JP5169605B2 - Powder mixture for powder metallurgy and method for producing molded body - Google Patents

Powder mixture for powder metallurgy and method for producing molded body Download PDF

Info

Publication number
JP5169605B2
JP5169605B2 JP2008204768A JP2008204768A JP5169605B2 JP 5169605 B2 JP5169605 B2 JP 5169605B2 JP 2008204768 A JP2008204768 A JP 2008204768A JP 2008204768 A JP2008204768 A JP 2008204768A JP 5169605 B2 JP5169605 B2 JP 5169605B2
Authority
JP
Japan
Prior art keywords
powder
iron
lubricant
organic binder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008204768A
Other languages
Japanese (ja)
Other versions
JP2010037632A (en
Inventor
友重 尾野
由紀子 尾▲崎▼
貴史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008204768A priority Critical patent/JP5169605B2/en
Publication of JP2010037632A publication Critical patent/JP2010037632A/en
Application granted granted Critical
Publication of JP5169605B2 publication Critical patent/JP5169605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、鉄基粉末を主体とする粉末冶金用の粉末混合物とこの粉末混合物を用いた成形体の製造方法に関するものである。   The present invention relates to a powder mixture for powder metallurgy mainly composed of iron-based powder and a method for producing a molded body using the powder mixture.

粉末冶金技術は、複雑な形状の機械部品を極めて高い寸法精度で生産できるため、機械部品の製造コストを大幅に低減することが可能である。そのため、粉末冶金技術を適用して製造した各種の機械部品が多方面に利用されている。さらに最近では、機械部品の小型化や軽量化の要求が高まりつつあり、これに伴い、小型軽量で且つ十分な強度を有する機械部品を製造するための粉末冶金用原料粉が種々検討されている。 Since powder metallurgy technology can produce machine parts with complicated shapes with extremely high dimensional accuracy, it is possible to significantly reduce the manufacturing costs of machine parts. Therefore, various machine parts manufactured by applying the powder metallurgy technique are used in various fields. Furthermore, recently, demands for reducing the size and weight of machine parts are increasing, and accordingly, various powders for powder metallurgy for producing machine parts that are small and light and have sufficient strength have been studied. .

例えば、特許文献1〜3には、鉄基粉末(純鉄粉、合金鋼粉等)の表面に合金用粉末(例えば、銅粉、黒鉛粉、燐化鉄粉、硫化マンガン粉等)を付着させた粉末冶金用原料粉が開示されている。通常、このような原料粉には潤滑剤(例えば、ステアリン酸亜鉛、ステアリン酸アルミニウム等)が添加され、この粉末混合物を成形・焼結して機械部品が製造される。 For example, in Patent Documents 1 to 3, an alloy powder (eg, copper powder, graphite powder, iron phosphide powder, manganese sulfide powder, etc.) is attached to the surface of an iron-based powder (pure iron powder, alloy steel powder, etc.). Disclosed is a raw powder for powder metallurgy. Usually, a lubricant (for example, zinc stearate, aluminum stearate, etc.) is added to such raw material powder, and this powder mixture is molded and sintered to produce a machine part.

昨今、焼結部品の高強度化を目的とし、鉄基粉末を高い圧力で成形し、成形体の密度を高める技術が開発されている。高圧での成形では、鉄基粉末と金型との摩擦力を低減する必要があるため、上記のように鉄基粉末に潤滑剤を添加する方法が一般的に採られる。また、鉄基粉末表面に合金用粉末を付着させるために必要な結合剤にも、鉄基粉末の粒子間や鉄基粉末と金型との摩擦力を低減させるものが要求される。一方、これら潤滑剤や結合剤は、鉄基粉末に較べて密度が低いため、潤滑性を重視するために大量に添加すると、圧粉体の密度を低下させることになる。したがって、高密度の成形体を作製するためには、低濃度で高い潤滑性を有する潤滑剤や結合剤が必要になる。   Recently, for the purpose of increasing the strength of sintered parts, a technique has been developed in which an iron-based powder is molded at a high pressure to increase the density of the molded body. In molding at high pressure, since it is necessary to reduce the frictional force between the iron-based powder and the mold, a method of adding a lubricant to the iron-based powder as described above is generally employed. In addition, a binder that is required for adhering the alloy powder to the surface of the iron-based powder is also required to reduce the frictional force between the particles of the iron-based powder or between the iron-based powder and the mold. On the other hand, since these lubricants and binders have a lower density than iron-based powders, if they are added in large quantities in order to place importance on lubricity, the density of the green compact will be reduced. Therefore, in order to produce a high-density molded body, a lubricant or binder having a low concentration and high lubricity is required.

例えば、特許文献4には、有機結合剤により黒鉛を付着させた鉄基粉末に、潤滑剤として、エルカ酸アミドおよび/またはオレイン酸アミドを含む遊離潤滑剤を混合物全体で0.05〜0.2mass%の比率で混合した鉄基粉末混合物であって、遊離潤滑剤の少なくとも30mass%が、粒径1〜30μmの一次粒子を凝集させて造粒した粒径10〜200μmの二次粒子からなる粉末冶金用鉄基粉末混合物が開示されているが、結合剤に関しては特別な限定はされていない。   For example, in Patent Document 4, a free lubricant containing erucic acid amide and / or oleic acid amide as a lubricant is added to an iron-based powder in which graphite is adhered by an organic binder in a total mixture of 0.05 to 0.00. It is an iron-based powder mixture mixed at a ratio of 2 mass%, and at least 30 mass% of the free lubricant is composed of secondary particles having a particle size of 10 to 200 μm, which are granulated by agglomerating primary particles having a particle size of 1 to 30 μm. Although iron-based powder mixtures for powder metallurgy are disclosed, no particular limitation is imposed on the binder.

特開平1−219101号公報JP-A-1-219101 特開平2−217403号公報JP-A-2-217403 特開平3−162502号公報JP-A-3-162502 特開2005−264201号公報JP 2005-264201 A

上述した有機結合剤は、鉄基粉末の表面に合金用粉末を付着させるためのものであるが、一方で、鉄基粉末の粒子間の摩擦力や粘着力・付着力にも大きな影響を及ぼす。例えば、使用される環境下で硬い有機結合剤を用いれば、粉体の流動性は向上するが、一方で、圧縮時に抵抗が大きくなるため、圧粉体の高密度化には不利である。また、柔らかい有機結合剤を用いた場合には、粒子間の粘着力や付着力が増し、粉体の流動性が低下する。したがって、特許文献4に示されるような鉄基粉末混合物では、特に高圧での成形において、鉄基粉末混合物と金型との摩擦力を十分に低減できない場合がある。また、粒径の大きい造粒潤滑剤を添加すると焼結後に空洞が残り、外観不良となる場合もある。 The organic binder described above is for adhering the alloy powder to the surface of the iron-based powder, but on the other hand, it also has a great effect on the frictional force, adhesion and adhesion between the particles of the iron-based powder. . For example, if a hard organic binder is used in the environment in which it is used, the fluidity of the powder is improved, but on the other hand, the resistance increases during compression, which is disadvantageous for increasing the density of the green compact. In addition, when a soft organic binder is used, the adhesion and adhesion between particles increase, and the fluidity of the powder decreases. Therefore, in the iron-based powder mixture as shown in Patent Document 4, the frictional force between the iron-based powder mixture and the mold may not be sufficiently reduced, particularly in molding at high pressure. Moreover, when a granulated lubricant having a large particle size is added, cavities may remain after sintering, resulting in poor appearance.

したがって本発明の目的は、高圧力での成形において、金型との摩擦力を十分に低減することができ、金型からの抜き出し時に型かじりなどを生じることがなく、且つ高密度の成形体を適切に得ることができる粉末冶金用粉末混合物を提供することにある。 また、本発明の他の目的は、そのような粉末冶金用粉末混合物を高圧成形して高密度の成形体を得るための成形体の製造方法を提供することにある。 Accordingly, an object of the present invention is to form a high-density molded body that can sufficiently reduce the frictional force with the mold in molding at a high pressure without causing mold galling or the like when extracted from the mold. Is to provide a powder mixture for powder metallurgy that can be obtained appropriately. Another object of the present invention is to provide a method for producing a molded body for obtaining a high-density molded body by high-pressure molding such a powder metallurgy powder mixture.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]鉄基粉末と、該鉄基粉末の表面に有機結合剤を介して付着した合金用粉末と、前記鉄基粉末から遊離した潤滑剤を含む粉末冶金用粉末混合物において、
有機結合剤および潤滑剤の25℃における針入度が3〜5mmであり、鉄基粉末および合金用粉末の合計量に対する有機結合剤および潤滑剤の合計添加量が0.1〜0.3mass%であり、
有機結合剤および潤滑剤がオレイン酸アミドからなることを特徴とする粉末冶金用粉末混合物。
The gist of the present invention for solving the above problems is as follows.
[1] In a powder mixture for powder metallurgy comprising an iron-based powder, an alloy powder attached to the surface of the iron-based powder via an organic binder, and a lubricant released from the iron-based powder,
The penetration of the organic binder and the lubricant at 25 ° C. is 3 to 5 mm , and the total addition amount of the organic binder and the lubricant with respect to the total amount of the iron-based powder and the alloy powder is 0.1 to 0.3 mass. %
A powder mixture for powder metallurgy, characterized in that the organic binder and the lubricant comprise oleic amide .

[2]上記[1]の粉末冶金用粉末混合物において、成形圧力686MPa以上の高圧成形用の粉末混合物であることを特徴とする粉末冶金用粉末混合物。
[3]上記[1]の粉末冶金用粉末混合物を、成形圧力686MPa以上で成形することを特徴とする成形体の製造方法。
[2] A powder mixture for powder metallurgy according to the above [1], which is a powder mixture for high pressure molding with a molding pressure of 686 MPa or more.
[3] A method for producing a molded body, wherein the powder mixture for powder metallurgy according to [1] is molded at a molding pressure of 686 MPa or more.

本発明の粉末冶金用粉末混合物は、高圧力での成形において、金型との摩擦力を十分に低減することができ、金型からの抜き出し時に型かじりなどを生じることがなく、且つ高密度の成形体を適切に得ることができる。 The powder mixture for powder metallurgy according to the present invention can sufficiently reduce the frictional force with the mold in molding at a high pressure, does not cause mold galling or the like when extracted from the mold, and has a high density. It is possible to appropriately obtain the molded body.

本発明の粉末冶金用粉末混合物(以下、単に「粉末混合物」という)は、鉄基粉末と、この鉄基粉末の表面に有機結合剤を介して付着した合金用粉末と、前記鉄基粉末から遊離した潤滑剤を含むものである。
本発明の粉末混合物を構成する鉄基粉末としては、例えば、純鉄粉、合金鋼粉などが挙げられ、これらの1種以上を用いることができる。なお、合金鋼粉としては、溶鋼段階で合金成分を添加することで予め合金化させたもの、合金成分を鉄粉表面に部分的に拡散付着させたものなどがある。
A powder mixture for powder metallurgy according to the present invention (hereinafter simply referred to as “powder mixture”) includes an iron-based powder, an alloy powder attached to the surface of the iron-based powder via an organic binder, and the iron-based powder. Contains free lubricant.
Examples of the iron-based powder constituting the powder mixture of the present invention include pure iron powder and alloy steel powder, and one or more of these can be used. Examples of the alloy steel powder include those previously alloyed by adding an alloy component at the molten steel stage, and those obtained by partially diffusing and adhering the alloy component to the iron powder surface.

前記合金用粉末(副原料)としては、例えば、銅粉、黒鉛粉、燐化鉄粉、硫化マンガンなどが挙げられ、これらの1種以上を用いることができる。粉末混合物中での合金用粉末の含有量は、通常、0.1〜10mass%程度である。
本発明の粉末混合物は、鉄基粉末に合金用粉末と有機結合剤を添加し、有機結合剤の融点以上の温度に加熱しつつ混合した後、冷却して有機結合剤を固化させ、次いで、潤滑剤を添加し、混合することにより得ることができる。
Examples of the alloy powder (auxiliary material) include copper powder, graphite powder, iron phosphide powder, and manganese sulfide, and one or more of these can be used. The content of the alloy powder in the powder mixture is usually about 0.1 to 10 mass%.
In the powder mixture of the present invention, the alloy powder and the organic binder are added to the iron-based powder, mixed while heating to a temperature equal to or higher than the melting point of the organic binder, and then cooled to solidify the organic binder. It can be obtained by adding a lubricant and mixing.

従来、鉄基粉末を主体とする粉末混合物の圧縮成形時には、成形圧力が増加する(すなわち、成形体の密度が高くなる)にしたがって、金型側面との摩擦力が増加し、成形体を金型から抜き出すときの抜出し力が増加すると考えられていた。昨今、成形技術の向上により、686MPa以上の成形圧力で成形することが可能になってきているが、このような高い成形圧力で成形する場合、あるレベル以上の成形圧力において抜き出し力が低下する場合があることが明らかになってきた。このような高圧成形下での抜き出し力の低下の原因は、粉末混合物に含まれる有機結合剤や潤滑剤が、成形時に成形体内部の空隙が小さくなるにしたがって、成形体内部から外部すなわち金型表面へと押し出されることで、金型表面に潤滑膜を形成するためであると考えられる。このことからして、粉末混合物に配合する有機結合剤や潤滑剤は、変形しやすいものの方がよいと考えられる。   Conventionally, during compression molding of a powder mixture mainly composed of iron-based powder, as the molding pressure increases (that is, the density of the molded body increases), the frictional force with the side surface of the mold increases, and the molded body is It was thought that the extraction force when extracting from the mold increased. Recently, it has become possible to mold at a molding pressure of 686 MPa or more due to improvements in molding technology. When molding at such a high molding pressure, the extraction force decreases at a certain level of molding pressure or higher. It has become clear that there is. The cause of the decrease in the extraction force under such high-pressure molding is that the organic binder or lubricant contained in the powder mixture decreases from the inside of the molded body to the outside, that is, the mold as the void inside the molded body becomes smaller during molding. It is thought that this is because a lubricating film is formed on the mold surface by being extruded to the surface. From this, it is considered that the organic binder and lubricant blended in the powder mixture should be easily deformed.

本発明者らは、このような観点から有機結合剤および潤滑剤の最適条件について検討した結果、25℃における針入度が0.3mm以上、好ましくは0.8mm以上、さらに好ましくは3mm以上である有機結合剤および潤滑剤を用いることにより、高成形圧力(一般に686MPa以上)で成形した場合に抜き出し力を低減できることが判った。ここで、針入度とは、ワックスやアスファルトなどの硬度を評価する指標として知られており、その測定方法はJIS−K−2207に規定されている(通常、室温25℃で測定される)。   As a result of examining the optimum conditions of the organic binder and the lubricant from the above viewpoint, the inventors have found that the penetration at 25 ° C. is 0.3 mm or more, preferably 0.8 mm or more, more preferably 3 mm or more. It has been found that by using a certain organic binder and lubricant, the extraction force can be reduced when molding at a high molding pressure (generally 686 MPa or more). Here, the penetration is known as an index for evaluating the hardness of wax, asphalt, etc., and the measurement method is defined in JIS-K-2207 (usually measured at room temperature of 25 ° C.). .

一方、有機結合剤や潤滑剤の硬度が必要以上に低い場合、すなわち針入度が高すぎる場合には、粒子間の粘着力や付着力が高くなり、粉体としての流動性が低下する。このため、有機結合剤および潤滑剤の25°における針入度は10mm以下、好ましくは8mm以下、さらに好ましくは5mm以下とするのが適当であることが判った。
このため本発明の粉末混合物は、有機結合剤および潤滑剤の25℃における針入度を0.3〜10mm、好ましくは0.8〜8mm、さらに好ましくは3〜5mmとする。
On the other hand, when the hardness of the organic binder or lubricant is unnecessarily low, that is, when the penetration is too high, the adhesion and adhesion between the particles increase and the fluidity as a powder decreases. For this reason, it has been found that the penetration of the organic binder and the lubricant at 25 ° is 10 mm or less, preferably 8 mm or less, more preferably 5 mm or less.
Therefore, in the powder mixture of the present invention, the penetration of the organic binder and lubricant at 25 ° C. is 0.3 to 10 mm, preferably 0.8 to 8 mm, and more preferably 3 to 5 mm.

上記のような針入度を有する有機結合剤、潤滑剤としては、脂肪酸モノアミド、脂肪酸ビスアミド、金属石鹸などが挙げられ、これらの中から選ばれる1種または2種以上を用いることができる。なお、2種以上の成分を用いる場合には、それらを溶融混合した状態で用いる場合も含まれる。
脂肪酸モノアミドとしては、ステアリン酸アミド、エルカ酸アミド、オレイン酸アミド、パルミチルアミド、ミスチルアミド、ラウリルアミドなどが、脂肪酸ビスアミドとしては、エチレンビスステアロアミド、エチレンビスラウリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスベヘン酸アミド、メチレンビスステアリン酸アミドなどが、金属石鹸としては、ステアリン酸亜鉛、ステアリン酸マンガン、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウムなどが、それぞれ挙げられる。 さらに、ポリエチレン、ポリプロピレン、ポリアミドなどの熱可塑性樹脂でも使用可能なものがある。
Examples of organic binders and lubricants having the above penetration include fatty acid monoamides, fatty acid bisamides, and metal soaps, and one or more selected from these can be used. In addition, when using 2 or more types of components, the case where they are used in the state of melt-mixing is also included.
Examples of fatty acid monoamides include stearic acid amide, erucic acid amide, oleic acid amide, palmitylamide, mistylamide, and lauryl amide, and fatty acid bisamides include ethylene bisstearamide, ethylene bislauric acid amide, and ethylene bisoleic acid. Examples of the metal soap include amide, ethylene bisbehenic acid amide, and methylene bis stearic acid amide, and examples of the metal soap include zinc stearate, manganese stearate, lithium stearate, calcium stearate, and magnesium stearate. Further, some thermoplastic resins such as polyethylene, polypropylene, and polyamide can be used.

上記のような有機結合剤および潤滑剤を用いると、高圧力での成形時に成形体表面に有機結合剤および潤滑剤が押し出されやすくなる。このため比較的少ない量の有機結合剤および潤滑剤を用いて、金型との摩擦力を低減させることが可能となる。このため本発明の粉末混合物は、鉄基粉末および合金用粉末の合計量に対する有機結合剤と潤滑剤の合計添加量(=鉄基粉末および合金用粉末の合計100質量部に対する有機結合剤と潤滑剤の合計質量部)を0.1〜0.8mass%、好ましくは0.1〜0.5mass%とする。鉄基粉末および合金用粉末の合計量に対する有機結合剤と潤滑剤の合計添加量が0.8mass%を超えると、成形体の密度が上がりにくくなり、一方、0.1mass%未満では、金型表面に十分な潤滑膜を形成することができなくなる。 なお、鉄基粉末および合金用粉末の合計量に対する有機結合剤の添加量は0.05〜0.6mass%、同じく潤滑剤の添加量は0.05〜0.6mass%程度とすることが好ましい。   When the organic binder and the lubricant as described above are used, the organic binder and the lubricant are easily extruded onto the surface of the molded body at the time of molding at a high pressure. For this reason, it is possible to reduce the frictional force with the mold by using a relatively small amount of the organic binder and the lubricant. For this reason, the powder mixture of the present invention has a total amount of organic binder and lubricant added to the total amount of iron-base powder and alloy powder (= organic binder and lubricant for a total of 100 parts by weight of iron-base powder and alloy powder). The total mass part of the agent) is 0.1 to 0.8 mass%, preferably 0.1 to 0.5 mass%. When the total addition amount of the organic binder and the lubricant exceeds 0.8 mass% with respect to the total amount of the iron-based powder and the alloy powder, the density of the molded body is difficult to increase. On the other hand, when it is less than 0.1 mass%, the mold A sufficient lubricating film cannot be formed on the surface. The addition amount of the organic binder with respect to the total amount of the iron-base powder and the alloy powder is preferably 0.05 to 0.6 mass%, and the addition amount of the lubricant is preferably about 0.05 to 0.6 mass%. .

また、本発明の粉末混合物は、鉄基粉末を主体とし、これに合金用粉末、有機結合剤および潤滑剤を添加したものであるが、さらに、必要に応じて、MnSなどの切削性改善用粉末などを添加することができる。これらは合金用粉末と同様に有機結合剤により鉄基粉末に付着させる形態、潤滑剤のように鉄基粉末から遊離させる形態、のうちのいずれかの形態(例えば、MnSなどの切削性改善用粉末は前者の形態)で粉末混合物中に含有される。   In addition, the powder mixture of the present invention is mainly composed of iron-based powder, to which an alloy powder, an organic binder and a lubricant are added, and if necessary, for improving machinability such as MnS. Powder etc. can be added. These are either in the form of adhering to the iron-based powder with an organic binder as in the case of the alloy powder, or in the form of being released from the iron-based powder like a lubricant (for example, for improving machinability such as MnS) The powder is contained in the powder mixture in the former form).

さきに述べたように、本発明の粉末混合物は高成形圧力で成形した場合に、金型との摩擦力を低減させる機能を発揮するものであり、特に、成形圧力686MPa以上(より好ましくは785MPa以上)の高圧力成形用として好適な粉末混合物である。すなわち、この場合には、本発明の粉末混合物を金型に充填し、成形圧力686MPa以上で圧縮成形して成形体(圧粉体)とする。この成形体は、焼結して焼結体とした後、熱処理を施し、製品(機械部品)とする。   As described above, the powder mixture of the present invention exhibits the function of reducing the frictional force with the mold when molded at a high molding pressure, and in particular, a molding pressure of 686 MPa or more (more preferably 785 MPa). The above is a powder mixture suitable for high pressure molding. That is, in this case, the powder mixture of the present invention is filled in a mold and compression-molded at a molding pressure of 686 MPa or more to obtain a compact (compact). This molded body is sintered to form a sintered body, and then heat-treated to obtain a product (mechanical part).

表1および表2に示す配合割合で、鉄粉に銅粉、黒鉛粉および有機結合剤を加え、ヘンシェルタイプの高速ミキサーで有機結合剤の融点以上の温度に加熱しつつ混合した後、60℃以下まで冷却した(この段階での粉末を「偏析防止処理粉」という)。次いで、潤滑剤を添加して混合し、粉末冶金用粉末混合物を製造した。 この粉末冶金用粉末混合物について、以下のようにして黒鉛粉付着率、流動度および圧粉体特性を調べた。その結果を表3に示す。 After adding copper powder, graphite powder and organic binder to iron powder at the blending ratio shown in Table 1 and Table 2, mixing with heating to a temperature above the melting point of the organic binder with a Henschel type high speed mixer, 60 ° C The powder was cooled to the following (the powder at this stage is referred to as “segregation prevention treated powder”). Next, a lubricant was added and mixed to produce a powder mixture for powder metallurgy. The powder mixture for powder metallurgy was examined for graphite powder adhesion rate, fluidity, and green compact properties as follows. The results are shown in Table 3.

(1)黒鉛粉付着率 有機結合剤による黒鉛粉の付着状態を評価するために、以下のような方法で黒鉛粉付着率を測定した。まず、はじめに、偏析防止処理粉全体のC分析を行い、次いで、当該偏析防止処理粉を篩で分級し、200メッシュ篩上および100メッシュ篩下の分級品とした。この分級品のC分析を行い、先の偏析防止処理粉全体のC分析値との比を百分率で表したものを黒鉛粉付着率とした。 (1) Graphite powder adhesion rate In order to evaluate the adhesion state of the graphite powder by the organic binder, the graphite powder adhesion rate was measured by the following method. First, C analysis of the segregation prevention treated powder as a whole was performed, and then the segregation prevention treated powder was classified with a sieve to obtain classified products on a 200 mesh sieve and a 100 mesh sieve. This classification product was subjected to C analysis, and the ratio of the ratio to the C analysis value of the entire segregation prevention treated powder as a percentage was defined as the graphite powder adhesion rate.

(2)流動度 JIS−Z−2502に準拠した方法により、偏析防止処理粉の流動度を測定した。(3)圧粉体特性 粉末冶金用粉末混合物を成形圧力686MPa、980MPa、1472MPaで各々成形し、直径11mm、高さ11mmのタブレット形状の成形体とした。この際、成形体を金型から抜き出すときの抜き出し力および得られた成形体の密度を測定した。 (2) Fluidity The fluidity of the segregation preventing powder was measured by a method based on JIS-Z-2502. (3) Green compact characteristics Powder metallurgy powder mixtures were molded at molding pressures of 686 MPa, 980 MPa, and 1472 MPa, respectively, to form tablet-shaped compacts having a diameter of 11 mm and a height of 11 mm. Under the present circumstances, the extraction force when extracting a molded object from a metal mold | die, and the density of the obtained molded object were measured.

Figure 0005169605
Figure 0005169605

Figure 0005169605
Figure 0005169605

Figure 0005169605
Figure 0005169605

Claims (3)

鉄基粉末と、該鉄基粉末の表面に有機結合剤を介して付着した合金用粉末と、前記鉄基粉末から遊離した潤滑剤を含む粉末冶金用粉末混合物において、
有機結合剤および潤滑剤の25℃における針入度が3〜5mmであり、鉄基粉末および合金用粉末の合計量に対する有機結合剤および潤滑剤の合計添加量が0.1〜0.3mass%であり、
有機結合剤および潤滑剤がオレイン酸アミドからなることを特徴とする粉末冶金用粉末混合物。
In a powder mixture for powder metallurgy comprising an iron-based powder, a powder for an alloy attached to the surface of the iron-based powder via an organic binder, and a lubricant released from the iron-based powder,
The penetration of the organic binder and the lubricant at 25 ° C. is 3 to 5 mm , and the total addition amount of the organic binder and the lubricant with respect to the total amount of the iron-based powder and the alloy powder is 0.1 to 0.3 mass. %
A powder mixture for powder metallurgy, characterized in that the organic binder and the lubricant comprise oleic amide .
成形圧力686MPa以上の高圧成形用の粉末混合物であることを特徴とする請求項1に記載の粉末冶金用粉末混合物。 2. The powder mixture for powder metallurgy according to claim 1, wherein the powder mixture is used for high pressure molding at a molding pressure of 686 MPa or more. 請求項1に記載の粉末冶金用粉末混合物を、成形圧力686MPa以上で成形することを特徴とする成形体の製造方法。 A method for producing a molded body, comprising molding the powder mixture for powder metallurgy according to claim 1 at a molding pressure of 686 MPa or more.
JP2008204768A 2008-08-07 2008-08-07 Powder mixture for powder metallurgy and method for producing molded body Expired - Fee Related JP5169605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204768A JP5169605B2 (en) 2008-08-07 2008-08-07 Powder mixture for powder metallurgy and method for producing molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204768A JP5169605B2 (en) 2008-08-07 2008-08-07 Powder mixture for powder metallurgy and method for producing molded body

Publications (2)

Publication Number Publication Date
JP2010037632A JP2010037632A (en) 2010-02-18
JP5169605B2 true JP5169605B2 (en) 2013-03-27

Family

ID=42010478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204768A Expired - Fee Related JP5169605B2 (en) 2008-08-07 2008-08-07 Powder mixture for powder metallurgy and method for producing molded body

Country Status (1)

Country Link
JP (1) JP5169605B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539159B2 (en) 2010-11-04 2014-07-02 アイダエンジニアリング株式会社 High density molding method and high density molding apparatus for mixed powder.
JP5881816B2 (en) 2012-04-12 2016-03-09 アイダエンジニアリング株式会社 High density molding method and high density molding apparatus for mixed powder
EP2837442A4 (en) 2012-04-12 2016-01-13 Aida Eng Ltd High-density molding device and high-density molding method for mixed powder
CN203253923U (en) 2012-04-23 2013-10-30 会田工程技术有限公司 High-density forming device of mixed powder
TW201410362A (en) 2012-04-23 2014-03-16 Aida Eng Ltd Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
TW201408404A (en) 2012-04-23 2014-03-01 Aida Eng Ltd Device for high-density molding and method for high-density molding of mixed powder
CN103418792A (en) 2012-04-23 2013-12-04 会田工程技术有限公司 Method for high-density molding of mixed powder and device for high-density molding
JP6849459B2 (en) * 2017-02-02 2021-03-24 株式会社神戸製鋼所 Mixed powder for powder metallurgy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020801A (en) * 2000-07-07 2002-01-23 Kawasaki Steel Corp Iron-based powdery mixture for powder metallurgy
JP3700634B2 (en) * 2000-10-06 2005-09-28 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
JP2004002964A (en) * 2002-04-01 2004-01-08 Jfe Steel Kk Iron-based powder mixture
JP4483595B2 (en) * 2004-01-21 2010-06-16 Jfeスチール株式会社 Iron-based powder mixture for high-strength sintered parts
JP2005232592A (en) * 2004-01-23 2005-09-02 Jfe Steel Kk Iron-based powdery mixture for powder metallurgy
JP2005264201A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Ferrous group powder mixture for powder metallurgy, and its production method
WO2005087411A1 (en) * 2004-03-17 2005-09-22 Jfe Steel Corporation Iron-based powder mixture for powder metallurgy
JP4624214B2 (en) * 2004-09-03 2011-02-02 住友電気工業株式会社 Powder molding method in powder metallurgy and method for manufacturing sintered parts

Also Published As

Publication number Publication date
JP2010037632A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5169605B2 (en) Powder mixture for powder metallurgy and method for producing molded body
US20190177820A1 (en) Method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
US6346133B1 (en) Metal-based powder compositions containing silicon carbide as an alloying powder
CN1950161B (en) Powder metallurgical compositions and methods for making the same
TW442347B (en) Improved metal-based powder compositions containing silicon carbide as an alloying powder
KR101352883B1 (en) Iron-based mixed powder for powdery metallurgy
KR102103888B1 (en) Lubricant for powder metallurgy and metal powder compositions containing said lubricant
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
JP2007533858A (en) Lubricant-containing molded product manufacturing method and lubricant-containing iron-based powder
TWI288034B (en) Iron-based powder composition
US9815114B2 (en) Powder for molding, lubricant-concentrated powder and method for producing metal member
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP2008248253A (en) Lubricating agent for lubrication of mold and method for manufacturing high density shaped article of iron-based powder
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
Paris et al. Key advantages of high performance lubricants for the manufacturing of powder metallurgy parts
JP6877375B2 (en) Mixed powder for powder metallurgy
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP2005187908A (en) Iron based powdery mixture for powder metallurgy
JPWO2020066927A1 (en) Mixed powder for powder metallurgy and lubricant for powder metallurgy
SUZUKI et al. Newly Developed Iron-based Powder Mixture, High-density SEGLESS, for High Density Compaction
JP2005330499A (en) Iron-based mixed powder for powder metallurgy
US20090028742A1 (en) Dry powder metal compositions and methods of making and using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees