JP2004002964A - Iron-based powder mixture - Google Patents

Iron-based powder mixture Download PDF

Info

Publication number
JP2004002964A
JP2004002964A JP2003013098A JP2003013098A JP2004002964A JP 2004002964 A JP2004002964 A JP 2004002964A JP 2003013098 A JP2003013098 A JP 2003013098A JP 2003013098 A JP2003013098 A JP 2003013098A JP 2004002964 A JP2004002964 A JP 2004002964A
Authority
JP
Japan
Prior art keywords
powder
iron
mixture
free lubricant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003013098A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
上ノ薗 聡
Yukiko Ozaki
尾崎 由紀子
Shigeru Unami
宇波 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003013098A priority Critical patent/JP2004002964A/en
Publication of JP2004002964A publication Critical patent/JP2004002964A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based powder mixture having superior fluidity and hopper discharge property and also having excellent property of filling into a narrow width die. <P>SOLUTION: Free lubricant powder containing 0.02 to 5.0% by mass of an antistatic agent and having a nearly spherical powder shape is mixed with iron-based powder in an amount of 0.1 to <1.20% by mass per total amount of the iron-based powder mixture. Other than the antistatic-agent-containing free lubricant powder, antistatic-agent-free free lubricant powder can further be mixed in an amount of 0.5 to 1.2% by mass, in total of the antistatic-agent-containing free lubricant powder and the antistatic-agent-free free lubricant powder, per total amount of the iron-based powder mixture. Moreover, as the iron-based powder, that prepared by allowing alloying powder and/or machinability-improving powder to adhere to the surface thereof via a binder can be used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金用鉄基粉末混合物に係り、とくに粉末冶金用としての流動性やホッパからの排出性、幅狭の金型への充填性に優れた鉄基粉末混合物に関する。
【0002】
【従来の技術】
粉末冶金用鉄基粉末混合物は、鉄基粉末としての鉄粉に、銅粉、黒鉛粉、燐化鉄粉等の合金用粉末と、ステアリン酸亜鉛、ステアリン酸アルミニウム等の潤滑剤粉末とを混合し、さらに必要に応じてMnSなどの切削性改善用粉末を混合して製造するのが一般的である。
【0003】
しかし、このような粉末冶金用鉄基粉末混合物は、大きさ、形状および密度の異なる複数の粉末を含んでいるため、混合後の輸送、ホッパへの装入およびホッパからの排出、または金型充填時に、混合物の中で粉末が均一に分布しなくなり、偏析を生じやすいという欠点を有している。
これら偏析が生じた混合物を、加圧(圧縮)成形して成形体(圧粉体ともいう)とし、その成形体を焼結して最終製品とすると、製品毎に組成がばらついたり、寸法および強度が大きくばらつき、不良品が多発することになる。さらに、鉄基粉末に混合する銅粉、黒鉛粉、燐化鉄粉等は、いずれも鉄基粉末より微粉末であるため、比表面積(単位重量に対する表面積の割合)が大きく、流動性が低下する。このため、混合物の成形用金型への充填速度が低下し、成形体の生産速度を低下させる。
【0004】
このような粉末冶金用鉄基粉末混合物の偏析を防止するために、例えば、特許文献1、特許文献2、特許文献3等に、鉄基粉末表面に合金用粉末などを付着させる技術が、さらに例えば、特許文献4に、遊離潤滑剤を混合する技術が提案されている。
しかし、これらの技術で得られた鉄基粉末混合物は、流動性やホッパ排出性に必ずしも優れない場合があった。これは、とくに、潤滑剤としてステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸を含まない潤滑剤を用いたときに顕著であった。
【0005】
このような問題に対して、例えば、特許文献5には、鉄基粉末に、少なくとも1種以上の合金用粉末と融点の異なる2種以上のワックスを加えて一次混合し、一次混合工程中あるいは一次混合後に昇温してワックスの部分溶融物を生成させ、ついで二次混合しながら冷却し、ワックスの部分溶融物を冷却固着させ、部分溶融物の結合力で鉄基粉末粒子表面に合金用粉末を固着させ、さらに冷却時に金属石鹸またはワックスと、0.001〜1重量%の帯電防止剤を加えて三次混合する、流動性に優れ見かけ密度の安定な粉末冶金用鉄基粉末混合物の製造方法が提案されている。
【0006】
しかしながら、特許文献5に記載された技術で製造された鉄基混合物は、ネジ式チューブコンベアで搬送した場合に搬送コイルの回転により印加される剪断力により、帯電防止剤同志が凝集し流動性が低下するという問題が残されていた。このような問題に対し、特許文献6には、鉄基粉末に、帯電防止剤を0.02〜1質量%含有する遊離潤滑剤粉を混合粉全量に対し0.1〜0.5質量%混合し、あるいはさらに合金用粉および/または切削性改善粉を混合した粉末冶金用鉄基混合粉が提案されている。
【0007】
【特許文献1】
特開平1−219101号公報
【特許文献2】
特開平2−217403号公報
【特許文献3】
特開平3−162502号公報
【特許文献4】
特開平5−148505号公報
【特許文献5】
特開平9−71801号公報
【特許文献6】
特開2000−355702号公報
【0008】
【発明が解決しようとする課題】
最近では、鉄基粉末混合物には、流動性として、偏析を生じることなく成形用金型への充填速度が高いことに加えて、狭幅の金型にも完全に充填可能であることが求められている。このような要求に対し、特許文献6に記載された技術で製造された鉄基混合粉では、まだ十分なレベルの流動性を有するまでに至っていないという問題が残されていた。
【0009】
本発明は、上記した従来技術の問題を解決し、流動性やホッパ排出性に優れるとともに、幅の狭い金型への充填性に優れた鉄基粉末混合物を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、鉄基粉末混合物の幅狭の金型への充填性を検討した。その結果、鉄基粉末混合物の充填性は、帯電防止剤を含有する遊離潤滑剤の形状に大きく依存することを見出した。
まず、本発明の基礎となった実験結果について説明する。
【0011】
鉄基粉末としてのアトマイズ鉄粉に、合金用粉末として、鉄基粉末と合金用粉末の合計に対し2質量%の銅粉と0.75質量%の黒鉛粉と、さらに結合剤として、鉄基粉末と合金用粉末の合計量100重量部に対し、ステアリン酸アミドの溶融物0.3重量部を加熱混合し、鉄基粉末表面に合金用粉末を固着処理した。
ついで、表面に合金粉末を固着処理した鉄基粉末に、帯電防止剤を0.2質量%含有させた遊離潤滑剤を混合し、鉄基粉末混合物を得た。帯電防止剤を含有させた遊離潤滑剤の配合量は、鉄基粉末混合物全量に対し0.4質量%とした。なお、帯電防止剤は、HLB(親水性親油性バランス)が10.5のポリオキシエチレンラウリルエーテルを用い、遊離潤滑剤はエチレンビスステアリン酸アミドを用いた。
【0012】
なお、使用した帯電防止剤を含有する遊離潤滑剤は、潤滑剤を溶融させた後、帯電防止剤を添加、混合し、スプレー造粒法で製造したものを用いた(本発明品)場合と、潤滑剤を溶融させた後、帯電防止剤を添加し、さらに混合した後、冷却し、粉砕、分級して製造したものを用いた (従来品)場合と2通りとした。使用した遊離潤滑剤の走査型電子顕微鏡写真の一例を図3に示す。図3(a)に示す本発明品の場合はほぼ球状であるが、図3(b)に示す従来品の場合には、不定形であった。
【0013】
これら鉄基粉末混合物:150gを100×20×60mmの大きさの粉箱(図1参照)に装入した。
この粉箱を、図1に示すような配置で、200mm/sの速度で金型方向に移動させ、金型の真上で1s間停止・保持したのち後退させた。これにより、金型に鉄基粉末混合物が充填された。使用した金型は、キャビティの厚み:tmm、長さ:60mm、深さ:60mmの金型とした。なお、厚みtmmは1、2、5mmに変化させた。
【0014】
充填後、488MPaの圧力で成形し、得られた成形体の重量を測定し、充填密度(成形体重量/金型体積)を算出して、鉄基混合物の金型への充填性を評価した。得られた結果を、図2に示す。図2から、遊離潤滑剤として不定形のものを使用した鉄基粉末混合物(従来品)の場合には、金型のキャビティ厚みtが小さくなるとともに、充填密度が減少することがわかる。例えば、金型のキャビティ厚みtが、1mmとなると、遊離潤滑剤として不定形のものを使用した場合には、見かけ密度の半分も充填されていないことがわかる。このように、金型のキャビテイ厚みが薄い場合には、遊離潤滑剤として不定形のものを用いた鉄基粉末混合物(従来品)は低い充填性しか有していないことが多い。
【0015】
このような充填性の低い鉄基粉末混合物 (従来品)を用いて、例えば、ギア形状の金型へ充填し、成形体とした場合には、歯先の幅の狭い部位では、他の部位に比べ、充填密度が小さくなる。このような成形体を焼結した場合には、部位により収縮量が異なり、部品の寸法精度が低下する。一般に、充填密度が異なり成形密度が異なると、焼結時の寸法変化率が異なり、さらに焼結密度が異なるのである。したがって、充填密度が低いギア歯先の部位は、焼結密度が低くなりやすく、ひいては強度も低くなる。通常、ギヤにおいては歯先の部位に最大の応力が生じるため、歯先の部位は強度が高いことが要求され、充填密度が高いことが望ましいのである。
【0016】
一方、図2から、ほぼ球状の遊離潤滑剤を使用した鉄基粉末混合物(本発明品)は、金型のキャビティ厚みが薄い場合でも、従来品よりも充填密度が高く、充填性にすぐれることがわかる。
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
【0017】
すなわち、本発明の要旨はつぎの通りである。
(1)鉄基粉末に少なくとも遊離潤滑剤粉末を混合してなる鉄基粉末混合物であって、前記遊離潤滑剤粉末を、0.02〜5.0質量%の帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末とし、該遊離潤滑剤粉末を、鉄基粉末混合物全量に対し0.1質量%以上〜1.20質量%未満含むことを特徴とする鉄基粉末混合物。
(2)(1)において、前記遊離潤滑剤粉末に加えてさらに、合金用粉末および/または切削性改善用粉末を混合することを特徴とする鉄基粉末混合物。
(3)(1)または(2)において、前記遊離潤滑剤粉末が、前記帯電防止剤を含有する遊離潤滑剤粉末に加えてさらに、帯電防止剤を含有しない遊離潤滑剤粉末を含み、帯電防止剤を含有する遊離潤滑剤粉末と帯電防止剤を含有しない遊離潤滑剤粉末との合計量が、鉄基粉末混合物全量に対し0.5〜1.2質量%であることを特徴とする鉄基粉末混合物。
(4)鉄基粉末に少なくとも遊離潤滑剤粉末を混合してなる鉄基粉末混合物であって、前記鉄基粉末を結合剤を介して表面に合金用粉末および/または切削性改善用粉末を付着させてなる鉄基粉末とし、前記遊離潤滑剤粉末を、0.02〜5.0質量%の帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末とし、該遊離潤滑剤粉末を、鉄基粉末混合物全量に対し0.1質量%以上〜1.20質量%未満含有することを特徴とする鉄基粉末混合物。
(5)(4)において、前記遊離潤滑剤粉末が、前記帯電防止剤を含有する遊離潤滑剤粉末に加えてさらに、帯電防止剤を含有しない遊離潤滑剤粉末を含み、帯電防止剤を含有する遊離潤滑剤粉末と帯電防止剤を含有しない遊離潤滑剤粉末との合計含有量が、鉄基粉末混合物全量に対し0.1質量%超〜1.20質量%以下であることを特徴とする鉄基粉末混合物。
(6)(4)または(5)において、前記結合剤の含有量が、鉄基粉末混合物全量に対して0.1〜1.0質量%であることを特徴とする鉄基粉末混合物。
(7)(1)ないし(6)のいずれかにおいて、前記帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末が、スプレー造粒法で製造された潤滑剤であることを特徴とする鉄基粉末混合物。
【0018】
【発明の実施の形態】
本発明の鉄基粉末混合物は、鉄基粉末に、潤滑剤粉末、あるいはさらに合金用粉末および/または切削性改善粉末を混合してなる粉末冶金用鉄基粉末混合物である。
本発明では、潤滑剤粉末の一部または全部として、0.02〜5.0質量%の帯電防止剤を含有したほぼ球状の遊離潤滑剤粉末を配合する。遊離潤滑剤粉末に帯電防止剤を含有させることにより、ネジ式チューブ型搬送機で生じる帯電防止剤同士の凝集を防止することができる。また、帯電防止剤の含有により、遊離潤滑剤粉末表面に多くの水分子を吸着させることができる。これにより、鉄基粉末混合物の流動性、特にホッパからの排出性を改善させることができる。
【0019】
鉄基粉末混合物の充填性は、構成する粉体間(特に、潤滑剤同士、あるいは潤滑剤と結合材)の付着力、特に分子間力の大小に支配されると言われている(例えば、上ノ薗:粉体および粉末冶金,45(1998),p849)。分子間力は、粉体のハマカー係数に比例し、水分子は、潤滑剤に比べ小さい値をもつ。したがって、鉄基粉末混合物中に、表面に水分を吸着した潤滑剤を遊離粉末として配合することにより、鉄基粉末混合物の粉体間の分子間力が低減され、このため鉄基粉末混合物の流動性が向上するものと考えられる。
【0020】
また、本発明では、鉄基粉末混合物に混合する、帯電防止剤を含有する遊離潤滑剤粉末を、粉末粒子形状がほぼ球状のものとする。帯電防止剤を含有させ帯電防止処理を施した潤滑剤粉末の粉末粒子形状を「ほぼ球状」とすることにより、充填性がさらに改善される。本発明では、とくに遊離潤滑剤と帯電防止剤の溶融混合物をスプレー造粒法で造粒処理した潤滑剤粉末を用いることが好ましい。スプレー造粒法によれば、図3(a)に示すように潤滑剤粉末の表面がなめらかで、ほぼ球状の粉末とすることが可能である。図3(a)はスプレー造粒法で製造した帯電防止剤を含むエチレンビスステアリン酸アミドの走査型電子顕微鏡写真である。
【0021】
スプレー造粒法により製造された粉末は、球状以外に、図4に示すような、中空球状、粒子の一部が落ちくぼんだ陥没球状(図4(a))あるいは2つの球状粒子が連結した重なり球状(図4(b))など、完全に球状でない形状となる場合もあるが、何ら問題はなく使用が可能である。本発明では、球状と、これら陥没球状、重なり球状を含め「ほぼ球状」という。
【0022】
遊離潤滑剤粉末中の帯電防止剤の含有量が、0.02質量%未満では、上記した効果が認められない。一方、5.0質量%を超えると、鉄基粉末混合物の流動性を低下させる。このため、本発明では、遊離潤滑剤粉末中の帯電防止剤の含有量を0.02〜5.0質量%に限定した。なお、使用する帯電防止剤は、遊離潤滑剤粉末表面への水分子吸着を増加させるものであればよく、特に限定されないが、下記に示す帯電防止剤が好ましい。
【0023】
好ましい帯電防止剤としては、アルキル基の炭素数が10〜20であるアルキルジメチルアミンオキサイド、アルキルジメチルアミノ酢酸ベタイン、アルキルカルボキシメチル−N−ヒドロキシエチルイミダソリニウムベタイン、アルキルアミドプロピルベタインから選ばれる1種、HLB(親水性親油性バランス)が1〜10のソルビタン脂肪酸エステル、HLBが9〜15のポリエキシエチレンソルビタンモノ脂肪酸エステル、HLBが9〜15のポリエキシエチレンアルキルエーテル、HLBが5〜15のポリエキシエチレンアルキルフェニルエーテル、アルキル基の炭素数が10〜20のアルキルアルカノールアミド、ないしアルキル基の炭素数が10〜20のポリオキシエチレンアルキルアミンが好適である。特にアルキル基の炭素数が10〜20のアルキルカルボキシメチル−N−ヒドロキシエチルイミダソリニウムベタイン、HLB9〜15のポリオキシエチレンアルキルエーテル、アルキルジエタノールアミド、およびアルキル基の炭素数が10〜20のポリオキシエチレンアルキルアミンがより好ましい。
【0024】
また、帯電防止剤を含有するほぼ球状の遊離潤滑剤粉末として使用する潤滑剤は、脂肪酸および/または脂肪酸アミドとすることが好ましい。
脂肪酸、脂肪酸アミドとしては、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドとの溶融混合物、エチレンビスステアリン酸アミドから選ばれた1種または2種以上とするのが好ましい。
【0025】
帯電防止剤を含有するほぼ球形の遊離潤滑剤粉末は、鉄基粉末混合物に、鉄基粉末混合物の全量に対し、0.1質量%以上〜1.20質量%未満配合される。鉄基粉末混合物に、帯電防止剤を含有する遊離潤滑剤粉末を配合することにより、鉄基粉末混合物の流動性、とくにホッパからの排出性ならびに充填性を改善させることができる。帯電防止剤を含有する遊離潤滑剤粉末は、金型中で加圧成形する際に、摩擦熱で溶融あるいは軟化して潤滑効果も発揮することは言うまでもない。
【0026】
帯電防止剤を含有するほぼ球状の遊離潤滑剤粉末の含有量が、鉄基粉末混合物の全量に対し、0.1質量%未満では、鉄基粉末混合物の流動性が不足する。一方、1.20質量%以上含有すると、吸着水量の増加のため却って鉄基粉末混合物の流動性が低下する。このため、帯電防止剤を含有する遊離潤滑剤粉末の含有量は、鉄基粉末混合物の全量に対し0.1質量%以上〜1.20質量%未満の範囲に限定した。
【0027】
また、ほぼ球状の遊離潤滑剤粉末は、通常市販の、粉末冶金用潤滑剤粉末の大きさと同等の大きさでよい。例えば、マイクロトラック法で測定した平均粒径で10〜80μmとすることが好ましい。より好ましくは10〜60μmである。平均粒径が80μmより大きいと、焼結体中に粗大な気孔を生成させる。一方、平均粒径が10μm未満と細かいと、実際的に安価に製造することが困難となる。また、流動性、ホッパ排出性、充填性が悪化するものと考えられる。
【0028】
また、本発明では遊離潤滑剤粉末として、上記した帯電防止剤を含有する遊離潤滑剤粉末以外に、帯電防止剤を含有しない遊離潤滑剤粉末を鉄基粉末混合物に混合してもよい。帯電防止剤を含有しない遊離潤滑剤粉末は、鉄基粉末混合物が金型に充填され加圧成形される際に、摩擦熱で溶融あるいは軟化して潤滑効果を発揮する。その配合量は、帯電防止剤を含有する遊離潤滑剤粉末との合計量で、鉄基粉末混合物の全量に対し、0.5〜1.2質量%とすることが好ましい。遊離潤滑剤粉末の合計量が、0.5質量%未満では、潤滑効果が小さく、成形後の抜出し力が高くなる。一方、遊離潤滑剤粉末の合計量が、1.2質量%を超えると鉄基粉末混合物の流動性が劣化する。このようなことから、帯電防止剤を含有しない遊離潤滑剤粉末と帯電防止剤を含有する遊離潤滑剤粉末の合計量は、鉄基粉末混合物の全量に対し、0.5〜1.2質量%の範囲に限定することが好ましい。
【0029】
帯電防止剤を含有しない遊離潤滑剤粉末として適用できる潤滑剤としては、熱可塑性樹脂、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドとの溶融混合物、エチレンビスステアリン酸アミド、分子量1万以下のポリエチレン、分子量1万以下のポリエチレンとエチレンビスステアリン酸アミドの溶融混合物が例示でき、これらのうちから選ばれた1種または2種以上を複合して適用することが好ましい。
【0030】
熱可塑性樹脂としては、単量体であるアクリル酸エステル、メタクリル酸エステルおよび芳香族ビニル化合物から選ばれた少なくとも1種を50質量%以上含有し、かつ1次平均粒径が0.03〜500万の熱可塑性樹脂粉とすることが好ましい。また、焼結炉の汚染の極めて軽微な範囲で、ステアリン酸亜鉛や、ステアリン酸カルシウム、ステアリン酸リチウムを1種または2種以上、遊離潤滑剤として使用することも可能である。なお、合計含有量で最大0.3質量%とすることが好ましい。
【0031】
本発明では、鉄基粉末は、鋼材の製造時に生成される、ミルスケールや鉄鉱石を還元した還元鉄粉、溶鋼をアトマイズ処理して製造された、アトマイズ純鉄粉、アトマイズ合金鉄粉を用いるのが好ましい。また、Ni、Moなどを予め含有した溶鋼をアトマイズ処理した予合金アトマイズ粉やNi、Mo、Cuの一種以上を鉄基粉末の表面に拡散付着させた部分合金化粉を用いてもよい。また、本発明では、この鉄基粉末に、さらに、合金用粉末および/または切削性改善用粉末を配合することができる。
【0032】
なお、充填性を考慮した場合、偏析防止処理を施した鉄基混合粉末においては、アトマイズ鉄粉単独で使用するよりも、アトマイズ純鉄粉に還元粉を、アトマイズ純鉄粉と還元粉の合計100質量部に対して、10〜40質量部混合することが好ましい。
また、鉄基粉末に配合する合金用粉末としては、黒鉛粉、銅粉、各種合金元素粉等のうちから選ばれた1種または2種以上が好適である。合金用粉末の配合量は、製品焼結体に要求される機械的特性に合致して適宜決定されるが、鉄基粉末混合物の全量に対し、5.0質量%以下とするのが好ましい。合金用粉末の配合量が5.0質量%を超えると、鋼粉コストが高くなるという問題がある。
【0033】
また、焼結体の切削性を改善する目的で配合する切削性改善用粉末としては、タルク、金属硫化物粉等が例示され、これらのうちから選ばれた1種または2種が、製品焼結体に要求される特性を考慮して、適宜、選定される。切削性改善用粉末の合計配合量は、鉄基粉末混合物の全量に対し、5.0質量%以下とするのが好ましい。切削性改善用粉末の合計配合量が5.0質量%を超えると、圧縮性が低下しやすい。
【0034】
本発明では、鉄基粉末を、表面に結合剤を介して合金用粉末および/または切削性改善用粉末を固着処理を施し付着させてなる鉄基粉末としてもよい。合金用粉末、切削性改善用粉末を、鉄基粉末表面に付着(固着)させることにより、鉄基粉末混合物の偏析を防止することができる。本発明では、鉄基粉末表面への合金用粉末および/または切削性改善用粉末の付着(固着)処理は結合剤を介して行うことが好ましい。
【0035】
なお、付着(固着)処理は、鉄基粉末に、合金用粉末および/または切削性改善用粉末を配合し、さらに結合剤を添加し、結合剤の融点以上の温度で加熱混合して、結合剤を溶融させ、鉄基粉体の表面に合金用粉末および/または切削性改善用粉末を付着させ、冷却後に結合剤の結合力で鉄基粉末の表面にこれら粉末を固着させることが好ましい。
【0036】
また、結合剤の含有量は、鉄基粉末混合物の全量に対し、0.1〜1.0質量%の範囲とすることが好ましい。結合剤の含有量が、0.1質量%未満では合金用粉末等の鉄基粉末表面への付着量が低下し、鉄基粉末混合物における合金用粉末等の偏析が増加する。一方、結合剤の添加量が1.0質量%を超えるとホッパ排出性が低下する。このため、結合剤の含有量は鉄基粉末混合物の全量に対し0.1〜1.0質量%の範囲とするのが好ましい。
【0037】
なお、鉄基粉末の表面に合金用粉末および/または切削性改善用粉末を付着(固着)させるに好適な結合剤としては、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドとの溶融混合物、エチレンビスステアリン酸アミドのうちから選ばれた1種または2種以上の溶融混合物が好ましい。
【0038】
これらを結合剤として用いることにより、従来用いていた金属元素を含むステアリン酸亜鉛(融点120℃)と同様に、この鉄基粉末混合物を金型中で加圧成形する際に、摩擦熱で溶融ないし軟化させて、本来の潤滑剤の働きをさせることもできる。
結合剤を添加し、鉄基粉末表面に合金用粉末および/または切削性改善用粉末を固着させた鉄基粉末に、さらに帯電防止剤を含有するほぼ球状の遊離潤滑剤粉末を、鉄基粉末混合物の全量に対し、0.1質量%以上〜1.20質量%未満配合する。帯電防止剤を含有する遊離潤滑剤粉を配合することにより、鉄基粉末混合物の流動性、特にホッパからの排出性、充填性を改善させることができる。なお、帯電防止剤を含有する遊離潤滑剤粉末の種類、および含有量の限定理由は、表面に合金用粉末および/または切削性改善粉末を固着させない場合と同様である。
【0039】
さらに、上記した帯電防止剤を含有する遊離潤滑剤粉末以外に、帯電防止剤を含有しない遊離潤滑剤粉末を、鉄基粉末混合物に添加してもよい。鉄基粉末の表面に合金用粉等を結合潤滑剤を介し固着させる場合には、その含有量は、帯電防止剤を含有する遊離潤滑剤と帯電防止剤を含有しない遊離潤滑剤との合計量が、鉄基粉末混合物に全量に対し、0.1質量%超、1.20質量%以下とすることが好ましい。
【0040】
遊離潤滑剤粉末の合計量が、0.1質量%以下では、潤滑効果が少なく、成形後の抜出し力が高くなる。一方、遊離潤滑剤粉末の合計量が、1.20質量%を超えると鉄基粉末混合物の流動性が劣化し、ホッパ排出性、充填性が低下する。このため、結合剤を含む場合には、帯電防止剤を含有しない遊離潤滑剤粉末と帯電防止剤を含有する遊離潤滑剤粉末の合計量を、鉄基粉末混合物の全量に対し、0.1質量%超、1.20質量%以下の範囲に限定するのが好ましい。
【0041】
次に、本発明の鉄基粉末混合物の好ましい製造方法について説明する。
鉄基粉末に、あるいはさらに合金用粉末および/または切削性改善用粉末と、所定量の帯電防止剤を含有させたほぼ球状の遊離潤滑剤粉末と、あるいはさらに帯電防止剤を含まない遊離潤滑剤粉末を添加し、混合して鉄基粉末混合物とする。
【0042】
また、鉄基粉末に、合金用粉末および/または切削性改善用粉末と、結合剤を、鉄基粉末混合物の全量に対し、0.1〜1.0質量%添加し、混合した後、さらに、結合剤が1種の場合は、結合剤の融点より10〜100℃高い温度で、結合剤が2種以上からなる場合は、結合剤のうちの最低の融点より10℃以上高く、結合剤のうちの最高の融点以下の温度で加熱しながら混合し、一部が溶融した結合剤により鉄基粉末表面に合金用粉末および/または切削性改善用粉末を付着させ、引き続き冷却して、鉄基粉末表面に合金用粉末および/または切削性改善用粉末を結合剤により固着させる。ついで、60℃以下の温度で所定量の帯電防止剤を含有させたほぼ球状の遊離潤滑剤粉末を、さらに必要に応じて、帯電防止剤を含有しない遊離潤滑剤粉末を添加し、混合し、鉄基粉末混合物とすることが好ましい。なお、帯電防止剤を含有させたほぼ球状の遊離潤滑剤粉末は、潤滑剤と帯電防止剤との溶融混合物をスプレー造粒法で造粒処理した潤滑剤粉末を用いることが好ましい。
【0043】
上記のようにして得た鉄基粉末の表面に黒鉛粉等を付着させた鉄基粉末混合物中に、遊離潤滑剤を適量添加した後、遊離潤滑剤の二次粒子を破壊しにくいせん断力の混合機を使用して混合を実施することが好ましい。
これは、造粒した潤滑剤の破壊を防ぐことに有効であるためである。これらミキサを使うことにより、さらに優れた、流動性やホッパ排出性が優れる鉄基粉末を製造できる。
【0044】
この混合機には、容器回転式、機械攪拌式、流動攪拌式、無攪拌式等の、混合粉体に与えるせん断力が小さい混合機が好適である。容器回転式混合機では、水平円筒型、傾斜円筒型、V型、二重円錐型、連続V型が好ましく、攪拌羽が内蔵されている混合機も好ましい。機械攪拌式混合機では、リボン型、スクリュー型、複軸パドル型、円錐形スクリュー型、回転円板型が好ましい。流動攪拌式混合機では、流動床式、旋回流動式、ジェットポンプ式が好ましい。
【0045】
混合機の条件は、例えば、上記したV型容器回転式混合機を使用する場合、粒径が10〜80μmの二次粒子を少なくとも20mass%残存させるためには、2リットルの容器の回転数を10〜100rpmとすることが好適である。ただし、混合条件は、上記の範囲に限定されるものではなく、遊離潤滑剤の二次粒子の凝集強度に応じて、適宜決定されるものである。
【0046】
【実施例】
(実施例1)
使用した帯電防止剤を表1に、潤滑剤を表2に示す。また使用した熱可塑性樹脂からなる潤滑剤を表3に示す。
鉄基粉末として表4に示す粒度分布のアトマイズ鉄粉 (平均粒径:75μm)と、合金用粉末として、鉄基粉末混合物全量に対し、2質量%の銅粉(平均粒径:23μm)と、0.8質量%の天然黒鉛粉(平均粒径:14μm)とを、表5に示す種類、配合量の遊離潤滑剤粉末とともに、Vブレンダで15min混合し、鉄基粉末混合物とした。
【0047】
帯電防止剤を含む遊離潤滑剤粉末は、以下の手順で作製した。
潤滑剤をその融点より10〜40℃高い温度で溶融させ、さらに表5に示す含有量となるように帯電防止剤を添加し、混合した後、スプレードライ機を用いて造粒処理を行い、ほぼ球状の帯電防止剤を含有する潤滑剤粉末を得た。なお、得られた潤滑剤粉末の平均粒径はマイクロトラック法で測定して40〜75μmであった。
【0048】
また、溶融させた潤滑剤に表5に示す含有量となるように帯電防止剤を添加し、V型ミキサにて回転数30rpmで10分間混合した後、冷却し、粉砕、分級して、図3(b)に示すような不定形(非球形)の帯電防止剤を含有する潤滑剤粉末を得て、比較例用とした。
得られた鉄基粉末混合物について、流動性、ホッパ排出性、充填性を測定した。また、これら鉄基粉末混合物を用いた成形体の抜き出し力を測定した。測定方法はつぎの通りとした。
【0049】
(1)流動性
鉄基粉末混合物:100gを、オリフィス径5mmの容器に充填し、充填してから排出するまでの時間を測定し、流動度(s/100g)を求め、この流動度で流動性を評価した。
(2)ホッパ排出性
底部中央にオリフィス(直径2.0mm)を設けた容器(内径100mm×高さ200mm)に、鉄基粉末混合物:1000gを充填し、このオリフィスを通して、鉄基粉末混合物1000gがすべて排出させるまでの加振回数を求め、この加振回数でホッパ排出性を評価した。
【0050】
(3)抜出し力
鉄基粉末混合物を金型に充填し、5ton/cm(490MPa)の圧力で圧縮し、25mmφ×20mm高さのタブレット(成形体)に成形したのち、金型から成形体を抜き出し、そのときの抜出し力を測定した。
(4)充填性試験
図1にその配置を模式的に示す装置を用いて、鉄基粉末混合物の充填性試験を実施した。鉄基粉末混合物(供試混合粉):150gを充填した粉箱(100×20×60mm)を、200 mm/sの速度で金型方向に移動させ、t=1mmのキャビテイを有する金型の真上で停止させ、1s間保持し鉄基粉末混合物を金型に充填したのち後退させた。充填後、480MPaの圧力で成形し成形体とした。ついで、得られた成形体の重量を測定し、充填密度{=(成形体重量)/(キャビテイの体積)}を求めた。この充填密度を粉箱中の鉄基粉末混合物の見かけ密度で割った値を充填率とし、充填性を評価した。充填率が大きいほど、充填性がよいことを示す。
【0051】
得られた結果を表5に示す。
【0052】
【表1】

Figure 2004002964
【0053】
【表2】
Figure 2004002964
【0054】
【表3】
Figure 2004002964
【0055】
【表4】
Figure 2004002964
【0056】
【表5】
Figure 2004002964
【0057】
本発明例は、流動性が12.9〜13.9s/100g、ホッパ排出性が2回以下、抜出し力が10.6〜11.0MPa ,充填値が71〜80%と、成形体に抜出し力が低く、かつ優れた流動性、優れたホッパ排出性、優れた充填性を有する鉄基粉末混合物となっている。一方、本発明の範囲を外れる比較例は、流動性、ホッパ排出性、充填性のうちのいずれかあるいは全部が低下している。
【0058】
(実施例2)
鉄基粉末として、表4に示す粒度分布を有するアトマイズ純鉄粉(平均粒径:78μm )を使用した。また一部では、鉄基粉末として、表4に示す粒度分布の還元鉄粉を全量(混合物No.2−8)、あるいはアトマイズ鉄粉100質量部に対し30質量部混合した。(混合物No.2−7)                      鉄基粉末に、合金用粉末として、鉄基粉末混合物全量に対し、2質量%の電気銅粉(平均粒径:25μm)と、1質量%の黒鉛粉(平均粒径:23μm)とを、表6に示す種類、配合量の結合剤とともに、加熱混合機に装入して十分に混合した。ついで、結合剤の(最低融点+10℃)以上、最高融点以下の温度で混合を続けながら加熱した (これまでを1次混合という)。
【0059】
ついで、混合しながら、85℃以下に冷却した。さらに、40℃まで冷却した後、表6に示す帯電防止剤を含む遊離潤滑剤粉を添加(常温添加)し、あるいはさらに、帯電防止剤を含まない遊離潤滑剤粉を添加し、均一になるように混合し(ここまでを2次混合という)たのち、混合物を加熱混合機から排出し、鉄基粉末混合物とした。混合機としてはWコーン型ミキサを用い、回転数を60rpmとして10分間混合した。
【0060】
得られた鉄基粉末混合物について、流動性、ホッパ排出性、充填性を測定した。また、これら鉄基粉末混合物を用いた成形体の抜出し力を測定した。また、得られた鉄基粉末混合物の偏析傾向を炭素付着度で調査した。
流動性、ホッパ排出性、成形体の抜出し力、充填性の測定方法は、実施例1と同様とした。なお、炭素付着度の測定方法は次のとおりである。
(5)炭素付着度
炭素付着度は、次式により算出した。
【0061】
炭素の付着度=[(100メッシュ(150μm)を通過したものから200メッシュ(75μm)を通過しない範囲の粒度までの鉄基粉末混合物のC分析値)/(鉄基混合物のC分析値)]×100(%)
この炭素の付着度が大きいほど、鉄基混合粉における黒鉛粉の偏析が小さい個とを意味する。
【0062】
得られた結果を表6に示す。
【0063】
【表6】
Figure 2004002964
【0064】
【表7】
Figure 2004002964
【0065】
本発明例は、流動性が12.1〜13.0s/100g、ホッパ排出性が1回以下、抜出し力が11.0〜12.2MPa、炭素の付着度が80%以上、充填率が72%以上と、抜出し力も低く、偏析傾向も小さく、また優れた流動性、優れたホッパ排出性および優れた充填性を示している。なお、アトマイズ鉄粉に還元鉄粉を混合した混合物No.2−7および還元粉を用いた混合物No.2−8は充填性がさらに向上している。
【0066】
これに対し、本発明の範囲を外れる比較例は、流動性およびホッパ排出性が低下している。混合物No.2−18、No.2−19、No.2−20は、帯電防止剤を含む遊離潤滑剤粉の含有量が本発明の範囲を外れているため、流動性、ホッパ排出性、充填性が低下している。また、混合物No.2−21、No.2−22は、遊離潤滑剤粉中の帯電防止剤量が本発明の範囲を外れるため、流動性、ホッパ排出性と充填性が劣化している。また、混合物No.2−23は帯電防止剤を含有する遊離潤滑剤粉末の形状がほぼ球状でないため、充填性に劣る。
【0067】
【発明の効果】
以上説明したように、本発明によれば、流動性、ホッパ排出性および幅狭い金型への充填性に優れた鉄基粉末混合物を得ることができ、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】充填性試験に好適に使用できる試験装置の概略を模式的に示す概略説明図である。
【図2】従来の鉄基粉末混合物 (従来品)と本発明の鉄基粉末混合物 (本発明品)の充填密度と金型キャビティ厚さとの関係を示すグラフである。
【図3】潤滑剤粉末の形状を示す走査型電子顕微鏡写真である。(a)が本発明品に使用した潤滑剤粉末の例、(b)が従来品に使用した潤滑剤粉末の例を示す。
【図4】粒子形状の一例を示す模式図である。(a)が陥没球の例、(b)が重なり球の例を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an iron-based powder mixture for powder metallurgy, and more particularly to an iron-based powder mixture excellent in fluidity for powder metallurgy, dischargeability from a hopper, and filling in a narrow mold.
[0002]
[Prior art]
Iron-base powder mixture for powder metallurgy is made by mixing iron powder as iron-based powder, alloy powder such as copper powder, graphite powder, iron phosphide powder, and lubricant powder such as zinc stearate and aluminum stearate. In general, a powder for improving machinability such as MnS is further mixed and produced as required.
[0003]
However, such an iron-based powder mixture for powder metallurgy contains a plurality of powders having different sizes, shapes and densities, so that they can be transported after mixing, charged into and discharged from a hopper, or molded. At the time of filling, there is a disadvantage that the powder is not uniformly distributed in the mixture and segregation is likely to occur.
The mixture in which the segregation has occurred is formed into a compact (also called a green compact) by pressurizing (compression) molding, and the compact is sintered to obtain a final product. The strength varies greatly, and defective products frequently occur. Furthermore, copper powder, graphite powder, iron phosphide powder, etc. mixed with the iron-based powder are all finer than the iron-based powder, so that the specific surface area (the ratio of the surface area to the unit weight) is large and the fluidity is reduced. I do. For this reason, the filling speed of the mixture into the molding die decreases, and the production speed of the molded body decreases.
[0004]
In order to prevent such segregation of the powder-metallurgy iron-base powder mixture, for example, Patent Document 1, Patent Document 2, Patent Document 3 and the like disclose a technique of attaching an alloy powder or the like to the surface of the iron-based powder. For example, Patent Literature 4 proposes a technique of mixing a free lubricant.
However, the iron-based powder mixture obtained by these techniques may not always be excellent in fluidity and hopper discharge. This was particularly noticeable when a lubricant containing no metal soap such as zinc stearate or lithium stearate was used as the lubricant.
[0005]
In order to solve such a problem, for example, Patent Document 5 discloses that, in an iron-based powder, at least one or more kinds of alloy powders and two or more kinds of waxes having different melting points are added and primary mixed, and during the primary mixing step or After the primary mixing, the temperature is raised to produce a partial melt of the wax, and then cooled while the secondary mixing is performed, and the partial melt of the wax is cooled and fixed, and the bonding force of the partial melt is used to form an alloy on the surface of the iron-based powder particles. Production of iron-base powder mixture for powder metallurgy with excellent fluidity and stable apparent density by adding powder soap and wax and adding 0.001 to 1% by weight of antistatic agent during cooling and then tertiarily mixing the powder. A method has been proposed.
[0006]
However, when the iron-based mixture manufactured by the technique described in Patent Document 5 is transported by a screw-type tube conveyor, the antistatic agent aggregates due to the shearing force applied by the rotation of the transport coil, and the fluidity is reduced. The problem of lowering remained. To solve such a problem, Patent Document 6 discloses that an iron-based powder contains 0.1 to 0.5% by mass of a free lubricant powder containing 0.02 to 1% by mass of an antistatic agent based on the total amount of the mixed powder. There has been proposed an iron-based mixed powder for powder metallurgy mixed with or further mixed with an alloy powder and / or a machinability improving powder.
[0007]
[Patent Document 1]
JP-A-1-219101
[Patent Document 2]
JP-A-2-217403
[Patent Document 3]
JP-A-3-162502
[Patent Document 4]
JP-A-5-148505
[Patent Document 5]
JP-A-9-71801
[Patent Document 6]
JP 2000-355702 A
[0008]
[Problems to be solved by the invention]
In recent years, iron-based powder mixtures have been required to have a high flow rate into molding dies without causing segregation and to be able to completely fill narrow-width dies as well. Have been. In response to such a demand, there has been a problem that the iron-based mixed powder manufactured by the technique described in Patent Document 6 has not yet reached a sufficient level of fluidity.
[0009]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an iron-based powder mixture which is excellent in fluidity and hopper dischargeability and excellent in filling a narrow mold.
[0010]
[Means for Solving the Problems]
The present inventors have studied the filling properties of the iron-based powder mixture into narrow molds in order to achieve the above-mentioned object. As a result, they found that the filling property of the iron-based powder mixture greatly depends on the shape of the free lubricant containing the antistatic agent.
First, a description will be given of the experimental results on which the invention is based.
[0011]
Atomized iron powder as an iron-based powder, 2% by mass of copper powder and 0.75% by mass of graphite powder with respect to the total of the iron-based powder and the alloy-based powder as an alloy powder, and an iron-based powder as a binder 0.3 parts by weight of a melt of stearic acid amide was heated and mixed with 100 parts by weight of the total amount of the powder and the alloy powder, and the alloy powder was fixed to the surface of the iron-based powder.
Next, a free lubricant containing 0.2% by mass of an antistatic agent was mixed with the iron-based powder having the surface treated with the alloy powder to obtain an iron-based powder mixture. The compounding amount of the free lubricant containing the antistatic agent was 0.4% by mass based on the total amount of the iron-based powder mixture. The antistatic agent used was polyoxyethylene lauryl ether having an HLB (hydrophilic-lipophilic balance) of 10.5, and the free lubricant used was ethylenebisstearic acid amide.
[0012]
The free lubricant containing the used antistatic agent was prepared by melting the lubricant, adding the antistatic agent, mixing and using a spray granulation method (product of the present invention). After the lubricant was melted, an antistatic agent was added, and the mixture was further mixed, cooled, pulverized, and classified. One example of a scanning electron micrograph of the free lubricant used is shown in FIG. In the case of the product of the present invention shown in FIG. 3 (a), it was almost spherical, but in the case of the conventional product shown in FIG. 3 (b), it was irregular.
[0013]
The iron-based powder mixture: 150 g was charged into a powder box (see FIG. 1) having a size of 100 × 20 × 60 mm.
This powder box was moved in the direction of the mold at a speed of 200 mm / s in the arrangement shown in FIG. 1, stopped and held for 1 second immediately above the mold, and then retracted. As a result, the mold was filled with the iron-based powder mixture. The mold used was a mold having a cavity thickness: tmm, length: 60 mm, and depth: 60 mm. Note that the thickness tmm was changed to 1, 2, and 5 mm.
[0014]
After filling, the mixture was molded at a pressure of 488 MPa, the weight of the obtained molded body was measured, the packing density (molded body weight / mold volume) was calculated, and the filling property of the iron-based mixture into the mold was evaluated. . FIG. 2 shows the obtained results. From FIG. 2, it can be seen that in the case of the iron-based powder mixture (conventional product) using an amorphous material as the free lubricant, the cavity thickness t of the mold decreases and the packing density decreases. For example, when the cavity thickness t of the mold is 1 mm, it can be seen that when an amorphous lubricant is used as the free lubricant, half of the apparent density is not filled. As described above, when the cavity thickness of the mold is thin, the iron-based powder mixture (conventional product) using an amorphous free lubricant often has only a low filling property.
[0015]
When such a low-filling iron-based powder mixture (conventional product) is used to fill a gear-shaped mold to form a compact, for example, a portion having a narrow tooth tip may have other portions. , The packing density becomes smaller. When such a molded body is sintered, the amount of shrinkage differs depending on the portion, and the dimensional accuracy of the part is reduced. Generally, when the packing density is different and the molding density is different, the dimensional change rate during sintering is different, and further, the sintering density is different. Therefore, the portion of the gear tooth tip with a low filling density tends to have a low sintering density and a low strength. Normally, in a gear, the maximum stress is generated at the tip of the tooth, so that the tip of the gear is required to have high strength, and it is desirable that the filling density is high.
[0016]
On the other hand, it can be seen from FIG. 2 that the iron-based powder mixture using the substantially spherical free lubricant (the product of the present invention) has a higher packing density than the conventional product even when the cavity thickness of the mold is thin, and is excellent in the filling property. You can see that.
The present invention has been completed based on the above findings, with further investigations.
[0017]
That is, the gist of the present invention is as follows.
(1) An iron-based powder mixture obtained by mixing at least a free lubricant powder with an iron-based powder, wherein the free lubricant powder contains 0.02 to 5.0% by mass of an antistatic agent and has a powder shape. Is an approximately spherical free lubricant powder, and the free lubricant powder contains 0.1% by mass to less than 1.20% by mass based on the total amount of the iron-based powder mixture.
(2) The iron-based powder mixture according to (1), further comprising, in addition to the free lubricant powder, a powder for alloying and / or a powder for improving machinability.
(3) In (1) or (2), the free lubricant powder further comprises a free lubricant powder containing no antistatic agent in addition to the free lubricant powder containing the antistatic agent, Wherein the total amount of the free lubricant powder containing the agent and the free lubricant powder containing no antistatic agent is 0.5 to 1.2% by mass based on the total amount of the iron-based powder mixture. Powder mixture.
(4) An iron-based powder mixture obtained by mixing at least a free lubricant powder with an iron-based powder, wherein the powder for alloying and / or the powder for improving machinability is attached to the surface of the iron-based powder via a binder. Iron-based powder, and the free lubricant powder is a free lubricant powder containing 0.02 to 5.0% by mass of an antistatic agent and having a substantially spherical powder shape. , An iron-based powder mixture containing 0.1% by mass to less than 1.20% by mass based on the total amount of the iron-based powder mixture.
(5) In (4), the free lubricant powder further includes a free lubricant powder containing no antistatic agent in addition to the free lubricant powder containing the antistatic agent, and further contains an antistatic agent. Iron, wherein the total content of the free lubricant powder and the free lubricant powder containing no antistatic agent is more than 0.1% by mass to 1.20% by mass or less based on the total amount of the iron-based powder mixture. Base powder mixture.
(6) The iron-based powder mixture according to (4) or (5), wherein the content of the binder is 0.1 to 1.0% by mass based on the total amount of the iron-based powder mixture.
(7) In any one of (1) to (6), the free lubricant powder containing the antistatic agent and having a substantially spherical powder shape is a lubricant produced by spray granulation. Iron-based powder mixture.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The iron-based powder mixture of the present invention is an iron-based powder mixture for powder metallurgy obtained by mixing a lubricant powder or an alloying powder and / or a machinability improving powder with an iron-based powder.
In the present invention, a substantially spherical free lubricant powder containing 0.02 to 5.0% by mass of an antistatic agent is blended as part or all of the lubricant powder. By including an antistatic agent in the free lubricant powder, it is possible to prevent aggregation of the antistatic agents generated in the screw-type tube-type transfer machine. Further, by containing an antistatic agent, many water molecules can be adsorbed on the surface of the free lubricant powder. Thereby, the fluidity of the iron-based powder mixture, particularly the dischargeability from the hopper, can be improved.
[0019]
It is said that the filling property of the iron-based powder mixture is governed by the magnitude of the adhesive force, particularly the intermolecular force, between the constituent powders (particularly, between lubricants or between the lubricant and the binder) (for example, Uenozono: Powder and Powder Metallurgy, 45 (1998), p849). The intermolecular force is proportional to the Hamaker's coefficient of the powder, and the water molecule has a smaller value than the lubricant. Therefore, the intermolecular force between the powders of the iron-based powder mixture is reduced by blending the lubricant having water adsorbed on the surface thereof as a free powder in the iron-based powder mixture. It is thought that the property is improved.
[0020]
In the present invention, the free lubricant powder containing an antistatic agent to be mixed with the iron-based powder mixture has a substantially spherical powder particle shape. By making the powder particle shape of the lubricant powder containing the antistatic agent and subjected to the antistatic treatment into “substantially spherical”, the filling property is further improved. In the present invention, it is particularly preferable to use a lubricant powder obtained by subjecting a molten mixture of a free lubricant and an antistatic agent to granulation by a spray granulation method. According to the spray granulation method, as shown in FIG. 3A, the surface of the lubricant powder can be made smooth and almost spherical. FIG. 3 (a) is a scanning electron micrograph of ethylene bisstearic acid amide containing an antistatic agent produced by the spray granulation method.
[0021]
The powder produced by the spray granulation method is, besides a sphere, a hollow sphere as shown in FIG. 4, a depressed sphere in which some of the particles are depressed (FIG. 4 (a)), or two spherical particles are connected. In some cases, the shape is not perfectly spherical, such as an overlapping spherical shape (FIG. 4B), but it can be used without any problem. In the present invention, the term “substantially spherical” includes a spherical shape, a depressed spherical shape and an overlapping spherical shape.
[0022]
When the content of the antistatic agent in the free lubricant powder is less than 0.02% by mass, the above-described effects are not obtained. On the other hand, if it exceeds 5.0% by mass, the fluidity of the iron-based powder mixture is reduced. For this reason, in the present invention, the content of the antistatic agent in the free lubricant powder is limited to 0.02 to 5.0% by mass. The antistatic agent used is not particularly limited as long as it increases water molecule adsorption on the surface of the free lubricant powder, and the following antistatic agents are preferred.
[0023]
Preferred antistatic agents are selected from alkyldimethylamine oxides having 10 to 20 carbon atoms in the alkyl group, betaine alkyldimethylaminoacetate, alkylcarboxymethyl-N-hydroxyethylimidazolinium betaine, and alkylamidopropyl betaine. 1 kind, sorbitan fatty acid ester having an HLB (hydrophilic lipophilic balance) of 1 to 10, polyethoxyethylene sorbitan monofatty acid ester having an HLB of 9 to 15, polyexethylene alkyl ether having an HLB of 9 to 15, and an HLB of 5 to 5 Preferred are polyethoxyethylene alkylphenyl ethers having 15 carbon atoms, alkylalkanolamides having 10 to 20 carbon atoms in the alkyl group, and polyoxyethylene alkylamines having 10 to 20 carbon atoms in the alkyl group. In particular, an alkyl carboxymethyl-N-hydroxyethyl imidasolinium betaine having 10 to 20 carbon atoms, a polyoxyethylene alkyl ether having an HLB of 9 to 15, an alkyl diethanolamide, and an alkyl group having 10 to 20 carbon atoms. Polyoxyethylene alkylamines are more preferred.
[0024]
The lubricant used as the substantially spherical free lubricant powder containing an antistatic agent is preferably a fatty acid and / or a fatty acid amide.
Fatty acids and fatty acid amides include one or more selected from stearic acid, oleic acid amide, stearic acid amide, a molten mixture of stearic acid amide and ethylenebisstearic acid amide, and ethylenebisstearic acid amide. Is preferred.
[0025]
The substantially spherical free lubricant powder containing an antistatic agent is added to the iron-based powder mixture in an amount of 0.1% by mass to less than 1.20% by mass based on the total amount of the iron-based powder mixture. By blending a free lubricant powder containing an antistatic agent with the iron-based powder mixture, it is possible to improve the fluidity of the iron-based powder mixture, particularly the dischargeability from a hopper and the filling property. It goes without saying that the free lubricant powder containing an antistatic agent is melted or softened by frictional heat and exerts a lubricating effect when being subjected to pressure molding in a mold.
[0026]
If the content of the substantially spherical free lubricant powder containing the antistatic agent is less than 0.1% by mass with respect to the total amount of the iron-based powder mixture, the fluidity of the iron-based powder mixture becomes insufficient. On the other hand, when the content is 1.20% by mass or more, the fluidity of the iron-based powder mixture is rather lowered due to an increase in the amount of adsorbed water. For this reason, the content of the free lubricant powder containing the antistatic agent is limited to the range of 0.1% by mass to less than 1.20% by mass based on the total amount of the iron-based powder mixture.
[0027]
The substantially spherical free lubricant powder may have a size equivalent to that of a commercially available lubricant powder for powder metallurgy. For example, it is preferable that the average particle diameter measured by the microtrack method is 10 to 80 μm. More preferably, it is 10 to 60 μm. When the average particle size is larger than 80 μm, coarse pores are generated in the sintered body. On the other hand, if the average particle size is as small as less than 10 μm, it is difficult to practically manufacture at low cost. In addition, it is considered that the fluidity, the hopper discharge property, and the filling property deteriorate.
[0028]
In the present invention, as the free lubricant powder, in addition to the above-described free lubricant powder containing an antistatic agent, a free lubricant powder containing no antistatic agent may be mixed with the iron-based powder mixture. The free lubricant powder containing no antistatic agent exhibits a lubricating effect by melting or softening by frictional heat when the iron-based powder mixture is filled in a mold and pressed. The compounding amount is preferably 0.5 to 1.2% by mass based on the total amount of the iron-based powder mixture, in terms of the total amount of the free lubricant powder containing the antistatic agent. If the total amount of the free lubricant powder is less than 0.5% by mass, the lubricating effect is small, and the ejection force after molding becomes high. On the other hand, when the total amount of the free lubricant powder exceeds 1.2% by mass, the fluidity of the iron-based powder mixture deteriorates. Therefore, the total amount of the free lubricant powder containing no antistatic agent and the free lubricant powder containing the antistatic agent is 0.5 to 1.2% by mass based on the total amount of the iron-based powder mixture. It is preferable to limit to the range.
[0029]
Lubricants which can be used as free lubricant powder containing no antistatic agent include thermoplastic resin, stearic acid, oleic amide, stearic amide, a molten mixture of stearic amide and ethylenebisstearic amide, ethylenebisstearin Examples thereof include acid amide, polyethylene having a molecular weight of 10,000 or less, and a melt mixture of polyethylene having a molecular weight of 10,000 or less and ethylene bisstearic acid amide, and one or two or more selected from these may be used in combination. preferable.
[0030]
The thermoplastic resin contains at least one selected from acrylic acid esters, methacrylic acid esters, and aromatic vinyl compounds as monomers in an amount of 50% by mass or more, and has a primary average particle size of 0.03 to 500%. It is preferable to use 10,000 thermoplastic resin powders. It is also possible to use one or more of zinc stearate, calcium stearate and lithium stearate as free lubricants in a very slight range of contamination of the sintering furnace. It is preferable that the total content be at most 0.3% by mass.
[0031]
In the present invention, the iron-based powder is produced during the production of steel products, reduced iron powder obtained by reducing mill scale or iron ore, produced by atomizing molten steel, atomized pure iron powder, and atomized alloy iron powder are used. Is preferred. Further, a prealloyed atomized powder obtained by atomizing molten steel containing Ni, Mo, or the like in advance, or a partially alloyed powder in which one or more of Ni, Mo, and Cu are diffused and adhered to the surface of an iron-based powder may be used. Further, in the present invention, a powder for alloying and / or a powder for improving machinability can be further blended with the iron-based powder.
[0032]
In addition, in consideration of the filling property, in the iron-based mixed powder subjected to the segregation preventing treatment, the reduced powder is used for the atomized pure iron powder and the total of the atomized pure iron powder and the reduced powder, rather than using the atomized iron powder alone. It is preferable to mix 10 to 40 parts by mass with respect to 100 parts by mass.
As the alloy powder to be mixed with the iron-based powder, one or more selected from graphite powder, copper powder, various alloy element powders and the like are suitable. The mixing amount of the alloy powder is appropriately determined in accordance with the mechanical properties required for the product sintered body, but is preferably 5.0% by mass or less based on the total amount of the iron-based powder mixture. If the blending amount of the alloy powder exceeds 5.0% by mass, there is a problem that steel powder cost increases.
[0033]
Examples of the machinability improving powder compounded for the purpose of improving the machinability of the sintered body include talc and metal sulfide powder, and one or two selected from these are used for product firing. It is appropriately selected in consideration of the characteristics required for the union. The total compounding amount of the machinability improving powder is preferably 5.0% by mass or less based on the total amount of the iron-based powder mixture. If the total compounding amount of the powder for improving machinability exceeds 5.0% by mass, the compressibility tends to decrease.
[0034]
In the present invention, the iron-based powder may be an iron-based powder obtained by fixing a powder for alloying and / or a powder for improving machinability on a surface thereof via a binder and attaching the powder. By adhering (fixing) the alloy powder and the machinability improving powder to the surface of the iron-based powder, segregation of the iron-based powder mixture can be prevented. In the present invention, it is preferable that the adhesion (fixation) treatment of the alloy powder and / or the machinability improving powder to the surface of the iron-based powder is performed via a binder.
[0035]
The adhesion (adhesion) treatment is performed by mixing an alloy powder and / or a powder for improving machinability with an iron-based powder, further adding a binder, and heating and mixing at a temperature equal to or higher than the melting point of the binder. It is preferable that the agent is melted, the powder for alloying and / or the powder for improving machinability is attached to the surface of the iron-based powder, and after cooling, these powders are fixed to the surface of the iron-based powder by the binding force of the binder.
[0036]
The content of the binder is preferably in the range of 0.1 to 1.0% by mass based on the total amount of the iron-based powder mixture. When the content of the binder is less than 0.1% by mass, the amount of the powder for alloy or the like adhered to the surface of the iron-based powder decreases, and the segregation of the powder for alloy or the like in the iron-based powder mixture increases. On the other hand, when the added amount of the binder exceeds 1.0% by mass, the hopper discharge property is reduced. Therefore, the content of the binder is preferably in the range of 0.1 to 1.0% by mass based on the total amount of the iron-based powder mixture.
[0037]
Examples of suitable binders for adhering (fixing) the alloy powder and / or the machinability improving powder to the surface of the iron-based powder include stearic acid, oleic acid amide, stearic acid amide, stearic acid amide, and ethylenebisamide. A molten mixture with stearic acid amide and one or two or more kinds of molten mixtures selected from ethylene bisstearic acid amide are preferred.
[0038]
By using these as a binder, the iron-based powder mixture can be melted by frictional heat when pressed in a mold in the same manner as zinc stearate containing a metal element (melting point: 120 ° C.) conventionally used. Alternatively, it can be softened to function as an original lubricant.
A substantially spherical free lubricant powder containing an antistatic agent is further added to the iron-based powder in which a binder is added and the powder for alloying and / or the powder for improving machinability are fixed to the surface of the iron-based powder. 0.1% by mass or more and less than 1.20% by mass with respect to the total amount of the mixture. By blending a free lubricant powder containing an antistatic agent, it is possible to improve the fluidity of the iron-based powder mixture, particularly the dischargeability from a hopper and the filling property. The kind of the free lubricant powder containing the antistatic agent and the reason for limiting the content are the same as in the case where the alloy powder and / or the machinability improving powder are not fixed to the surface.
[0039]
Further, in addition to the above-described free lubricant powder containing an antistatic agent, a free lubricant powder containing no antistatic agent may be added to the iron-based powder mixture. When the alloy powder is fixed to the surface of the iron-based powder via a bonding lubricant, the content is determined by the total amount of the free lubricant containing the antistatic agent and the free lubricant containing no antistatic agent. Is preferably more than 0.1% by mass and 1.20% by mass or less based on the total amount of the iron-based powder mixture.
[0040]
When the total amount of the free lubricant powder is 0.1% by mass or less, the lubricating effect is small, and the ejection force after molding is increased. On the other hand, when the total amount of the free lubricant powder exceeds 1.20% by mass, the fluidity of the iron-based powder mixture deteriorates, and the hopper dischargeability and the filling property decrease. For this reason, when a binder is included, the total amount of the free lubricant powder containing no antistatic agent and the free lubricant powder containing the antistatic agent is 0.1 mass% with respect to the total amount of the iron-based powder mixture. %, And preferably not more than 1.20% by mass.
[0041]
Next, a preferred method for producing the iron-based powder mixture of the present invention will be described.
Almost spherical free lubricant powder containing iron-based powder or further powder for alloying and / or powder for improving machinability, and a predetermined amount of antistatic agent, or free lubricant containing no antistatic agent The powder is added and mixed to form an iron-based powder mixture.
[0042]
Further, the powder for alloying and / or the powder for improving machinability and the binder are added to the iron-based powder in an amount of 0.1 to 1.0% by mass based on the total amount of the iron-based powder mixture, and then mixed. When one kind of binder is used, the temperature is 10 to 100 ° C. higher than the melting point of the binder, and when two or more kinds of binders are used, the temperature is 10 ° C. or more higher than the lowest melting point of the binder. The powder is mixed while being heated at a temperature not higher than the highest melting point of the alloy, and the powder for alloying and / or the powder for improving machinability is adhered to the surface of the iron-based powder with a partially melted binder. The alloy powder and / or the machinability improving powder are fixed to the surface of the base powder with a binder. Then, a substantially spherical free lubricant powder containing a predetermined amount of an antistatic agent at a temperature of 60 ° C. or lower, and if necessary, a free lubricant powder containing no antistatic agent is added and mixed, It is preferable to use an iron-based powder mixture. As the substantially spherical free lubricant powder containing an antistatic agent, it is preferable to use a lubricant powder obtained by subjecting a molten mixture of a lubricant and an antistatic agent to granulation by a spray granulation method.
[0043]
After adding an appropriate amount of free lubricant to the iron-based powder mixture obtained by adhering graphite powder or the like to the surface of the iron-based powder obtained as described above, the shear force of hardly breaking secondary particles of the free lubricant is reduced. It is preferred to carry out the mixing using a mixer.
This is because it is effective in preventing the destruction of the granulated lubricant. By using these mixers, it is possible to produce an iron-based powder that is more excellent in fluidity and hopper discharge.
[0044]
As the mixer, a mixer having a small shearing force applied to the mixed powder, such as a container rotating type, a mechanical stirring type, a flow stirring type, and a non-stirring type, is preferable. In the container rotary mixer, a horizontal cylindrical type, an inclined cylindrical type, a V type, a double cone type, a continuous V type are preferable, and a mixer having a built-in stirring blade is also preferable. In the mechanical stirring type mixer, a ribbon type, a screw type, a double shaft paddle type, a conical screw type, and a rotating disk type are preferable. The fluidized-bed mixer is preferably a fluidized bed type, a swirling type, or a jet pump type.
[0045]
The condition of the mixer is, for example, when the above-described V-type container rotary mixer is used, in order to leave at least 20 mass% of secondary particles having a particle size of 10 to 80 μm, the rotation speed of a 2 liter container is set. It is preferable that the speed be 10 to 100 rpm. However, the mixing conditions are not limited to the above range, but are appropriately determined according to the cohesive strength of the secondary particles of the free lubricant.
[0046]
【Example】
(Example 1)
The used antistatic agent is shown in Table 1, and the lubricant is shown in Table 2. Table 3 shows the lubricant composed of the thermoplastic resin used.
Atomized iron powder (average particle size: 75 μm) having a particle size distribution shown in Table 4 as an iron-based powder, and 2 mass% copper powder (average particle size: 23 μm) based on the total amount of the iron-based powder mixture as an alloy powder. , 0.8 mass% of natural graphite powder (average particle size: 14 μm) was mixed with a free lubricant powder of the type and blending amount shown in Table 5 by a V blender for 15 minutes to obtain an iron-based powder mixture.
[0047]
A free lubricant powder containing an antistatic agent was prepared by the following procedure.
The lubricant is melted at a temperature higher by 10 to 40 ° C. than its melting point, an antistatic agent is further added so as to have a content shown in Table 5, and after mixing, a granulation treatment is performed using a spray dryer, A lubricant powder containing a substantially spherical antistatic agent was obtained. The average particle size of the obtained lubricant powder was 40 to 75 μm as measured by the microtrack method.
[0048]
Further, an antistatic agent was added to the melted lubricant so as to have the content shown in Table 5, and the mixture was mixed with a V-type mixer at a rotation speed of 30 rpm for 10 minutes, cooled, pulverized, and classified. A lubricant powder containing an irregular (non-spherical) antistatic agent as shown in FIG. 3 (b) was obtained and used as a comparative example.
With respect to the obtained iron-based powder mixture, fluidity, hopper dischargeability, and filling property were measured. In addition, the extraction force of a molded body using the iron-based powder mixture was measured. The measuring method was as follows.
[0049]
(1) Liquidity
An iron-based powder mixture: 100 g was charged into a container having an orifice diameter of 5 mm, the time from filling to discharge was measured, the fluidity (s / 100 g) was determined, and the fluidity was evaluated using this fluidity.
(2) Hopper discharge
A container (inner diameter 100 mm x height 200 mm) provided with an orifice (diameter 2.0 mm) in the center of the bottom is filled with 1000 g of the iron-based powder mixture, and added until the 1000 g of the iron-based powder mixture is completely discharged through the orifice. The number of vibrations was determined, and the hopper dischargeability was evaluated based on the number of vibrations.
[0050]
(3) Extraction force
Filling the mold with the iron-based powder mixture, 5 ton / cm 2 After compression at a pressure of (490 MPa) and molding into a tablet (molded body) having a height of 25 mmφ × 20 mm, the molded body was extracted from the mold, and the extraction force at that time was measured.
(4) Fillability test
Using a device whose arrangement is schematically shown in FIG. 1, a filling test of the iron-based powder mixture was performed. Iron-based powder mixture (test mixed powder): A powder box (100 × 20 × 60 mm) filled with 150 g was moved in the direction of the mold at a speed of 200 mm / s to form a mold having a cavity of t = 1 mm. It stopped just above, hold | maintained for 1 second, and it was made to retract | retreat after filling an iron-base powder mixture into a metal mold | die. After filling, it was molded at a pressure of 480 MPa to obtain a molded body. Next, the weight of the obtained molded body was measured, and the packing density {= (weight of molded body) / (volume of cavity)} was determined. The value obtained by dividing the packing density by the apparent density of the iron-based powder mixture in the powder box was defined as the filling rate, and the filling property was evaluated. The higher the filling rate, the better the filling property.
[0051]
Table 5 shows the obtained results.
[0052]
[Table 1]
Figure 2004002964
[0053]
[Table 2]
Figure 2004002964
[0054]
[Table 3]
Figure 2004002964
[0055]
[Table 4]
Figure 2004002964
[0056]
[Table 5]
Figure 2004002964
[0057]
In the example of the present invention, the fluidity is 12.9 to 13.9 s / 100 g, the hopper discharge property is 2 times or less, the ejection force is 10.6 to 11.0 MPa, and the filling value is 71 to 80%. This is an iron-based powder mixture having low power, excellent fluidity, excellent hopper dischargeability, and excellent filling properties. On the other hand, in Comparative Examples outside the scope of the present invention, any or all of the fluidity, the hopper dischargeability, and the fillability are reduced.
[0058]
(Example 2)
Atomized pure iron powder (average particle size: 78 μm) having a particle size distribution shown in Table 4 was used as the iron-based powder. In part, 30 parts by mass of the reduced iron powder having the particle size distribution shown in Table 4 was mixed as the iron-based powder with respect to the total amount (mixture No. 2-8) or 100 parts by mass of the atomized iron powder. (Mixture No. 2-7) 2% by mass of electrolytic copper powder (average particle diameter: 25 μm) and 1% by mass of graphite powder (average (Particle size: 23 μm) together with the binders of the types and amounts shown in Table 6 were charged into a heating mixer and mixed thoroughly. Next, the binder was heated while being mixed at a temperature not lower than (the lowest melting point + 10 ° C.) and not higher than the highest melting point (this is referred to as primary mixing).
[0059]
Then, the mixture was cooled to 85 ° C. or lower while mixing. Further, after cooling to 40 ° C., a free lubricant powder containing an antistatic agent shown in Table 6 is added (normal temperature addition), or a free lubricant powder containing no antistatic agent is further added to make the mixture uniform. After mixing as described above (this is called secondary mixing), the mixture was discharged from the heating mixer to obtain an iron-based powder mixture. As a mixer, a W cone type mixer was used, and mixing was performed for 10 minutes at a rotation speed of 60 rpm.
[0060]
With respect to the obtained iron-based powder mixture, fluidity, hopper dischargeability, and filling property were measured. Further, the extraction force of a molded body using the iron-based powder mixture was measured. In addition, the segregation tendency of the obtained iron-based powder mixture was investigated by the degree of carbon adhesion.
The methods for measuring the fluidity, the hopper discharge property, the ejection force of the molded body, and the filling property were the same as those in Example 1. In addition, the measuring method of a carbon adhesion degree is as follows.
(5) Carbon adhesion
The carbon adhesion was calculated by the following equation.
[0061]
Degree of adhesion of carbon = [(C analysis value of iron-based powder mixture from particle size in a range not passing through 100 mesh (150 μm) to not passing through 200 mesh (75 μm)) / (C analysis value of iron-based mixture)] × 100 (%)
The larger the degree of adhesion of carbon, the smaller the segregation of graphite powder in the iron-based mixed powder.
[0062]
Table 6 shows the obtained results.
[0063]
[Table 6]
Figure 2004002964
[0064]
[Table 7]
Figure 2004002964
[0065]
The examples of the present invention have a fluidity of 12.1 to 13.0 s / 100 g, a hopper discharge property of once or less, an extraction force of 11.0 to 12.2 MPa, a degree of carbon adhesion of 80% or more, and a filling rate of 72%. % Or more, the withdrawal force is low, the segregation tendency is small, and excellent fluidity, excellent hopper discharge property and excellent filling property are exhibited. In addition, the mixture No. which mixed atomized iron powder and reduced iron powder was used. No. 2-7 and the mixture No. 2 using the reduced powder. In No. 2-8, the filling property is further improved.
[0066]
On the other hand, in the comparative examples outside the range of the present invention, the fluidity and the hopper discharge property are reduced. The mixture No. 2-18, no. 2-19, no. In No. 2-20, since the content of the free lubricant powder containing the antistatic agent is out of the range of the present invention, the fluidity, the hopper discharge property, and the filling property are reduced. In addition, the mixture No. 2-21, No. 1; In No. 2-22, since the amount of the antistatic agent in the free lubricant powder is out of the range of the present invention, the fluidity, the hopper discharge property and the filling property are deteriorated. In addition, the mixture No. In No. 2-23, since the shape of the free lubricant powder containing the antistatic agent is not substantially spherical, the filling property is poor.
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an iron-based powder mixture excellent in fluidity, hopper dischargeability, and filling property in a narrow mold, and has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view schematically showing a test apparatus that can be suitably used for a filling test.
FIG. 2 is a graph showing the relationship between the packing density of a conventional iron-based powder mixture (conventional product) and the iron-based powder mixture of the present invention (product of the present invention) and the mold cavity thickness.
FIG. 3 is a scanning electron micrograph showing the shape of a lubricant powder. (A) shows an example of the lubricant powder used in the product of the present invention, and (b) shows an example of the lubricant powder used in the conventional product.
FIG. 4 is a schematic diagram illustrating an example of a particle shape. (A) shows an example of a depressed sphere, and (b) shows an example of an overlapping sphere.

Claims (7)

鉄基粉末に少なくとも遊離潤滑剤粉末を混合してなる鉄基粉末混合物であって、前記遊離潤滑剤粉末を、0.02〜 5.0質量%の帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末とし、該遊離潤滑剤粉末を、鉄基粉末混合物全量に対し0.1質量%以上〜1.20質量%未満含むことを特徴とする鉄基粉末混合物。An iron-based powder mixture obtained by mixing at least a free lubricant powder with an iron-based powder, wherein the free lubricant powder contains 0.02 to 5.0 mass% of an antistatic agent and has a substantially spherical powder shape. An iron-based powder mixture, characterized in that the iron-based powder mixture contains 0.1% by mass to less than 1.20% by mass of the free lubricant powder with respect to the total amount of the iron-based powder mixture. 前記遊離潤滑剤粉末に加えてさらに、合金用粉末および/または切削性改善用粉末を混合することを特徴とする請求項1に記載の鉄基粉末混合物。The iron-based powder mixture according to claim 1, wherein an alloy powder and / or a machinability improving powder are further mixed in addition to the free lubricant powder. 前記遊離潤滑剤粉末が、前記帯電防止剤を含有する遊離潤滑剤粉末に加えてさらに、帯電防止剤を含有しない遊離潤滑剤粉末を含み、帯電防止剤を含有する遊離潤滑剤粉末と帯電防止剤を含有しない遊離潤滑剤粉末との合計量が、鉄基粉末混合物全量に対し0.5〜1.2質量%であることを特徴とする請求項1または2に記載の鉄基粉末混合物。The free lubricant powder further comprises a free lubricant powder containing no antistatic agent in addition to the free lubricant powder containing the antistatic agent, and a free lubricant powder containing an antistatic agent and an antistatic agent 3. The iron-based powder mixture according to claim 1, wherein the total amount of the free lubricant powder containing no iron is 0.5 to 1.2% by mass based on the total amount of the iron-based powder mixture. 4. 鉄基粉末に少なくとも遊離潤滑剤粉末を混合してなる鉄基粉末混合物であって、前記鉄基粉末を結合剤を介して表面に合金用粉末および/または切削性改善用粉末を付着させてなる鉄基粉末とし、前記遊離潤滑剤粉末を、0.02〜5.0質量%の帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末とし、該遊離潤滑剤粉末を、鉄基粉末混合物全量に対し0.1質量%以上〜1.20質量%未満含有することを特徴とする鉄基粉末混合物。An iron-based powder mixture obtained by mixing at least a free lubricant powder with an iron-based powder, wherein the iron-based powder is adhered with a powder for alloying and / or a powder for improving machinability on a surface thereof via a binder. An iron-based powder, wherein the free lubricant powder is a free lubricant powder containing 0.02 to 5.0% by mass of an antistatic agent and having a substantially spherical powder shape; An iron-based powder mixture, comprising 0.1% by mass to less than 1.20% by mass based on the total amount of the powder mixture. 前記遊離潤滑剤粉末が、前記帯電防止剤を含有する遊離潤滑剤粉末に加えてさらに、帯電防止剤を含有しない遊離潤滑剤粉末を含み、帯電防止剤を含有する遊離潤滑剤粉末と帯電防止剤を含有しない遊離潤滑剤粉末との合計含有量が、鉄基粉末混合物全量に対し0.1質量%超〜1.20質量%以下であることを特徴とする請求項4に記載の鉄基粉末混合物。The free lubricant powder further comprises a free lubricant powder containing no antistatic agent in addition to the free lubricant powder containing the antistatic agent, and a free lubricant powder containing an antistatic agent and an antistatic agent 5. The iron-based powder according to claim 4, wherein the total content of the free lubricant powder containing no iron is more than 0.1% by mass to 1.20% by mass or less based on the total amount of the iron-based powder mixture. mixture. 前記結合剤の含有量が、鉄基粉末混合物全量に対して0.1〜1.0質量%であることを特徴とする請求項4または5に記載の鉄基粉末混合物。The iron-based powder mixture according to claim 4 or 5, wherein the content of the binder is 0.1 to 1.0% by mass based on the total amount of the iron-based powder mixture. 前記帯電防止剤を含有し粉末形状がほぼ球状である遊離潤滑剤粉末が、スプレー造粒法で製造された潤滑剤であることを特徴とする請求項1ないし6のいずれかに記載の鉄基粉末混合物。7. The iron-based powder according to claim 1, wherein the free lubricant powder containing the antistatic agent and having a substantially spherical powder shape is a lubricant produced by a spray granulation method. Powder mixture.
JP2003013098A 2002-04-01 2003-01-22 Iron-based powder mixture Pending JP2004002964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013098A JP2004002964A (en) 2002-04-01 2003-01-22 Iron-based powder mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002098702 2002-04-01
JP2003013098A JP2004002964A (en) 2002-04-01 2003-01-22 Iron-based powder mixture

Publications (1)

Publication Number Publication Date
JP2004002964A true JP2004002964A (en) 2004-01-08

Family

ID=30446510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013098A Pending JP2004002964A (en) 2002-04-01 2003-01-22 Iron-based powder mixture

Country Status (1)

Country Link
JP (1) JP2004002964A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087411A1 (en) * 2004-03-17 2005-09-22 Jfe Steel Corporation Iron-based powder mixture for powder metallurgy
JP2005264201A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Ferrous group powder mixture for powder metallurgy, and its production method
JP2010037632A (en) * 2008-08-07 2010-02-18 Jfe Steel Corp Powder mixture for powder metallurgy and method for producing compact
JP2010077515A (en) * 2008-09-29 2010-04-08 Hitachi Powdered Metals Co Ltd Method for producing sintered valve guide
WO2014123106A1 (en) * 2013-02-05 2014-08-14 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
CN103990791A (en) * 2013-02-18 2014-08-20 日立化成株式会社 Powder mixture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087411A1 (en) * 2004-03-17 2005-09-22 Jfe Steel Corporation Iron-based powder mixture for powder metallurgy
JP2005264201A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Ferrous group powder mixture for powder metallurgy, and its production method
JP2010037632A (en) * 2008-08-07 2010-02-18 Jfe Steel Corp Powder mixture for powder metallurgy and method for producing compact
JP2010077515A (en) * 2008-09-29 2010-04-08 Hitachi Powdered Metals Co Ltd Method for producing sintered valve guide
WO2014123106A1 (en) * 2013-02-05 2014-08-14 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
CN104968770A (en) * 2013-02-05 2015-10-07 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
JPWO2014123106A1 (en) * 2013-02-05 2017-02-02 株式会社Adeka Lubricant for metal powder metallurgy, method for producing the same, metal powder composition, and method for producing metal powder metallurgy product
US10259040B2 (en) 2013-02-05 2019-04-16 Adeka Corporation Lubricant for metal powder metallurgy, method of producing same, metal powder composition, and method of producing metal powder metallurgy product
CN103990791A (en) * 2013-02-18 2014-08-20 日立化成株式会社 Powder mixture

Similar Documents

Publication Publication Date Title
JP2010265454A (en) Lubricant combination and process for preparing the same
JP2010168667A (en) Iron-based powder composition containing combination of binder-lubricant, and production of the powder composition
JP2011006786A (en) Iron-based mixture powder for powder metallurgy
JP2005307348A (en) Iron-based powder mixture for powder metallurgy
JP2008266776A (en) Iron-based powdery mixture for powder metallurgy
JP4093041B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP2004002964A (en) Iron-based powder mixture
JP4483595B2 (en) Iron-based powder mixture for high-strength sintered parts
JP3903520B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP4144326B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP2007002340A (en) Iron based powder mixture for powder metallurgy, and method for producing the same
JP2005264201A (en) Ferrous group powder mixture for powder metallurgy, and its production method
JP3682678B2 (en) Iron-based powder mixture for powder metallurgy with excellent fluidity and stable apparent density
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
JP5245728B2 (en) Iron-based mixed powder for powder metallurgy
WO2005087411A1 (en) Iron-based powder mixture for powder metallurgy
JP3873547B2 (en) Iron-based mixed powder for powder metallurgy
JPH0247201A (en) Manufacture of ferrous powder mixed material for powder metallurgy
CN112584948B (en) Mixed powder for powder metallurgy and lubricant for powder metallurgy
EP3756790A1 (en) Mixed powder for powder metallurgy
JP3707490B2 (en) Method for producing iron-based powder mixture for powder metallurgy with excellent fluidity and stable apparent density
JP3707489B2 (en) Method for producing iron-based powder mixture for powder metallurgy with excellent fluidity and stable apparent density
JP2024017984A (en) Iron-based powder mix for powder metallurgy, iron-based sintered body, and sintered mechanical component
JP2019002068A (en) Powder mixture for powder metallurgy and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204