JP2004292861A - Iron-based powdery mixture for powder metallurgy, and its production method - Google Patents

Iron-based powdery mixture for powder metallurgy, and its production method Download PDF

Info

Publication number
JP2004292861A
JP2004292861A JP2003084734A JP2003084734A JP2004292861A JP 2004292861 A JP2004292861 A JP 2004292861A JP 2003084734 A JP2003084734 A JP 2003084734A JP 2003084734 A JP2003084734 A JP 2003084734A JP 2004292861 A JP2004292861 A JP 2004292861A
Authority
JP
Japan
Prior art keywords
powder
iron
mixed
alloy component
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084734A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kohida
智之 小比田
Akio Sonobe
秋夫 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003084734A priority Critical patent/JP2004292861A/en
Publication of JP2004292861A publication Critical patent/JP2004292861A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new iron-based powdery mixture for powder metallurgy provided with powder performance which does not damage the mechanical properties of a sintered compact to be made into a product, and in which fluidity and packing properties into a mold are improved. <P>SOLUTION: The iron-based powder for powder metallurgy is obtained by mixing 20 to 80% iron-based powder and a 0.2 to 1.5% lubricant, and the balance alloy component-stuck iron-based powder. The iron-based powder is produced by mixing the iron-based powder and the alloy component powder under heating, and sticking the alloy component powder to the iron-based powder, or performing the sticking via a solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、粉末冶金用鉄基混合粉、特に圧粉体の寸法精度に影響を与えることなしに、粉体の流動性を改善した、成形工程の安定性を実現する粉末冶金用鉄基混合粉およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、粉末冶金技術の進歩により、高い寸法精度の下に複雑な形状の部品をニアネット形状に製造することが可能になっている。その典型例である、鉄系粉末冶金製品は、鉄基粉末に、銅粉や黒鉛粉などの合金成分用粉末と、ステアリン酸亜鉛やエチレンビスアミド等の潤滑剤とを、V型ミキサーやダブルコーンミキサー等で混合した鉄基混合粉を金型に充填したのち加圧成形し、ついで得られた圧粉体に焼結処理を施して焼結体とした後、必要に応じて切削加工を経て製造される。ここで、副原料である銅粉や黒鉛粉の見掛密度並びに粒度分布が、主原料である鉄基粉末と異なるため、焼結前の取り扱い時に偏析して、粉体特性および原料配合の変動をまねく結果、得られる焼結体は、寸法精度および機械的特性がばらついたものとなる。
【0003】
このため、副原料である潤滑剤の一部を、加熱もしくは溶剤に溶解させて、鉄基粉末の表面に均一に付着させて、取り扱い時の偏析を抑制する改善策が一般的に行われている(例えば、特許文献1)。
【0004】
【特許文献1】
特開平5−148505号公報
【0005】
【発明が解決しようとする課題】
しかしながら、この改善策は、潤滑機能を有する黒鉛や潤滑剤の自由粒子を減少することに繋がるため、混合粉全体の流動性が悪化し、成形時の金型への混合粉充填量のばらつきを助長し、ひいては圧粉体の寸法精度の低下をまねく等、二次的なばらつきを助長する要因となっていた。
【0006】
なお、黒鉛や銅粉等の副原料を付着処理していない混合粉は、流動性、そして金型への充填性に関して良好な特性を示すが、上述した通り偏析の問題があり、これらは二律背反の関係にあったのである。
【0007】
この発明は、上記した従来技術の問題を解決し、製品となる焼結体の機械的特性を損なわない粉体性能をそなえ、かつ流動性並びに金型への充填性を向上した、新規な粉末冶金用鉄基混合粉を、その製造方法に併せて提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明の要旨は、次の通りである。
(1)鉄基粉末に合金成分粉末を付着させた合金成分付着鉄基粉末と、鉄基粉末および潤滑剤とから成る粉末冶金用鉄基混合粉。
【0009】
(2)鉄基粉末:20〜80mass%、潤滑剤:0.2〜1.5mass%および残部:合金成分付着鉄基粉末の混合比を有する上記(1)に記載の粉末冶金用鉄基混合粉。
【0010】
(3)鉄基粉末に合金成分粉末を付着させたのち、得られた合金成分付着鉄基粉末に、鉄基粉末および潤滑剤を混合する粉末冶金用鉄基混合粉の製造方法。
【0011】
(4)鉄基粉末と合金成分粉末とを加熱混合して鉄基粉末に合金成分粉末を付着させる上記(3)に記載の粉末冶金用鉄基混合粉の製造方法。
【0012】
(5)溶剤を介して、鉄基粉末に合金成分粉末を付着させる上記(3)に記載の粉末冶金用鉄基混合粉の製造方法。
【0013】
【発明の実施の形態】
次に、この発明を導くに到った実験結果について、詳しく説明する。
鉄基粉末としてアトマイズ鉄粉を用い、この鉄粉に、平均粒径5μm の黒鉛粉末および粒径45μm 以下の粒子を80mass%程度含有する電解銅粉と、潤滑剤となるステアリン酸亜鉛とを加熱混合機に装入し、均一となるように加熱混合して、合金成分付着鉄基粉末とした。次いで、合金成分付着鉄基粉末の冷却後に、前記アトマイズ鉄粉から取り分けておいた鉄粉(追加鉄粉)とステアリン酸亜鉛とを、さらに合金成分付着鉄基粉末に装入し、均一となるよう加熱せずに混合し、最終的な鉄基混合粉を得た。ここでの配合比は、表1に示すとおりである。
【0014】
【表1】

Figure 2004292861
【0015】
かくして得られた鉄基混合粉について、流動度(JIS Z2502に準拠)および見掛密度(JIS Z2504に準拠)を測定した。また、図1に示すように、これら鉄基混合粉Kを一辺が10cmで底面が開放された粉箱に装入して、この粉箱を平面上で200mm/sにて1秒間水平移動させ、同平面に設けた定形スリット(開口幅1mm及び長さ20mm)S上に1秒間停滞させ、その際、該スリットSの下に設けたキャビティC内へスリットSを介して充填される、混合粉Kの量を測定し、充填性を評価した。
【0016】
さらに、これら鉄基混合粉を金型に装入し、圧粉密度が6.85Mg/mとなるように圧縮成形し、外径35mm、内径14mmおよび高さ10mmの圧壊試験用リング状試験片とした。次いで、これら試験片をRXガス雰囲気中でメッシュベルト炉を使用し1130℃×20min焼結した。これら焼結試験片を用いて、金型寸法に対する、焼結体外径の寸法変化率の算出および圧壊試験(JIS Z2507に準拠)を行った。図2に流動度、図3に見掛密度、図4に上記充填性評価結果、図5に焼結体外径の寸法変化率および図6に圧壊強度を示す。各図とも、冷却混合時の追加鉄粉量にて、整理した。
【0017】
図2から、冷却混合時の追加鉄粉量が増加するに従って、流動性が向上することがわかる。
また、図3に示すとおり、見掛密度は、追加鉄粉の配合率が0〜75mass%ではほとんど変化しないが、配合率が75mass%をこえると低下し始める。ここで、見掛密度は、工業的には成形時金型への自然充填の評価指標となるものである。また、見掛密度が変化(低下)すると、金型の充填深さを調整する必要がある等、金型設計にも関係する評価指標となるものである。
【0018】
次に、金型を想定した充填性の評価は、図4に示すとおり、追加鉄粉配合率の増加にしたがい、キャビティへ流出した粉体量が、本来の見掛密度に漸近しており、追加鉄粉配合率の増加に従って充填性は向上することがわかる。なお、ここでいう充填密度とは、充填性評価試験を示す図1において、キャビティへ充填された粉体の質量を、キャビティ体積で割ったものである。
【0019】
金型外径寸法については、図5に示すとおり、変化をきたすことがわかる。すなわち、追加鉄粉配合率0〜80mass%では寸法変化は認められない。つまり、配合No.▲1▼の従来粉を使用して焼結した場合と、配合No.▲2▼〜▲4▼の混合粉を用いて焼結した場合とでは、寸法変化はみられない。したがって、配合No.▲2▼〜▲4▼の配合比を保つかぎり、外径寸法調整は不要であり、新たな金型を製造する必要がない。
【0020】
さらに、図6に示すように、圧壊強度には、有意性は認められなかった。つまり、鉄粉を追加配合する処置を行っても、圧壊強度の低下がないこと、換言すると、偏析については、全ての鉄粉を合金成分付着鉄基粉末としたもの(追加鉄粉配合率:0mass%)との差がないことが判明した。
【0021】
以上の結果から、粉末冶金用鉄基混合粉として、その配合比が既に固定化されている場合でも、まず合金成分付着鉄基粉末に鉄基粉末を加える操作を行うことによって、流動性並びに金型充填性を改善できることが判明した。
【0022】
さらに、粉末冶金用鉄基混合粉に混合する追加鉄基粉末の比は、図3および4に示した結果から、全体に対して20〜80mass%、より好ましくは25〜75mass%とすることが有利であることも判明した。特に、図3に示したように、配合率が75mass%をこえると見掛密度が低下し始めることから、鉄粉の配合範囲としては、75mass%以下が望ましい。
【0023】
すなわち、鉄基粉末の比が20mass%未満では、流動性および充填性の改善効果が得られない。一方、80mass%をこえると、焼結時の寸法変化率に差異が生じる。すなわち、新たな金型が必要となる。
【0024】
なお、追加する鉄基粉末には、合金成分付着鉄基粉末と同一か、もしくは同等の粒度分布および見掛密度を有しているものを用いることにより、混合後に鉄基粉末の偏析並びに分離を回避できる。さらに、この鉄基粉末と合金成分付着前の鉄基粉末とは、同一の原料粉であることが望ましい
【0025】
ここで、この発明の粉末冶金用混合粉における鉄基粉末としては、アトマイズ鉄粉および還元鉄粉等の純鉄粉の他、鉄粉に代えて合金元素を予め合金化した鋼粉(完全合金化鋼粉)、あるいは合金元素が部分的に拡散接合された鋼粉(部分合金化鋼粉)のいずれも、好適に用いることができる。
【0026】
一方、粉末冶金用混合粉に含有させる合金成分粉末としては、黒鉛粉、銅粉、Ni基粉末、Cr基粉末、Mo基粉末および鉄−燐合金粉末の他、機械的特性向上を目的として添加される合金粉末を、単独または複合して使用することができる。
【0027】
さらに、鉄基混合粉に混入する潤滑剤としては、ステアリン酸亜鉛、ステアリン酸カリウム、ステアリン酸リチウム、ヒドロキシステアリン酸リチウム等の金属石鹸およびその誘導体、あるいはオイレン酸、パルチミン酸等の脂肪酸、あるいはステアリン酸アミド、ステアリン酸ビスアミド、セバシン酸ビスアミド等のエチレンジアミンと脂肪酸との共重合生成物、あるいはポリオレフィン等の熱可塑性樹脂粉末から選ばれる1種または2種以上を用いることができる。
【0028】
なお、潤滑剤の配合量は鉄基粉末および合金成分粉末の合計量に対して、0.2〜1.5mass%とすることが好ましい。すなわち、潤滑剤の配合量が0.2mass%未満では、金型との摩擦が著しく増加して抜出力が増大する結果、成形体の欠損が発生したり、金型寿命が低下する。一方、1.5mass%を超えると、成形体密度および焼結体密度の低下をきたす。
【0029】
この発明の粉末冶金用混合粉は、上記した鉄基粉末に、合金成分粉末、そして場合によってはさらに潤滑剤を添加して、Vブレンダやダブルコーンブレンダ等の通常公知の混合機にて加熱混合した後冷却して得た合金成分付着鉄基粉末、あるいは鉄基粉末に溶剤を介して合金成分粉末を付着して得た合金成分付着鉄基粉末に、さらに鉄基粉末並びに潤滑剤を混合することにより、製造できる。以上の手法によって製造された粉末冶金用混合粉は、従来に比し、より偏析が少なくかつ流動性に優れたものとなるが、さらに偏析を防止する処理として、次の方法を採用できる。
【0030】
すなわち、鉄基粉末、合金成分粉末および/または、MnS粉末、BN粉末、CaF粉末およびヒドロキシアパタイト等の切削改善用粉末を、さらに結合材の作用を有する特定の有機化合物の1種または2種以上とともに混合し、ついで少なくとも有機化合物のうち最低融点を有する化合物の最低融点+10℃以上に加熱して、該有機化合物のうちの少なくとも一種を溶融させた後、冷却固化して、合金成分粉末を鉄基粉末の表面に固着させることが好ましい。特定の有機化合物としては、高級脂肪酸、高級脂肪酸アミド、またはワックスが好ましい。高級脂肪酸もしくは高級脂肪酸アミドとしては、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、エチレンビスアミド、エチレンビスステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドの溶融化合物等を例示できる。
【0031】
【実施例】
表2に示す配合仕様に従って、粉末冶金用混合粉を製造した。すなわち、混合粉No.2〜4は、鉄基粉末と、合金成分粉末および潤滑剤とを加熱混合機に装入し、均一となるように加熱混合して、合金成分付着鉄基粉末を作製し、次いで合金成分付着鉄基粉末を冷却後に、同じ鉄基粉末から取り分けておいた鉄基粉末および潤滑剤を、さらに合金成分付着鉄基粉末に装入し、均一となるよう加熱せずに混合し、最終的な混合粉を得た。
また、混合粉No.1は、合金成分付着鉄基粉末が95%以上である、従来の混合粉であり、混合粉No.5は、追加鉄粉をほとんど含まない比較例である。
【0032】
【表2】
Figure 2004292861
【0033】
かくして得られた混合粉について、流動度、見掛密度、充填性、焼結体外径の寸法変化率および圧壊強度を、上述したように評価した。その結果を、表3に示す。
【0034】
【表3】
Figure 2004292861
【0035】
【発明の効果】
この発明によれば、製品となる焼結体の機械的特性を損なわない粉体性能をそなえ、かつ流動性並びに金型への充填性を向上した、新規な粉末冶金用鉄基混合粉を提供することができる。
【図面の簡単な説明】
【図1】充填性の評価方法を説明する図である。
【図2】追加鉄粉量と混合粉の流動度との関係を示す図である。
【図3】追加鉄粉量と混合粉の見掛密度との関係を示す図である。
【図4】追加鉄粉量と混合粉の充填性との関係を示す図である。
【図5】追加鉄粉量と焼結体外径の寸法変化率との関係を示す図である。
【図6】追加鉄粉量と圧壊強度との関係を示す図である。
【符号の説明】
K 混合粉
S スリット
C キャビティ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an iron-based mixed powder for powder metallurgy, in particular, to improve the fluidity of the powder without affecting the dimensional accuracy of the compact, and to realize the stability of the molding process. The present invention relates to a powder and a method for producing the powder.
[0002]
[Prior art]
In recent years, advances in powder metallurgy have made it possible to manufacture components having a complicated shape in a near-net shape with high dimensional accuracy. A typical example is an iron-based powder metallurgy product, in which a powder for an alloy component such as copper powder or graphite powder and a lubricant such as zinc stearate or ethylenebisamide are added to an iron-based powder by using a V-type mixer or a double cone. After filling the mold with the iron-based mixed powder mixed with a mixer etc., press molding, then sintering the obtained green compact to form a sintered body, and if necessary, through cutting processing Manufactured. Here, since the apparent density and particle size distribution of the copper powder and graphite powder as the auxiliary raw materials are different from those of the iron-based powder as the main raw material, they segregate during handling before sintering, and the powder characteristics and the raw material composition change. As a result, the resulting sintered body has dimensional accuracy and mechanical characteristics that vary.
[0003]
For this reason, a part of the auxiliary raw material lubricant is heated or dissolved in a solvent, and is uniformly adhered to the surface of the iron-based powder. (For example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-5-148505 [0005]
[Problems to be solved by the invention]
However, this remedy leads to a reduction in free particles of graphite and lubricant having a lubricating function, so that the fluidity of the whole mixed powder is deteriorated and the variation in the mixed powder filling amount in a mold at the time of molding is reduced. This has been a factor contributing to secondary variations, for example, contributing to a reduction in the dimensional accuracy of the green compact.
[0006]
In addition, the mixed powder to which the auxiliary materials such as graphite and copper powder are not adhered exhibits good characteristics in terms of fluidity and filling in a mold, but has the problem of segregation as described above, and these are contradictory. It was in a relationship.
[0007]
The present invention solves the above-mentioned problems of the prior art, and has a powder performance that does not impair the mechanical properties of a sintered body that is a product, and has improved fluidity and filling properties into a mold, and a novel powder. It is an object of the present invention to provide an iron-based mixed powder for metallurgy in accordance with a production method thereof.
[0008]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) An iron-based mixed powder for powder metallurgy, comprising an iron-based powder obtained by adhering an alloy-based powder to an iron-based powder, an iron-based powder and a lubricant.
[0009]
(2) Iron-base powder for powder metallurgy according to (1) above, which has a mixing ratio of iron-based powder: 20 to 80 mass%, lubricant: 0.2 to 1.5 mass%, and the balance: iron component-adhered powder. powder.
[0010]
(3) A method for producing an iron-based mixed powder for powder metallurgy, in which an iron-based powder and a lubricant are mixed with the obtained alloy-based powder having an alloy component adhered thereto after the alloy-based powder is adhered to the iron-based powder.
[0011]
(4) The method for producing an iron-based mixed powder for powder metallurgy according to (3), wherein the iron-based powder and the alloy component powder are heated and mixed to adhere the alloy component powder to the iron-based powder.
[0012]
(5) The method for producing an iron-based mixed powder for powder metallurgy according to (3), wherein the alloy component powder is attached to the iron-based powder via a solvent.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the experimental results that led to the present invention will be described in detail.
Atomized iron powder was used as the iron-based powder, and the iron powder was heated with graphite powder having an average particle size of 5 μm, electrolytic copper powder containing particles having a particle size of 45 μm or less at about 80 mass%, and zinc stearate as a lubricant. The mixture was charged into a mixer, and heated and mixed so as to be uniform to obtain an iron base powder having an alloy component attached thereto. Next, after cooling the alloy component-attached iron-based powder, the iron powder (additional iron powder) and zinc stearate, which have been separated from the atomized iron powder, are further charged into the alloy component-attached iron-based powder and become uniform. The mixture was mixed without heating to obtain the final iron-based mixed powder. The compounding ratio here is as shown in Table 1.
[0014]
[Table 1]
Figure 2004292861
[0015]
With respect to the iron-based mixed powder thus obtained, the fluidity (according to JIS Z2502) and the apparent density (according to JIS Z2504) were measured. Also, as shown in FIG. 1, the iron-based mixed powder K was charged into a powder box having a side of 10 cm and an open bottom, and the powder box was horizontally moved at 200 mm / s for 1 second on a plane. Mixing for 1 second on a fixed slit (opening width 1 mm and length 20 mm) S provided on the same plane and filling the cavity C provided below the slit S through the slit S The amount of the powder K was measured, and the filling property was evaluated.
[0016]
Further, these iron-based mixed powders were charged into a mold, compression-molded so as to have a green density of 6.85 Mg / m 3, and a ring-shaped test for a crush test having an outer diameter of 35 mm, an inner diameter of 14 mm, and a height of 10 mm. It was a piece. Next, these test pieces were sintered in an RX gas atmosphere using a mesh belt furnace at 1130 ° C. for 20 minutes. Using these sintered test pieces, a dimensional change rate of the outer diameter of the sintered body with respect to the mold size and a crush test (based on JIS Z2507) were performed. 2 shows the fluidity, FIG. 3 shows the apparent density, FIG. 4 shows the results of the evaluation of the filling property, FIG. 5 shows the dimensional change rate of the outer diameter of the sintered body, and FIG. 6 shows the crushing strength. In each figure, the amount of additional iron powder during cooling and mixing was arranged.
[0017]
FIG. 2 shows that the fluidity improves as the amount of additional iron powder during cooling and mixing increases.
Also, as shown in FIG. 3, the apparent density hardly changes when the mixing ratio of the additional iron powder is 0 to 75 mass%, but starts to decrease when the mixing ratio exceeds 75 mass%. Here, the apparent density is industrially used as an evaluation index of natural filling into a mold during molding. In addition, when the apparent density changes (decreases), it becomes an evaluation index related to mold design, such as the need to adjust the filling depth of the mold.
[0018]
Next, as shown in FIG. 4, the evaluation of the filling property assuming the mold was such that the amount of powder flowing out into the cavity was asymptotic to the original apparent density as the additional iron powder mixing ratio was increased. It can be seen that the filling property is improved as the ratio of the additional iron powder increases. Note that the filling density referred to here is a value obtained by dividing the mass of the powder filled in the cavity by the volume of the cavity in FIG.
[0019]
It can be seen that the outer diameter of the mold changes as shown in FIG. That is, no dimensional change is observed when the additional iron powder content is 0 to 80 mass%. That is, the composition No. In the case of sintering using the conventional powder of (1), the compound No. No dimensional change is observed in the case of sintering using the mixed powder of (2) to (4). Therefore, the formulation No. As long as the mixing ratio of (2) to (4) is maintained, there is no need to adjust the outer diameter, and there is no need to manufacture a new mold.
[0020]
Further, as shown in FIG. 6, the crushing strength was not significant. In other words, even if a treatment for additionally blending iron powder is performed, there is no decrease in crushing strength, in other words, regarding segregation, all iron powders are made of iron-based powder having an alloy component attached thereto (additional iron powder blending ratio: 0 mass%).
[0021]
From the above results, even if the compounding ratio is already fixed as an iron-based mixed powder for powder metallurgy, first, an operation of adding the iron-based powder to the iron-based powder to which the alloy component is attached is performed, so that the fluidity and the metal are improved. It has been found that mold filling properties can be improved.
[0022]
Further, from the results shown in FIGS. 3 and 4, the ratio of the additional iron-based powder to be mixed with the iron-based mixed powder for powder metallurgy may be 20 to 80 mass%, more preferably 25 to 75 mass%, based on the whole. It has also proven advantageous. In particular, as shown in FIG. 3, since the apparent density starts to decrease when the blending ratio exceeds 75 mass%, the blending range of iron powder is desirably 75 mass% or less.
[0023]
That is, if the ratio of the iron-based powder is less than 20 mass%, the effect of improving the fluidity and the filling property cannot be obtained. On the other hand, if it exceeds 80 mass%, a difference occurs in the dimensional change rate during sintering. That is, a new mold is required.
[0024]
The iron-based powder to be added has the same or equivalent particle size distribution and apparent density as the iron-based powder to which the alloy component is attached, so that segregation and separation of the iron-based powder after mixing can be performed. Can be avoided. Further, it is desirable that the iron-based powder and the iron-based powder before the attachment of the alloy component are the same raw material powder.
Here, as the iron-based powder in the powder mixture for powder metallurgy of the present invention, in addition to pure iron powder such as atomized iron powder and reduced iron powder, steel powder (complete alloy) (Alloyed steel powder) or steel powder (partially alloyed steel powder) in which alloy elements are partially diffusion bonded.
[0026]
On the other hand, alloy component powders to be included in the powder metallurgy mixed powder include graphite powder, copper powder, Ni-based powder, Cr-based powder, Mo-based powder, and iron-phosphorus alloy powder, and are added for the purpose of improving mechanical properties. The alloy powder to be used can be used alone or in combination.
[0027]
Further, as a lubricant to be mixed into the iron-based mixed powder, metal soaps such as zinc stearate, potassium stearate, lithium stearate and lithium hydroxystearate and derivatives thereof; One or two or more selected from copolymerized products of ethylenediamine and a fatty acid such as acid amide, stearic acid bisamide and sebacic acid bisamide, or thermoplastic resin powder such as polyolefin can be used.
[0028]
In addition, it is preferable that the compounding amount of the lubricant is 0.2 to 1.5 mass% with respect to the total amount of the iron-based powder and the alloy component powder. That is, when the amount of the lubricant is less than 0.2 mass%, friction with the mold is remarkably increased, and the ejection force is increased. As a result, the molded article is damaged or the life of the mold is shortened. On the other hand, if it exceeds 1.5 mass%, the density of the compact and the density of the sintered compact decrease.
[0029]
The powder mixture for powder metallurgy according to the present invention is obtained by adding an alloy component powder and, in some cases, a lubricant to the above-mentioned iron-based powder and mixing by heating with a commonly known mixer such as a V blender or a double cone blender. Then, the iron component powder and the lubricant are mixed with the alloy component adhesion iron base powder obtained by cooling and then the alloy component adhesion powder obtained by applying the alloy component powder to the iron base powder via a solvent. Thus, it can be manufactured. The powder mixture for powder metallurgy produced by the above method has less segregation and better fluidity than the conventional one, but the following method can be adopted as a treatment for further preventing segregation.
[0030]
That is, iron-based powders, alloy component powders, and / or cutting improvement powders such as MnS powders, BN powders, CaF powders, and hydroxyapatite, and one or more specific organic compounds having the function of a binder And then heated to at least the lowest melting point of the organic compound having the lowest melting point + 10 ° C. to melt at least one of the organic compounds, and then cooled and solidified to reduce the alloy component powder to iron. It is preferable to fix to the surface of the base powder. As the specific organic compound, a higher fatty acid, a higher fatty acid amide, or a wax is preferable. Examples of the higher fatty acid or higher fatty acid amide include stearic acid, oleic acid amide, stearic acid amide, ethylenebisamide, ethylenebisstearic acid amide, and a molten compound of stearic acid amide and ethylenebisstearic acid amide.
[0031]
【Example】
According to the compounding specifications shown in Table 2, a powder mixture for powder metallurgy was produced. That is, the mixed powder No. In Nos. 2 to 4, the iron-based powder, the alloy component powder and the lubricant are charged into a heating mixer, and heated and mixed so as to be uniform, thereby producing an iron-based powder having an alloy component attached thereto. After cooling the iron-based powder, the iron-based powder and the lubricant separated from the same iron-based powder are further charged into the iron-based powder to which the alloy component is attached, and mixed without heating so as to be uniform. A mixed powder was obtained.
In addition, mixed powder No. No. 1 is a conventional mixed powder containing 95% or more of the iron base powder having the alloy component attached thereto. 5 is a comparative example containing almost no additional iron powder.
[0032]
[Table 2]
Figure 2004292861
[0033]
About the mixed powder thus obtained, the fluidity, the apparent density, the filling property, the dimensional change rate of the outer diameter of the sintered body, and the crushing strength were evaluated as described above. Table 3 shows the results.
[0034]
[Table 3]
Figure 2004292861
[0035]
【The invention's effect】
According to the present invention, there is provided a novel iron-based mixed powder for powder metallurgy, which has powder performance that does not impair the mechanical properties of a sintered body that is a product, and has improved fluidity and filling properties into a mold. can do.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for evaluating filling properties.
FIG. 2 is a diagram showing the relationship between the amount of additional iron powder and the fluidity of a mixed powder.
FIG. 3 is a graph showing the relationship between the amount of additional iron powder and the apparent density of mixed powder.
FIG. 4 is a diagram showing the relationship between the amount of additional iron powder and the filling property of mixed powder.
FIG. 5 is a diagram showing the relationship between the amount of additional iron powder and the dimensional change rate of the outer diameter of a sintered body.
FIG. 6 is a graph showing the relationship between the amount of additional iron powder and the crushing strength.
[Explanation of symbols]
K mixed powder S slit C cavity

Claims (5)

鉄基粉末に合金成分粉末を付着させた合金成分付着鉄基粉末と、鉄基粉末および潤滑剤とから成る粉末冶金用鉄基混合粉。An iron-based mixed powder for powder metallurgy comprising an iron-based powder obtained by adhering an alloy-based powder to an iron-based powder, an iron-based powder and a lubricant. 鉄基粉末:20〜80mass%、潤滑剤:0.2〜1.5mass%および残部:合金成分付着鉄基粉末の混合比を有する請求項1に記載の粉末冶金用鉄基混合粉。The iron-based mixed powder for powder metallurgy according to claim 1, having a mixing ratio of iron-based powder: 20 to 80 mass%, lubricant: 0.2 to 1.5 mass%, and balance: alloy component-adhered iron-based powder. 鉄基粉末に合金成分粉末を付着させたのち、得られた合金成分付着鉄基粉末に、鉄基粉末および潤滑剤を混合する粉末冶金用鉄基混合粉の製造方法。A method for producing an iron-based mixed powder for powder metallurgy, comprising: adhering an alloy-based powder to an iron-based powder, and then mixing the obtained alloy-based powder with an iron-based powder and a lubricant. 鉄基粉末と合金成分粉末とを加熱混合して鉄基粉末に合金成分粉末を付着させる請求項3に記載の粉末冶金用鉄基混合粉の製造方法。The method for producing an iron-based mixed powder for powder metallurgy according to claim 3, wherein the iron-based powder and the alloy component powder are heated and mixed to adhere the alloy component powder to the iron-based powder. 溶剤を介して、鉄基粉末に合金成分粉末を付着させる請求項3に記載の粉末冶金用鉄基混合粉の製造方法。The method for producing an iron-based mixed powder for powder metallurgy according to claim 3, wherein the alloy component powder is adhered to the iron-based powder via a solvent.
JP2003084734A 2003-03-26 2003-03-26 Iron-based powdery mixture for powder metallurgy, and its production method Pending JP2004292861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084734A JP2004292861A (en) 2003-03-26 2003-03-26 Iron-based powdery mixture for powder metallurgy, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084734A JP2004292861A (en) 2003-03-26 2003-03-26 Iron-based powdery mixture for powder metallurgy, and its production method

Publications (1)

Publication Number Publication Date
JP2004292861A true JP2004292861A (en) 2004-10-21

Family

ID=33399834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084734A Pending JP2004292861A (en) 2003-03-26 2003-03-26 Iron-based powdery mixture for powder metallurgy, and its production method

Country Status (1)

Country Link
JP (1) JP2004292861A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
JP2010533789A (en) * 2007-07-17 2010-10-28 ホガナス アクチボラグ (パブル) Iron-based composite powder
JP2012181182A (en) * 2011-02-09 2012-09-20 Jfe Steel Corp Method and apparatus for measuring apparent density of metal powder, method and apparatus for manufacturing mixed powder, and method and apparatus for manufacturing powder mold
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
JP2010533789A (en) * 2007-07-17 2010-10-28 ホガナス アクチボラグ (パブル) Iron-based composite powder
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
JP2012181182A (en) * 2011-02-09 2012-09-20 Jfe Steel Corp Method and apparatus for measuring apparent density of metal powder, method and apparatus for manufacturing mixed powder, and method and apparatus for manufacturing powder mold
WO2013061642A1 (en) * 2011-10-24 2013-05-02 Jfeスチール株式会社 Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
EP2772754A1 (en) * 2011-10-24 2014-09-03 JFE Steel Corporation Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
EP2772754A4 (en) * 2011-10-24 2015-01-07 Jfe Steel Corp Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
US10092952B2 (en) 2011-10-24 2018-10-09 Jfe Steel Corporation Method and apparatus for measuring apparent density of metal powder, method and apparatus for producing mixed powder, and method and apparatus for producing powder compact
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing

Similar Documents

Publication Publication Date Title
TW442347B (en) Improved metal-based powder compositions containing silicon carbide as an alloying powder
JP2010265454A (en) Lubricant combination and process for preparing the same
JP2010285633A (en) Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JPH01219101A (en) Iron powder for powder metallurgy and production thereof
JP5169605B2 (en) Powder mixture for powder metallurgy and method for producing molded body
JP3004800B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
CN102947028B (en) In iron powder metallurgical application for improvement of the composition of size Control and method
JP2004190051A (en) Iron based powdery mixture for power metallurgy, and production method therefor
JPH01165701A (en) Mixture and manufacture of iron base powder for powder metallurgy
WO2022260009A1 (en) Lubricant, combination of lubricants, powder mixture, combination of raw materials for powder mixture and production method for sintered body
JP6760495B2 (en) Mixed powder for powder metallurgy
CN113710392B (en) Mixed powder for powder metallurgy
JP2007002340A (en) Iron based powder mixture for powder metallurgy, and method for producing the same
EP0589088B1 (en) Iron-based powder mixture and method
JP2003034803A (en) Iron-base mixed powder for powder metallurgy
JP3873609B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPH10280005A (en) Iron based powder mixture for powder metallurgy and its production
JP2004002964A (en) Iron-based powder mixture
JP5245728B2 (en) Iron-based mixed powder for powder metallurgy
JP3873547B2 (en) Iron-based mixed powder for powder metallurgy
JP2005264201A (en) Ferrous group powder mixture for powder metallurgy, and its production method
JP2003221602A (en) Iron-base mixed powder for powder metallurgy
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
JP3855899B2 (en) Iron-based mixed powder for powder metallurgy