron-based powder of claim 11, which consists essentially of a pre-alloyed iron core particle that has been reset by 〇7ι〇. 14. The diffusion alloyed iron-based powder of claim 1 wherein 8 to 12% by weight of the powder is copper diffused alloyed to the core particles. 15. A diffusion alloyed iron-based powder consisting essentially of iron core particles pre-alloyed with 〇3-2 wt% of indium, wherein 4-5-8 wt% of the powder is nickel diffused alloyed to the core particles. 16. The diffusion alloyed iron-based powder of claim 15 which consists essentially of 0 5-b$ weight °/. The molybdenum prealloyed iron core particles are composed. 17. The diffusion alloyed iron-based powder of claim 15 which consists essentially of iron core particles pre-alloyed by weight percent molybdenum. 18. The diffusion alloyed iron-based powder of claim 15, wherein the powder has a 5-7 weight of 107873-990210.doc 1325896% of the nickel that is diffusion alloyed to the core particles. 19. A method of preparing an iron-based sintered part comprising 〇夂2% by weight of pigment, 0.2-2% by weight of copper and 〇4% by weight of the town. The method comprises the following steps: - mixing as requested Powder a, bc and graphite according to any one of items H0 to obtain the sintered component of the final carbon content requirement, the mixture is made to be compacted, and the tantalum is sintered. 20. The method of producing an iron-based sintered member according to the item 1, wherein the sintered member comprises 0.5 to 1.5% by weight of molybdenum. 2 1. The method of producing an iron-based sintered member according to item 19, which comprises 0.4 to 0.8% by weight of copper. 22. A method of obtaining a sintered part having a predetermined strength and a predetermined dimensional change during sintering, comprising the steps of: - determining copper, recording, turning and carbon required for the strength and dimensional change of the sintered piece The amount of the powders a, ^ and c of any one of the items 10 to 10; the amount to be measured to obtain the final demand for the inscription, recording, _ and carbon in the sintered part The amount of powder A, B*C is mixed with graphite, and other optional additives; - compacting the mixture to form a powder compact; and - sintering the powder compact. 107873-990210.doc
TW095100709A 2005-02-04 2006-01-09 Iron-based powder combination TWI325896B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0500261 2005-02-04

Publications (2)

Publication Number Publication Date
TW200632111A TW200632111A (en) 2006-09-16
TWI325896B true TWI325896B (en) 2010-06-11

Family

ID=36777515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095100709A TWI325896B (en) 2005-02-04 2006-01-09 Iron-based powder combination

Country Status (12)

Country Link
US (1) US20080089801A1 (en)
EP (1) EP1844172B1 (en)
JP (1) JP5108531B2 (en)
KR (1) KR100970796B1 (en)
CN (1) CN100532606C (en)
BR (1) BRPI0607356A2 (en)
CA (1) CA2595905A1 (en)
MX (1) MX2007009531A (en)
RU (1) RU2366537C2 (en)
TW (1) TWI325896B (en)
WO (1) WO2006083206A1 (en)
ZA (1) ZA200705662B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2424441T3 (en) 2007-07-17 2013-10-02 Höganäs Ab (Publ) Combination of iron-based powder and procedure to produce it
KR100992713B1 (en) 2007-10-04 2010-11-05 기아자동차주식회사 dead lock device for electric steering column lock system
CN102325915B (en) * 2008-12-23 2014-09-10 霍加纳斯股份有限公司 A method of producing diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
SE537893C2 (en) * 2011-04-06 2015-11-10 Hoeganaes Corp Vanadium-containing powder metallurgical powders and processes for their use
CN105344992A (en) * 2015-11-19 2016-02-24 苏州紫光伟业激光科技有限公司 Metallurgy powder composition
DE102018209682A1 (en) * 2018-06-15 2019-12-19 Mahle International Gmbh Process for the manufacture of a powder metallurgical product
JP2022505878A (en) 2018-10-26 2022-01-14 エリコン メテコ(ユーエス)インコーポレイテッド Corrosion-resistant and wear-resistant nickel-based alloy
RU2701232C1 (en) * 2018-12-12 2019-09-25 Публичное акционерное общество "Северсталь" Method of producing alloyed powder mixture for production of critical structural powder parts
EP3962693A1 (en) 2019-05-03 2022-03-09 Oerlikon Metco (US) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
KR20210029582A (en) 2019-09-06 2021-03-16 현대자동차주식회사 Iron-based prealloy powder, iron-based diffusion-bonded powder, and iron-based alloy powder for powder metallurgy using the same
KR20210104418A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 A outer ring for variable oil pump and manufacturing method thereof
CN116024483B (en) * 2022-12-30 2023-09-15 江苏群达机械科技有限公司 Low-alloy high-strength Cr-Mo steel material and preparation method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305608A (en) * 1970-03-18 1973-02-07
US4069044A (en) 1976-08-06 1978-01-17 Stanislaw Mocarski Method of producing a forged article from prealloyed-premixed water atomized ferrous alloy powder
JPS54104406A (en) * 1978-02-06 1979-08-16 Toyo Kohan Co Ltd Production of high temperature abrasion resistant sintered alloy steel
JPS5594401A (en) * 1979-01-09 1980-07-17 Daido Steel Co Ltd Stainless steel powder
JPS59215401A (en) * 1983-05-19 1984-12-05 Kawasaki Steel Corp Alloy steel powder for powder metallurgy and its production
JPS61130401A (en) * 1984-11-28 1986-06-18 Kawasaki Steel Corp Alloy steel powder for powder metallurgy and its production
JPS61183444A (en) * 1985-02-08 1986-08-16 Toyota Motor Corp High strength sintered alloy and its manufacture
JPS61253342A (en) * 1985-04-30 1986-11-11 Fuji Electric Co Ltd Manufacture of sintered stainless steel
JPH0745683B2 (en) * 1987-09-30 1995-05-17 川崎製鉄株式会社 Composite steel powder with excellent compressibility and homogeneity
JPH01165702A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Manufacture of alloy steel sintered compact having high density and high strength
JPH01312056A (en) * 1988-06-09 1989-12-15 Kawasaki Steel Corp Manufacture of sintered compact of alloy steel having high density and high strength
DE3942091C1 (en) 1989-12-20 1991-08-14 Etablissement Supervis, Vaduz, Li
JPH04297502A (en) * 1991-03-25 1992-10-21 Kawasaki Steel Corp Manufacture of ni-containing ferrous sintered material
SE9101819D0 (en) * 1991-06-12 1991-06-12 Hoeganaes Ab ANNUAL BASED POWDER COMPOSITION WHICH SINCERATES GOOD FORM STABILITY AFTER SINTERING
JPH0681001A (en) * 1992-09-02 1994-03-22 Kawasaki Steel Corp Alloy steel powder
JP3351844B2 (en) * 1993-03-01 2002-12-03 川崎製鉄株式会社 Alloy steel powder for iron-based sintered material and method for producing the same
JPH07233402A (en) * 1993-12-28 1995-09-05 Kawasaki Steel Corp Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JP3446322B2 (en) * 1994-08-03 2003-09-16 Jfeスチール株式会社 Alloy steel powder for powder metallurgy
JP3475545B2 (en) * 1995-02-08 2003-12-08 Jfeスチール株式会社 Mixed steel powder for powder metallurgy and sintering material containing it
FR2784691B1 (en) * 1998-10-16 2000-12-29 Eurotungstene Poudres MICRONIC PREALLY METALLIC POWDER BASED ON 3D TRANSITIONAL METALS
SE0201824D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder
SE0203135D0 (en) 2002-10-23 2002-10-23 Hoeganaes Ab Dimensional control
JP2004292861A (en) * 2003-03-26 2004-10-21 Jfe Steel Kk Iron-based powdery mixture for powder metallurgy, and its production method

Also Published As

Publication number Publication date
RU2366537C2 (en) 2009-09-10
EP1844172A4 (en) 2010-07-21
WO2006083206A1 (en) 2006-08-10
US20080089801A1 (en) 2008-04-17
KR100970796B1 (en) 2010-07-16
BRPI0607356A2 (en) 2009-09-01
JP5108531B2 (en) 2012-12-26
EP1844172A1 (en) 2007-10-17
MX2007009531A (en) 2008-02-12
EP1844172B1 (en) 2019-07-03
CN101111617A (en) 2008-01-23
CA2595905A1 (en) 2006-08-10
RU2007133101A (en) 2009-03-10
CN100532606C (en) 2009-08-26
ZA200705662B (en) 2009-01-28
JP2008528811A (en) 2008-07-31
KR20070099690A (en) 2007-10-09
TW200632111A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
TWI325896B (en) Iron-based powder combination
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP5613049B2 (en) Iron-based composite powder
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP7395635B2 (en) iron-based powder
CN106457380A (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
JPH06510331A (en) Iron-based powder composition with good dimensional stability after sintering
RU2327546C2 (en) Method of regulating dimensional change at sintering of iron based powder compund
WO2019111834A1 (en) Partial diffusion alloyed steel powder
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JPS5819403A (en) Manufacture of sintered material having cast iron structure
JP7165696B2 (en) Use of iron-based prealloy powder for powder metallurgy as raw material powder for manufacturing sintered and forged members, diffusion bonding powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and method for manufacturing sintered and forged members
WO2018232813A1 (en) Mixed powder for use with electric tool and preparation method therefor
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3346310B2 (en) High strength iron-based sintered alloy
US8636948B2 (en) Methods of preparing high density powder metallurgy parts by iron based infiltration
JPH101756A (en) Ferrous sintered sliding member and its production
JPH11302804A (en) Synchronizer ring made of iron-base sintered alloy
JP2000087195A (en) High strength iron-base sintered alloy and its production
JPS6237709B2 (en)
JPH11286755A (en) Sintered piston ring and its production

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees