JP2005330499A - Iron-based mixed powder for powder metallurgy - Google Patents

Iron-based mixed powder for powder metallurgy Download PDF

Info

Publication number
JP2005330499A
JP2005330499A JP2004127085A JP2004127085A JP2005330499A JP 2005330499 A JP2005330499 A JP 2005330499A JP 2004127085 A JP2004127085 A JP 2004127085A JP 2004127085 A JP2004127085 A JP 2004127085A JP 2005330499 A JP2005330499 A JP 2005330499A
Authority
JP
Japan
Prior art keywords
powder
iron
mass
particle size
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127085A
Other languages
Japanese (ja)
Inventor
Tomoshige Ono
友重 尾野
Yukiko Ozaki
由紀子 尾崎
Satoshi Uenosono
聡 上ノ薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004127085A priority Critical patent/JP2005330499A/en
Publication of JP2005330499A publication Critical patent/JP2005330499A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based mixed powder for powder metallurgy, which can be uniformly impregnated even in a narrow cavity of a die, and reduce an extracting force after the powder has been compacted into a green compact. <P>SOLUTION: The iron-based mixed powder includes 0.05 to 0.6 pts. by mass of a free lubricant added to 100 pts. by mass of an iron-based powder, wherein the free lubricant has such a particle size distribution as particles with an average particle diameter of 20 to 80 μm share at least 20 mass%, further consists of secondary particles with particle sizes of 10 to 200 μm, which are granulated by agglomerating primary particles with particle sizes of 0.1 to 80 μm, and contains 10 to 60 mass% of a resin with a glass transition point of (molding temperature +20°C) or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粉末冶金用鉄基粉末混合物、特に金型への充填性を向上させた粉末冶金用鉄基粉末混合物に関するものである。   The present invention relates to an iron-based powder mixture for powder metallurgy, and more particularly to an iron-based powder mixture for powder metallurgy with improved filling properties in a mold.

粉末冶金用鉄基粉末混合物は、鉄基粉末である鉄粉に、銅粉、黒鉛粉および燐化鉄粉等の合金用粉末(副原料)と、ステアリン酸亜鉛やステアリン酸リチウム等の潤滑剤とを混合し、さらに必要に応じてMnSなどの切削性改善用粉末を混合して製造するのが一般的である。   The iron-based powder mixture for powder metallurgy consists of iron powder, which is iron-based powder, alloy powders (sub-materials) such as copper powder, graphite powder and iron phosphide powder, and lubricants such as zinc stearate and lithium stearate. And, if necessary, a powder for improving machinability such as MnS is generally mixed.

しかしながら、このような粉末冶金用鉄基粉末混合物は、大きさ、形状および密度の異なる複数の粉末の混合体であるため、混合後の輸送、ホッパへの装入およびホッパからの排出、さらには金型充填時において、混合体の中で粉末が均一に分布しなくなる結果、偏析を生じ易いという問題があった。   However, such an iron-based powder mixture for powder metallurgy is a mixture of a plurality of powders having different sizes, shapes, and densities, so that transportation after mixing, charging into the hopper and discharging from the hopper, When filling the mold, there is a problem that segregation is likely to occur as a result of the powder not being uniformly distributed in the mixture.

そして、偏析が生じた混合物を、加圧(圧縮)成形して成形体(以下、圧粉体という)とし、その圧粉体を焼結して最終製品にすると、製品毎に組成がばらつくだけでなく、寸法および強度が大きくばらつき、不良品が多発することになる。特に、鉄基粉末に混合する銅粉や黒鉛粉、燐化鉄粉等の合金用粉末は、いずれも鉄基粉末より微粉であるため、かような合金用粉末を混合した場合には、上記したばらつきの程度が一層大きくなる。   When the segregated mixture is pressed (compressed) into a compact (hereinafter referred to as a green compact), and the green compact is sintered into a final product, the composition varies from product to product. In addition, the size and strength vary greatly, and defective products frequently occur. In particular, alloy powders such as copper powder, graphite powder, and iron phosphide powder to be mixed with iron-based powder are all finer than iron-based powder, so when such alloy powder is mixed, The degree of variation is further increased.

このような粉末冶金用鉄基粉末混合物の偏析を防止する技術として、鉄基粉末表面に合金用粉末などを付着させることが特許文献1、特許文献2および特許文献3に、また遊離潤滑剤を混合することが特許文献4に、それぞれ提案されている。   As a technique for preventing segregation of the iron-based powder mixture for powder metallurgy, it is possible to attach an alloy powder or the like to the iron-based powder surface in Patent Document 1, Patent Document 2 and Patent Document 3, and a free lubricant. The mixing is proposed in Patent Document 4, respectively.

また、特許文献5には、上記の偏析防止処理を施した鉄基粉末混合物において、さらに鉄粉の粒度分布を調整することによって、成形時の金型への充填性を良好にした鉄基粉末混合物が記載されている。
特開平1−219101号公報(特許請求の範囲) 特開平2−217403号公報(特許請求の範囲) 特開平3−162502号公報(特許請求の範囲) 特開平5−148505号公報(特許請求の範囲) 特開2002−180103号公報(特許請求の範囲)
Further, in Patent Document 5, in the iron-based powder mixture subjected to the above-described segregation prevention treatment, the iron-based powder having a good filling property in the mold at the time of molding by further adjusting the particle size distribution of the iron powder. Mixtures are described.
JP-A-1-219101 (Claims) JP-A-2-217403 (Claims) JP-A-3-162502 (Claims) Japanese Patent Laid-Open No. 5-148505 (Claims) JP 2002-180103 A (Claims)

しかしながら、上記した従来技術で得られた鉄基粉末混合物はいずれも、金型への充填性をさらに改善する必要があった。すなわち、粉末冶金にて例えば歯車を作製する際には、その刃先部分の成形は狭小なキャビティーを有する金型にて行われるが、かような狭小なキャビティーにも鉄基粉末混合物を均一に充填することが望まれるところ、上記した従来技術では満足する充填性は得られなかったのである。   However, all of the iron-based powder mixtures obtained by the above-described prior arts need to further improve the filling property into the mold. That is, when producing gears by powder metallurgy, for example, the cutting edge portion is formed by a mold having a narrow cavity, and the iron-based powder mixture is uniformly distributed in such a narrow cavity. However, satisfactory filling properties could not be obtained with the above-described prior art.

そこで、本発明は、上記の問題を有利に解決するもので、狭小な金型キャビティーにも均一に充填することができ、かつ圧粉体に成形後の抜出力を低くすることが可能である、粉末冶金用鉄基粉末混合物を提供することを目的とする。   Therefore, the present invention advantageously solves the above-mentioned problems, can be uniformly filled into a narrow mold cavity, and can reduce the punching power after molding into a green compact. An object is to provide an iron-based powder mixture for powder metallurgy.

さて、発明者らは、上記の問題を解決すべく鋭意研究を重ねた結果、鉄基粉末混合物に混合する遊離潤滑剤の粒度分布を適切に制御することによって、所期した目的が有利に達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, as a result of intensive studies to solve the above problems, the inventors have achieved the intended purpose advantageously by appropriately controlling the particle size distribution of the free lubricant mixed in the iron-based powder mixture. Gained the knowledge of being.
The present invention is based on the above findings.

すなわち、本発明は、鉄基粉末100質量部に、0.05〜0.6質量部の遊離潤滑剤を添加した鉄基粉末混合物であって、該遊離潤滑剤は、平均粒径20〜80μmの粒子の含有率が少なくとも20mass%となる粒径分布を有し、さらに粒径:0.1〜80μmの一次粒子を凝集させて造粒した粒径:10〜200μmの二次粒子からなる、ガラス転移点が(成形温度+20℃)以上の樹脂を10〜60mass%で含有することを特徴とする粉末冶金用鉄基粉末混合物である。
ここで、上記成形温度とは、上記鉄基粉末混合物を成形に供する際、充填する粉体の温度のことである。金型や粉体を加熱しない成形、いわゆる常温(室温)成形においても、繰り返し成形を行う場合には、金型温度が上昇する場合もあるが、充填する粉体の温度は室温のままである。
That is, the present invention is an iron-based powder mixture in which 0.05 to 0.6 parts by mass of a free lubricant is added to 100 parts by mass of iron-based powder, the free lubricant containing particles having an average particle diameter of 20 to 80 μm. The glass transition point has a particle size distribution with a rate of at least 20 mass%, and further comprises secondary particles with a particle size of 10 to 200 μm, which are formed by agglomerating primary particles with a particle size of 0.1 to 80 μm. It is an iron-based powder mixture for powder metallurgy characterized by containing 10-60 mass% of a resin having a temperature of + 20 ° C.
Here, the molding temperature is the temperature of the powder to be filled when the iron-based powder mixture is subjected to molding. Even in molding that does not heat molds and powders, so-called room temperature (room temperature) molding, the mold temperature may rise in the case of repeated molding, but the temperature of the powder to be filled remains at room temperature. .

本発明によれば、歯車の刃先の成形に用いるような、狭小な金型キャビティーにも均一に充填可能であり、しかも圧粉体に成形後の抜出力が小さくなる粉末冶金用鉄基粉末混合物を提供できる。従って、この粉末冶金用鉄基粉末混合物を用いれば、密度や寸法のばらつきの小さい成形品を効率よく生産することができる。   According to the present invention, an iron-based powder for powder metallurgy that can be uniformly filled into a narrow mold cavity, such as used for molding a gear cutting edge, and also reduces the punching force after molding into a green compact. A mixture can be provided. Therefore, if this iron-based powder mixture for powder metallurgy is used, it is possible to efficiently produce a molded product with small variations in density and size.

本発明の粉末冶金用鉄基粉末混合物は、鉄基粉末100質量部に、0.05〜0.6質量部の遊離潤滑剤を添加したものであり、この鉄基粉末は、鉄粉および/または合金化鉄粉であり、例えばアトマイズ鉄粉や還元鉄粉等の純鉄粉、部分拡散合金化鋼粉、完全合金化鋼粉またはこれらの混合粉末を用いることができる。   The iron-based powder mixture for powder metallurgy according to the present invention is obtained by adding 0.05 to 0.6 parts by mass of a free lubricant to 100 parts by mass of iron-based powder. The iron-based powder is composed of iron powder and / or alloyed iron. For example, pure iron powder such as atomized iron powder and reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or a mixed powder thereof can be used.

特に、鉄基粉末としては、有機結合剤(バインダ)により銅粉や黒鉛を付着させたものを用いてもよい。この場合、有機結合剤としては、ステアリン酸亜鉛、ステアリン酸カルシウムなどの金属石けんや、ステアリン酸アミド、エチレンビスステアロアミドなどの脂肪酸アミドあるいはポリオレフィン、ポリアミド、ポリスチレンなどの熱可塑性樹脂などを用いることができる。これらは単独で使用しても、また複合して使用してもよい。   In particular, as the iron-based powder, a powder obtained by adhering copper powder or graphite with an organic binder (binder) may be used. In this case, as the organic binder, metal soaps such as zinc stearate and calcium stearate, fatty acid amides such as stearic acid amide and ethylene bisstearamide, or thermoplastic resins such as polyolefin, polyamide and polystyrene are used. it can. These may be used alone or in combination.

上記の鉄基粉末100質量部には、遊離潤滑剤を0.05〜0.6質量部で添加する。
さて、成形後の圧粉体の金型からの抜出力を低くするためには、鉄基粉末に潤滑剤を混合して、金型表面と鉄基粉末との摩擦力を低減することが有効であることが知られているが、特に、ある種の遊離潤滑剤をある粒度分布を持たせて混合することによって、摩擦力を大幅に低減できることが判明した。
To 100 parts by mass of the iron-based powder, 0.05 to 0.6 parts by mass of a free lubricant is added.
Now, in order to reduce the punching power of the green compact after molding from the mold, it is effective to reduce the frictional force between the mold surface and the iron base powder by mixing a lubricant with the iron base powder. In particular, it has been found that the frictional force can be significantly reduced by mixing certain free lubricants with a certain particle size distribution.

まず、遊離潤滑剤とは、鉄基粉末に付着していない潤滑剤であり、その含有率は鉄基粉末100質量部に対して0.05〜0.6質量部とする。なぜなら、遊離潤滑剤の含有量が0.05質量部未満では、成形後の圧粉体を金型から抜き出すときの抜出力が増加し、成形体が欠ける、型かじりが生ずるなどの問題をまねくことになる。一方0.6質量部を超えると、不必要な潤滑剤が多すぎ、成形体の密度が上がらない、焼結時の脱ロウ時間がかかり過ぎるなどの問題が生じる。   First, the free lubricant is a lubricant that does not adhere to the iron-based powder, and its content is 0.05 to 0.6 parts by mass with respect to 100 parts by mass of the iron-based powder. This is because if the content of the free lubricant is less than 0.05 parts by mass, the extraction force when the green compact after molding is extracted from the mold will increase, and the molded product will be chipped or mold galling will occur. Become. On the other hand, when the amount exceeds 0.6 parts by mass, there are problems such as an excessive amount of unnecessary lubricant, the density of the molded body does not increase, and it takes too much dewaxing time during sintering.

本発明の遊離潤滑剤は二種ないし三種に分類でき、具体的には、以下に説明する第一潤滑剤、第二潤滑剤および必要に応じて添加するその他潤滑剤として添加する。
第一潤滑剤は遊離潤滑剤の少なくとも20mass%とし、平均粒径20〜80μmの粒子径分布を有する必要がある。すなわち、平均粒径が20μm未満では、鉄基粉末混合物を金型に充填する際に潤滑剤の金型表面への排出が十分に実現できず、抜出力を十分に低くすることができない。一方、平均粒径が80μmを超えると、成形時に完全に潤滑剤をつぶしきれずに、残った潤滑剤に起因して焼結体中に空隙が残り、焼結体の機械特性を下げる要因となる。上記「金型表面への排出」とは、混合粉末を型に投入した際に、比重の軽い遊離潤滑剤が混合粉中から外側に排出され、結果として金型表面に潤滑剤が濃化することである。
The free lubricant of the present invention can be classified into two or three types. Specifically, the free lubricant is added as a first lubricant, a second lubricant and other lubricants to be added as necessary.
The first lubricant should be at least 20 mass% of the free lubricant and have a particle size distribution with an average particle size of 20-80 μm. That is, when the average particle size is less than 20 μm, when the iron-based powder mixture is filled in the mold, the lubricant cannot be sufficiently discharged to the mold surface, and the extraction power cannot be sufficiently reduced. On the other hand, if the average particle size exceeds 80 μm, the lubricant cannot be completely crushed during molding, and voids remain in the sintered body due to the remaining lubricant, causing the mechanical properties of the sintered body to be lowered. Become. The above "discharge to the mold surface" means that when a mixed powder is put into a mold, a free lubricant having a light specific gravity is discharged from the mixed powder to the outside, and as a result, the lubricant is concentrated on the mold surface. That is.

なお、平均粒径は、JIS Z 8801-1の標準飾で測定した粒度分布で表現した場合に、積算質量分布が50%となる粒径を指す。   The average particle size refers to the particle size at which the cumulative mass distribution is 50% when expressed by the particle size distribution measured with the standard decoration of JIS Z 8801-1.

ここで、第一潤滑剤としては、ステアリン酸亜鉛、ステアリン酸マンガンおよびステアリン酸リチウムに代表される金属石けん、エチレンビスステアリン酸アミドに代表されるビスアミドまたは、ステアリン酸モノアミドおよびエルカ酸アミドに代表されるモノアミドを含む脂肪酸アミド、そしてポリアミド、ポリエチレンおよびポリアセタールなどの熱可塑性樹脂、などを用いることができる。   Here, as the first lubricant, metal soap typified by zinc stearate, manganese stearate and lithium stearate, bisamide typified by ethylene bis stearamide, or stearic acid monoamide and erucic amide Fatty acid amides including monoamides, and thermoplastic resins such as polyamide, polyethylene and polyacetal can be used.

これら第一潤滑剤を混合した鉄基粉末混合物を金型内に充填する際、必ずしも、粉の流動性が十分ではないこともあり、上述した狭小の金型キャビティー内へ充填する場合には、ともすると、完全に充填できない場合が生ずる。   When filling the iron-based powder mixture mixed with these first lubricants into the mold, the fluidity of the powder may not always be sufficient, and when filling into the narrow mold cavity mentioned above In some cases, it may not be possible to completely fill.

そこで、本発明では、上記粒径分布を有する潤滑剤に加えて、さらに遊離潤滑剤の10〜60mass%が、粒径:0.1〜80μmの一次粒子を凝集させて造粒した粒径:10〜200μmの二次粒子からなる、ガラス転移点が(成形温度+20℃)以上の樹脂による潤滑剤(第二潤滑剤)を添加する必要がある。   Therefore, in the present invention, in addition to the lubricant having the above particle size distribution, 10 to 60 mass% of the free lubricant is further granulated by agglomerating primary particles having a particle size of 0.1 to 80 μm: 10 to It is necessary to add a lubricant (second lubricant) made of a resin composed of secondary particles of 200 μm and having a glass transition point of (molding temperature + 20 ° C.) or more.

すなわち、樹脂は、ガラス転移点以上の温度ではゴム状になり、粘弾性を示すようになり、粒子間の摩擦は大きくなって潤滑性が阻害されると考えられるから、用いる樹脂のガラス転移点は金型へ充填し成形する際の最高温度、つまり成形温度を超える必要がある。すなわち、金型へ充填し成形する工程において、遊離潤滑剤として用いた樹脂のガラス転移点以上にならないようにするには、ガラス転移点が成形温度を超える樹脂を使用すべきである。従って、安全代を見積もって、樹脂には、ガラス転移点が(成形温度+20℃)以上のものを用いることとする。   That is, the resin becomes rubbery at a temperature higher than the glass transition point and becomes viscoelastic, and it is considered that the friction between particles is increased and the lubricity is hindered. Needs to exceed the maximum temperature at which the mold is filled and molded, that is, the molding temperature. That is, in the process of filling and molding into a mold, a resin having a glass transition point exceeding the molding temperature should be used so as not to exceed the glass transition point of the resin used as the free lubricant. Accordingly, the safety allowance is estimated, and a resin having a glass transition point of (molding temperature + 20 ° C.) or higher is used.

また、かような樹脂の添加量は、遊離潤滑剤全体の10〜60mass%とする。なぜなら、10mass%未満では、充填性向上の効果が期待できず、一方60mass%を超えると、圧粉体の密度が低下する。この低下する理由としては、ガラス転移点未満の温度で、これら樹脂は硬くなり、圧縮性にかけるためと考えられる。   Moreover, the addition amount of such resin shall be 10-60 mass% of the whole free lubricant. This is because if it is less than 10 mass%, the effect of improving the filling property cannot be expected, whereas if it exceeds 60 mass%, the density of the green compact decreases. The reason for this decrease is considered to be that these resins become hard at a temperature lower than the glass transition point and are subjected to compressibility.

なお、これら粒子は、粒径:0.1〜80μmの一次粒子を凝集させて造粒した粒径:10〜200μmの二次粒子から構成することによって、粒子表面の凹凸が大きくなり、粒子間力を小さくすることができ、充填性によい影響を及ぼす。
すなわち、粒径:0.1〜80μmの一次粒子を凝集させたものを用いることは、表面の凹凸をできるだけ大きくするためであり、0.1μm以下、もしくは80μm以上では十分な表面凹凸を形成することができないからである。
These particles are composed of secondary particles having a particle size of 10 to 200 μm, which are formed by agglomerating primary particles having a particle size of 0.1 to 80 μm, thereby increasing the unevenness of the particle surface and increasing the interparticle force. It can be made smaller and has a positive effect on fillability.
That is, the use of agglomerated primary particles having a particle size of 0.1 to 80 μm is to make the surface unevenness as large as possible, and if the surface unevenness is 0.1 μm or less, or 80 μm or more, sufficient surface unevenness cannot be formed. Because.

この一次粒子を凝集させて粒径:10〜200μmの二次粒子として用いるのは、用いる鉄基粉末と同程度の粒径範囲とするためであり、これより細いと、鉄基粉末混合物の流動性の悪化をもたらし、またこれより大きい場合には、成形時の圧縮で十分に粒子が破壊されず、焼結後に空隙が残り、強度低下の原因となるからである。   The primary particles are agglomerated and used as secondary particles having a particle size of 10 to 200 μm in order to make the particle size range similar to that of the iron-based powder to be used. This is because the deterioration of the property is caused, and when it is larger than this, the particles are not sufficiently broken by the compression at the time of molding, and voids remain after sintering, which causes a decrease in strength.

上記の二次粒子からなる樹脂としては、ポリメタクリル酸メチルや、ポリメタクリル酸エチルなどのようなアクリル系樹脂やナイロンのようなポリアミド系樹脂、ポリスチレン、ポリエチレンテレフタレートなどがあげられる。   Examples of the resin composed of the secondary particles include acrylic resins such as polymethyl methacrylate and polyethyl methacrylate, polyamide resins such as nylon, polystyrene, and polyethylene terephthalate.

本発明の潤滑剤としては、上記した2種の潤滑剤から構成すればよいが、必要に応じて、その他潤滑剤となるステアリン酸亜鉛やステアリン酸リチウム等の金属石けん系潤滑剤や、アミドワックス系潤滑剤等を、見掛密度の調整や焼結体の寸法変化率の調整の目的で追加してもよい。   The lubricant of the present invention may be composed of the above-mentioned two kinds of lubricants, but if necessary, other soaps such as zinc stearate and lithium stearate, which are lubricants, and amide waxes A system lubricant or the like may be added for the purpose of adjusting the apparent density or adjusting the dimensional change rate of the sintered body.

以上の粉末冶金用鉄基混合物を作製するには、以下の手順に従えばよい。はじめに、鉄基粉末と副原料である黒鉛粉や銅粉をバインダといっしょに加熱混合し、鉄基粉末表面に銅粉や黒鉛粉を付着させる。こうすることで、副原料の偏析防止が可能となる。鉄基粉末が純鉄系の場合には、鉄基粉末100質量部に対して銅粉を1〜3質量部、黒鉛を0.3〜1質量部程度添加するのが一般である。この際、バインダとしては、潤滑性のよい金属石けん類や、脂肪酸アミドなどを使用することが多い。場合によっては、熱可塑性樹脂なども用いられる。バインダは、副原料である黒鉛や銅粉を鉄基粉末に付着するに足る量添加すればよく、鉄基粉末100質量部に対して0.05〜0.6質量部程度添加するのが一般である。加熱混合では、これらバインダが溶融する温度にまで加温して十分に攪拌混合した後に、冷却する。   In order to produce the iron-based mixture for powder metallurgy described above, the following procedure may be followed. First, iron-based powder and graphite powder or copper powder as auxiliary materials are heated and mixed together with a binder, and copper powder or graphite powder is adhered to the surface of the iron-based powder. By doing so, it is possible to prevent segregation of the auxiliary raw material. When the iron-based powder is pure iron-based, it is common to add about 1 to 3 parts by mass of copper powder and about 0.3 to 1 part by mass of graphite with respect to 100 parts by mass of the iron-based powder. At this time, as the binder, metal soaps having good lubricity, fatty acid amides, and the like are often used. In some cases, a thermoplastic resin or the like is also used. The binder may be added in an amount sufficient to adhere the graphite or copper powder, which is an auxiliary material, to the iron-based powder, and is generally added in an amount of about 0.05 to 0.6 parts by mass with respect to 100 parts by mass of the iron-based powder. In the heating and mixing, the binder is heated to a temperature at which the binder melts, sufficiently stirred and mixed, and then cooled.

この後に、本発明で示したような遊離潤滑剤をさらに添加し、混合する。混合方法としては、造粒型潤滑剤が破壊しないような、剪断力の弱い混合方法が好ましく、V型ブレンダーや、ダブルコーンミキサーなどが一般的に用いられる。   After this, free lubricant as indicated in the present invention is further added and mixed. As a mixing method, a mixing method having a low shearing force so that the granulated lubricant is not destroyed is preferable, and a V-type blender, a double cone mixer or the like is generally used.

本発明の鉄基混合粉末は、一般の粉末冶金における工法を適用して、機械部品の製造に供することができる。具体的には、本発明の鉄基混合粉を金型に充填し圧縮成形したのち、必要に応じてサイジングを行い、焼結し、焼結体とし、焼結後さらに浸炭焼入れ、光輝焼きいれ、高周波焼入れなどの熱処理を施し、製品(機械部品等)としても良い。   The iron-based mixed powder of the present invention can be used for the production of mechanical parts by applying a general method in powder metallurgy. Specifically, after filling the mold with the iron-based mixed powder of the present invention and compression molding, sizing as necessary, sintering, and forming a sintered body, followed by further carburizing and quenching, bright quenching Further, heat treatment such as induction hardening may be performed to obtain a product (a machine part or the like).

表1に示す潤滑剤を、同表中に示す配合の下に、鉄基粉末であるアトマイズ鉄粉(粒度:平均粒径80μm、最大粒径200μm)に添加し、粉末冶金用鉄基粉末混合物を作製した。なお、表1および表2とも、副原料、バインダ、各潤滑剤の添加量は鉄基粉末100質量部に対する添加量である。
得られた鉄基粉末混合物を、図1に示す充填試験機による充填性の評価に供した。すなわち、長さ60mm、幅25mmおよび深さ50mmの粉箱内に粉末冶金用鉄基粉末混合物を収容し、この粉箱を、図中の矢印X方向に200mm/sの速度で移動し、この粉箱をキャビティー上に0.5秒間保持し、長さ20mm、深さ40mmおよび幅0.5mmのキャビティー内へ鉄基粉末混合物を充填した。
The lubricant shown in Table 1 is added to atomized iron powder (particle size: average particle size 80 μm, maximum particle size 200 μm), which is an iron-based powder, with the formulation shown in the table, and an iron-based powder mixture for powder metallurgy Was made. In both Tables 1 and 2, the addition amount of the auxiliary raw material, the binder, and each lubricant is the addition amount with respect to 100 parts by mass of the iron-based powder.
The obtained iron-based powder mixture was subjected to evaluation of the filling property by the filling tester shown in FIG. That is, an iron-based powder mixture for powder metallurgy is accommodated in a powder box having a length of 60 mm, a width of 25 mm, and a depth of 50 mm, and this powder box is moved at a speed of 200 mm / s in the direction of arrow X in the figure. The powder box was held on the cavity for 0.5 seconds, and the iron-based powder mixture was filled into a cavity 20 mm long, 40 mm deep and 0.5 mm wide.

前記粉箱は、鉄基粉末混合物体を収容して取り囲む枠部および箱の底部となる定板からなっており、粉箱を移動するには枠部を移動すればよい。定板にはキャビティーを形成する長さ20mm、幅0.5mmの開口部がある。前記のキャビティー上の保持位置は、枠部開口断面である長さ60mm、幅25mmの長方形の重心と、キャピティーの開口部である長方形の重心が略一致した場所である。停止場所で枠の保持期間が終了したら、粉箱の底を完全に閉じる場所まで枠部を退避させる。
なお、粉体温度は20℃とした。
The powder box is composed of a frame portion that houses and surrounds the iron-based powder mixed object and a plate that becomes the bottom portion of the box, and the frame portion may be moved to move the powder box. The plate has a 20mm long and 0.5mm wide opening that forms a cavity. The holding position on the cavity is a place where the center of gravity of a rectangle having a length of 60 mm and a width of 25 mm, which is a cross section of the opening of the frame portion, and the center of gravity of a rectangle which is an opening of the capacity substantially coincide. When the holding period of the frame ends at the stop location, the frame portion is retracted to a location where the bottom of the powder box is completely closed.
The powder temperature was 20 ° C.

この充填後の充填密度{(充填重量/キャビティー体積)/(粉箱中の粉体の見かけ密度)}×100で表したものを充填率として比較した。従って、充填率100%で完全充填したことになる。
また、同じ試験を10回繰り返し、その充填率のばらつきを充填率の標準偏差で表した。
さらに、同鉄基粉末混合物を成形温度(粉体の温度)20℃、588MPaの加圧成形で径11mmおよび高さ11mmの円筒状の成形品とした。かくして得られた成形品を金型から抜き出すときの力も測定し、抜出力として評価した。得られた成形品の密度についても測定した。
以上の測定並びに評価結果を表1に併記するように、本発明に従う組成の粉末冶金用鉄基粉末混合物は、充填性、密度および抜出力はともに良好なものとなった。すなわち、充填率は全て100%であり、充填ばらつきは高々0.6と小さかった。また、圧粉密度は7.09Mg/m3以上でありながら、抜出力は13MPa以下と小さかった。
The packing density after filling {(filling weight / cavity volume) / (apparent density of powder in powder box)} × 100 was compared as the filling rate. Therefore, it is completely filled at a filling rate of 100%.
In addition, the same test was repeated 10 times, and the variation in the filling rate was expressed by the standard deviation of the filling rate.
Further, the iron-based powder mixture was formed into a cylindrical molded product having a diameter of 11 mm and a height of 11 mm by pressure molding at a molding temperature (powder temperature) of 20 ° C. and 588 MPa. The force when the molded product thus obtained was extracted from the mold was also measured and evaluated as the output. The density of the obtained molded product was also measured.
As shown in Table 1 together with the above measurement and evaluation results, the iron-based powder mixture for powder metallurgy having the composition according to the present invention has good filling properties, density and output power. That is, all the filling rates were 100%, and the filling variation was as small as 0.6. Further, while the green density was 7.09 Mg / m 3 or more, the punching power was as small as 13 MPa or less.

Figure 2005330499
Figure 2005330499

また、比較として、表2に示す潤滑剤を用い、同表中に示す配合の下に、粉末冶金用鉄基粉末混合物を作製し、上記と同様の評価を行った結果について、表2に併記する。同表に示すように、本発明の条件を満足しない場合は、密度、抜出力および充填性の3つを同時に満足するものは得られないことがわかる。すなわち、圧粉密度は7.10Mg/m3以上でありながら、抜出力は10MPa以下と小さかった例(比較例1〜3)があるものの、これら比較例の充填率は高々85%であり、充填ばらつきは1以上と大きかった。また、他の比較例(比較例4〜6)は、圧粉密度は7.08Mg/m3以下と小さい、あるいは充填率は高々90%と小さい、あるいは充填ばらつきは1.3以上と大きく(比較例5のみ)、本発明に比較して特性が劣っていた。 In addition, as a comparison, the results shown in Table 2 for the results of producing an iron-based powder mixture for powder metallurgy using the lubricant shown in Table 2 and under the formulation shown in the same table, and performing the same evaluation as described above. To do. As shown in the table, it can be seen that when the conditions of the present invention are not satisfied, it is not possible to obtain one that simultaneously satisfies three of the density, the output power, and the filling property. That is, although there are examples (Comparative Examples 1 to 3) in which the compaction density is 7.10 Mg / m 3 or more and the extraction power is 10 MPa or less, the filling rate of these comparative examples is 85% at most. The variation was as large as 1 or more. In other comparative examples (Comparative Examples 4 to 6), the green density is as small as 7.08 Mg / m 3 or less, or the filling rate is as small as 90%, or the filling variation is as large as 1.3 or more (Comparative Example 5). Only), the characteristics were inferior to those of the present invention.

Figure 2005330499
Figure 2005330499

粉末の充填性を評価するための試験方法を説明する図である。It is a figure explaining the test method for evaluating the filling property of powder.

Claims (1)

鉄基粉末100質量部に、0.05〜0.6質量部の遊離潤滑剤を添加した鉄基粉末混合物であって、該遊離潤滑剤は、平均粒径20〜80μmの粒子の含有率が少なくとも20mass%となる粒径分布を有し、さらに粒径:0.1〜80μmの一次粒子を凝集させて造粒した粒径:10〜200μmの二次粒子からなる、ガラス転移点が(成形温度+20℃)以上の樹脂を10〜60mass%で含有することを特徴とする粉末冶金用鉄基粉末混合物。   An iron-based powder mixture obtained by adding 0.05 to 0.6 parts by mass of a free lubricant to 100 parts by mass of an iron-based powder, the free lubricant having a content of particles having an average particle size of 20 to 80 μm and at least 20 mass%. The particle size distribution is as follows. The particle size is 0.1 to 80 μm, and the primary particles are aggregated and granulated. The particle size is 10 to 200 μm, and the glass transition point is (molding temperature + 20 ° C.) or more. An iron-based powder mixture for powder metallurgy characterized by containing a resin at 10 to 60 mass%.
JP2004127085A 2004-04-21 2004-04-22 Iron-based mixed powder for powder metallurgy Pending JP2005330499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127085A JP2005330499A (en) 2004-04-21 2004-04-22 Iron-based mixed powder for powder metallurgy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004125585 2004-04-21
JP2004127085A JP2005330499A (en) 2004-04-21 2004-04-22 Iron-based mixed powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2005330499A true JP2005330499A (en) 2005-12-02

Family

ID=35485369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127085A Pending JP2005330499A (en) 2004-04-21 2004-04-22 Iron-based mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2005330499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786033A2 (en) 2005-11-15 2007-05-16 Fujitsu Ltd. Semiconductor device and manufacturing method of the same
WO2014123106A1 (en) * 2013-02-05 2014-08-14 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786033A2 (en) 2005-11-15 2007-05-16 Fujitsu Ltd. Semiconductor device and manufacturing method of the same
WO2014123106A1 (en) * 2013-02-05 2014-08-14 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
CN104968770A (en) * 2013-02-05 2015-10-07 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
JPWO2014123106A1 (en) * 2013-02-05 2017-02-02 株式会社Adeka Lubricant for metal powder metallurgy, method for producing the same, metal powder composition, and method for producing metal powder metallurgy product
US10259040B2 (en) 2013-02-05 2019-04-16 Adeka Corporation Lubricant for metal powder metallurgy, method of producing same, metal powder composition, and method of producing metal powder metallurgy product

Similar Documents

Publication Publication Date Title
JP2010265454A (en) Lubricant combination and process for preparing the same
TW495403B (en) Lubricants for die lubrication and manufacturing method for high-densitied iron-based powder compacts
JP5169605B2 (en) Powder mixture for powder metallurgy and method for producing molded body
JP5170390B2 (en) Iron-based mixed powder for powder metallurgy
JP2005307348A (en) Iron-based powder mixture for powder metallurgy
JP2012167302A (en) Powdery mixture for powder metallurgy and method for producing the same
JPH03162502A (en) Manufacture of iron base powder mixed material for powder metallurgy
JP2007533858A (en) Lubricant-containing molded product manufacturing method and lubricant-containing iron-based powder
US7718082B2 (en) Lubricants for insulated soft magnetic iron-based powder compositions
US9815114B2 (en) Powder for molding, lubricant-concentrated powder and method for producing metal member
JP2005330499A (en) Iron-based mixed powder for powder metallurgy
JP5012645B2 (en) Method for producing high-density iron-based powder compact
JP4352559B2 (en) Method for producing metal powder compact
JP2007002340A (en) Iron based powder mixture for powder metallurgy, and method for producing the same
JP2005264201A (en) Ferrous group powder mixture for powder metallurgy, and its production method
JP4144326B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
JP2004002964A (en) Iron-based powder mixture
JP5245728B2 (en) Iron-based mixed powder for powder metallurgy
JP5223547B2 (en) Iron-based mixed powder for powder metallurgy
WO2019230259A1 (en) Powder mixture for powder metallurgy and method for producing powder mixture for powder metallurgy
WO2005087411A1 (en) Iron-based powder mixture for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Effective date: 20090114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526