JP5170390B2 - Iron-based mixed powder for powder metallurgy - Google Patents
Iron-based mixed powder for powder metallurgy Download PDFInfo
- Publication number
- JP5170390B2 JP5170390B2 JP2008013219A JP2008013219A JP5170390B2 JP 5170390 B2 JP5170390 B2 JP 5170390B2 JP 2008013219 A JP2008013219 A JP 2008013219A JP 2008013219 A JP2008013219 A JP 2008013219A JP 5170390 B2 JP5170390 B2 JP 5170390B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- lubricant
- based mixed
- porous particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、粉末冶金技術に用いて好適な鉄基混合粉末に関するものである。 The present invention relates to an iron-based mixed powder suitable for use in powder metallurgy technology.
粉末冶金技術に用いる鉄基混合粉末は、基本成分となる鉄粉に、合金成分を含有する金属粉末(以下、合金用粉末という)と潤滑剤とを混合して製造される。その際、一般に合金用粉末として黒鉛粉末,銅粉末,リン化鉄粉末等が使用され、潤滑剤としてステアリン酸亜鉛,ステアリン酸リチウム等が使用される。また、必要に応じて切削性改善用粉末(たとえばMnS等)を添加する場合もある。 The iron-based mixed powder used in the powder metallurgy technique is manufactured by mixing iron powder as a basic component with a metal powder containing an alloy component (hereinafter referred to as alloy powder) and a lubricant. At that time, graphite powder, copper powder, iron phosphide powder or the like is generally used as the alloy powder, and zinc stearate, lithium stearate or the like is used as the lubricant. Further, a machinability improving powder (for example, MnS) may be added as necessary.
このような鉄基混合粉末を粉末冶金技術に適用するにあたって、鉄基混合粉末を金型に充填し、加圧成形して製造した成形体(以下、圧粉体という)を金型から取り出して焼結する。しかしながら鉄粉,合金用粉末,潤滑剤,切削性改善用粉末は各々の特性(すなわち粒径,形状,比重等)が異なるので、混合して得た鉄基混合粉末を輸送し、さらにホッパーへ装入およびホッパーから排出することによって、合金用粉末,潤滑剤,切削性改善用粉末等が鉄基混合粉末中で偏析を生じるという問題があった。 In applying such iron-based mixed powder to powder metallurgy technology, the iron-based mixed powder is filled into a mold, and a molded body manufactured by pressure molding (hereinafter referred to as a green compact) is taken out of the mold. Sinter. However, since iron powder, alloy powder, lubricant, and machinability improving powder have different characteristics (ie, particle size, shape, specific gravity, etc.), the iron-based mixed powder obtained by mixing is transported to the hopper. There was a problem that alloy powder, lubricant, machinability improving powder and the like were segregated in the iron-based mixed powder by charging and discharging from the hopper.
偏析が生じた鉄基混合粉末から圧粉体を製造すると、単一の圧粉体にて特性(すなわち成分,密度)の均一な分布が得られず、しかも複数の圧粉体間で特性のバラツキが生じる。したがって、そのような圧粉体を焼結した焼結体は寸法や強度が不均一になり、焼結体の歩留りが低下するのは避けられない。
そこで鉄基混合粉末における鉄粉,合金用粉末,潤滑剤,切削性改善用粉末の偏析を防止する技術が種々検討されている。たとえば特許文献1〜3には鉄粉の表面に予め合金用粉末を付着させる技術が開示され、特許文献4には遊離潤滑剤を添加し、偏析防止粉の流出性を改善せしめる技術が開示されている。
When green compacts are produced from segregated iron-based mixed powders, a uniform distribution of properties (ie, component and density) cannot be obtained with a single green compact, and the properties of multiple green compacts cannot be obtained. Variations occur. Therefore, a sintered body obtained by sintering such a green compact is inevitably reduced in size and strength, and the yield of the sintered body is reduced.
Accordingly, various techniques for preventing segregation of iron powder, alloy powder, lubricant, and machinability improving powder in iron-based mixed powder have been studied. For example,
また特許文献5には、所定の粒度分布を有する鉄粉を用いて鉄基混合粉末を製造する技術が開示されている。この技術は、鉄基粉末を金型に充填する際の充填性を改善することによって、圧粉体の特性のバラツキを防止し、ひいては焼結体の歩留り低下を防止するものである。
しかしながら鉄基混合粉末の流動性や金型への充填性を高めると、圧粉体を金型から取り出す際の押圧力(以下、抜出力という)が増加しやすいことが一般に知られている。つまり、流動性や充填性を高めた鉄基混合粉末を用いると抜出力が増加し、圧粉体の取り出しに長時間を要することによる生産性低下や圧粉体に欠損が生じることによる歩留り低下を招くことが多い。
Patent Document 5 discloses a technique for producing an iron-based mixed powder using iron powder having a predetermined particle size distribution. This technique prevents variations in the characteristics of the green compact by improving the filling properties when filling the iron-based powder into the mold, and thus prevents the yield of the sintered body from being lowered.
However, it is generally known that when the fluidity of the iron-based mixed powder and the filling property into the mold are enhanced, the pressing force (hereinafter referred to as the unloading power) when the green compact is taken out from the mold is likely to increase. In other words, when iron-based mixed powder with improved fluidity and filling properties is used, the output is increased, resulting in a decrease in productivity due to the long time required to take out the green compact and a decrease in yield due to the occurrence of defects in the green compact. Is often invited.
圧粉体の抜出力を低減するためには、鉄基混合粉末を加圧成形する温度にて軟質で延伸性を有する潤滑剤を使用することが有効である。その理由は、加圧成形によって潤滑剤が鉄基混合粉末から滲出して金型表面に付着し、金型と圧粉体との摩擦力を低減するからである。ところが、そのような潤滑剤は延伸性を有する故に、鉄粉や合金用粉末の粒子にも付着し易く、鉄基混合粉末の流動性や充填性を阻害するのである。 In order to reduce the punching power of the green compact, it is effective to use a soft and extensible lubricant at the temperature at which the iron-based mixed powder is pressure-molded. The reason is that the lubricant exudes from the iron-based mixed powder by pressure molding and adheres to the mold surface, reducing the frictional force between the mold and the green compact. However, since such a lubricant has stretchability, it easily adheres to the particles of iron powder and alloy powder, and inhibits the fluidity and filling properties of the iron-based mixed powder.
したがって、鉄基混合粉末の流動性や充填性の改善と圧粉体の抜出力の低減とを両立させることは困難である。この問題に対して、抜出力を低減する潤滑剤を核とし、流動性を改善する潤滑剤を被覆した二層構造の潤滑剤が検討されている。しかし、そのような潤滑剤は製造コストが上昇する。しかも潤滑剤の粒子寸法が増大し加圧成形にて潰れ難くなるので、圧粉体中に潤滑剤の粒子が残留し、焼結によって燃焼あるいは気化して空洞となる。こうして発生する空洞は焼結体の欠陥であり、焼結体の歩留り低下を招く。
本発明は、安価な手段で鉄基混合粉末の流動性や充填性の改善と圧粉体の抜出力の低減とを両立させ、成形工程や焼結工程の生産性向上と圧粉体や焼結体の歩留り向上とを達成できる粉末冶金技術に用いて好適な鉄基混合粉末(以下、粉末冶金用鉄基混合粉末という)を提供することを目的とする。 The present invention achieves both improvement of the fluidity and filling property of the iron-based mixed powder and reduction of the punching force of the green compact by inexpensive means, and improves the productivity of the molding process and the sintering process, as well as the green compact and sintering. An object of the present invention is to provide an iron-based mixed powder suitable for use in powder metallurgy technology (hereinafter referred to as an iron-based mixed powder for powder metallurgy) that can achieve improved yield of the bonded body.
本発明は、粒子径1〜500nmの無機物,炭材および有機物の中から選ばれる1種または2種以上を一次微粒子とし、その一次微粒子の集合体である粒径1〜100μmの多孔質粒子が潤滑剤を含浸し、多孔質粒子と鉄粉とを混合してなる粉末冶金用鉄基混合粉末である。
本発明の粉末冶金用鉄基混合粉末においては、多孔質粒子が連結したチャンネル構造を有するものであることが好ましい。
In the present invention, porous particles having a particle diameter of 1 to 100 μm, which are aggregates of primary fine particles, are one or more selected from inorganic, carbonaceous materials and organic substances having a particle diameter of 1 to 500 nm. It is an iron-based mixed powder for powder metallurgy obtained by impregnating a lubricant and mixing porous particles and iron powder.
In powder metallurgy for iron-based mixed powder of the present invention, it is preferable porous particles have a consolidated and channel structure.
また、潤滑剤の割合が、多孔質粒子100質量部に対して20〜400質量部であることが好ましい。その潤滑剤は、金属石鹸,ビスアミド,脂肪酸アミド,脂肪酸,液状潤滑剤および熱可塑性樹脂の中から選ばれる1種または2種以上であることが好ましい。
使用する無機物は、SiO2,TiO2,Fe2O3およびMgO・Al2O3・xSiO2・yH2O,タルクの中から選ばれる1種の粉末または2種以上の混合粉末であることが好ましい。
Moreover, it is preferable that the ratio of a lubricant is 20-400 mass parts with respect to 100 mass parts of porous particles. The lubricant is preferably one or more selected from metal soap, bisamide, fatty acid amide, fatty acid, liquid lubricant, and thermoplastic resin.
It inorganic substance used is one of a powder or a mixture of two or more powder selected from SiO 2, TiO 2, Fe 2 O 3, and MgO · Al 2 O 3 · xSiO 2 · yH 2 O, in the talc Is preferred.
また、使用する鉄粉の表面に有機結合剤を介して合金用粉末が付着していることが好ましい。その有機結合剤は、脂肪酸アミドおよび金属石鹸の中から選ばれる1種または2種であることが好ましい。 Moreover, it is preferable that the powder for alloys has adhered to the surface of the iron powder to be used through the organic binder. The organic binder is preferably one or two selected from fatty acid amides and metal soaps.
本発明によれば、安価な手段で、粉末冶金用鉄基混合粉末の流動性や充填性の改善と圧粉体の抜出力の低減とを両立できる。したがって圧粉体や焼結体の生産性向上と歩留り向上とを達成でき、しかも大型かつ複雑な形状を有する焼結製品の製造が可能となる。 According to the present invention, it is possible to achieve both improvement in the fluidity and filling property of the iron-based mixed powder for powder metallurgy and reduction in the extraction force of the green compact by inexpensive means. Therefore, it is possible to improve the productivity and the yield of the green compact and the sintered body, and to manufacture a sintered product having a large and complicated shape.
本発明の粉末冶金用鉄基混合粉末は、多孔質粒子と鉄粉と合金用粉末と潤滑剤とを混合したものである。
まず、本発明で使用する多孔質粒子について説明する。
多孔質粒子は、その粒子体内に空隙を内在させたものであり、その製法は特に限定しない。ただし、
(A)図2(a)に示すような、粒子径1〜500nmの微粉末(以下、一次微粒子という)を造粒して得た多孔質粒子
または
(B)図2(b)に示すような、ゼオライトに代表される連結したチャンネル構造を予め有する多孔質粒子
を使用することが好ましい。
The iron-based mixed powder for powder metallurgy of the present invention is a mixture of porous particles, iron powder, alloy powder, and lubricant.
First, the porous particles used in the present invention will be described.
The porous particles are those in which voids are included in the particles, and the production method is not particularly limited. However,
(A) porous particles obtained by granulating fine powder (hereinafter referred to as primary fine particles) having a particle diameter of 1 to 500 nm as shown in FIG.
(B) It is preferable to use porous particles having a connected channel structure represented by zeolite as shown in FIG. 2 (b).
ここで上記の(A)について説明する。
この多孔質粒子は、無機物,炭材および有機物の中から選ばれる1種または2種以上の一次微粒子を造粒して得られるものであり、一次微粒子の集合体である。一次微粒子の粒子径が1nm(ナノメートル)未満では、一次微粒子の粒子間の空隙が微小になるので、十分な量の潤滑剤を保持できず、抜出力低減の効果が得られない。しかも、貯蔵や搬送の際に目詰まりを起こし、操業に支障を来たすばかりでなく、極めて微細な一次微粒子は、その製造コストの上昇を招く。一方、500nmを超えると、一次微粒子の粒子間の空隙が拡大するので潤滑剤が流出し易くなり、十分な量の潤滑剤を保持できず、抜出力低減の効果が得られない。したがって、一次微粒子の粒子径は1〜500nmの範囲内が好ましい。より好ましくは1〜20nmである。
Here, the above (A) will be described.
The porous particles are obtained by granulating one kind or two or more kinds of primary fine particles selected from inorganic materials, carbonaceous materials, and organic materials, and are aggregates of primary fine particles. When the particle diameter of the primary fine particles is less than 1 nm (nanometers), the gap between the particles of the primary fine particles becomes minute, so that a sufficient amount of lubricant cannot be retained, and the effect of reducing the unplugging power cannot be obtained. Moreover, clogging occurs during storage and transportation, which not only hinders operation, but extremely fine primary fine particles cause an increase in manufacturing cost. On the other hand, if it exceeds 500 nm, the gap between the primary fine particle particles expands, so that the lubricant easily flows out, a sufficient amount of lubricant cannot be retained, and the effect of reducing the unloading power cannot be obtained. Therefore, the particle diameter of the primary fine particles is preferably in the range of 1 to 500 nm. More preferably, it is 1-20 nm.
この一次微粒子を造粒して多孔質粒子としても良い。多孔質粒子の粒径が1μm未満では、粉末冶金用鉄基混合粉末を加圧成形する際に、潤滑剤を含浸する多孔質粒子が鉄基混合粉末の間隙に偏析して圧壊され難くなり、含浸された潤滑剤が放出され難くなるので、抜出力低減の効果が得られない。一方、100μmを超えると、圧粉体中に多孔質粒子がそのままの形状で残存し、圧粉体を焼結して得られる焼結体の欠陥となり、焼結体の強度低下の原因になる。したがって、多孔質粒子の粒径は1〜100μmの範囲内とする。上記の欠点をより減少させるためには、好ましくは1〜40μmの範囲内、より好ましくは10〜25μmの範囲内である。 The primary fine particles may be granulated to form porous particles. When the particle size of the porous particles is less than 1 μm, when the iron-based mixed powder for powder metallurgy is pressure-molded, the porous particles impregnated with the lubricant segregate in the gaps of the iron-based mixed powder and are not easily crushed, Since the impregnated lubricant is difficult to be released, the effect of reducing the unplugging power cannot be obtained. On the other hand, when the thickness exceeds 100 μm, the porous particles remain in the green compact as they are, resulting in defects in the sintered body obtained by sintering the green compact, causing a reduction in the strength of the sintered body. . Therefore, the particle size of the porous particles is set in the range of 1 to 100 μm. In order to further reduce the above disadvantages, the thickness is preferably in the range of 1 to 40 μm, more preferably in the range of 10 to 25 μm.
多孔質粒子の素材である無機物の一次粒子は、特に材質を限定しないが、金属酸化物微粉末を使用することが好ましい。金属酸化物微粉末の種類は、SiO2,TiO2,Fe2O3,MgO・Al2O3・xSiO2・yH2Oの微粉末を用いることが好ましい。これらの金属酸化物の微粉末をそれぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
無機物微粉末を造粒して多孔質粒子を製造する際に、無機物微粉末に潤滑剤を添加することが好ましい。その潤滑剤の種類は、金属石鹸(たとえばステアリン酸亜鉛,ステアリン酸マンガン,ステアリン酸リチウム等),ビスアミド(たとえばエチレンビスステアリン酸アミド等),モノアミドを含む脂肪酸アミド(たとえばステアリン酸モノアミド,エルカ酸アミド等),脂肪酸(たとえばオレイン酸,ステアリン酸等),液状潤滑剤(たとえばリン酸エステル,ポリオールエステル,鉱油,ポリグリコール等),熱可塑性樹脂(たとえばポリアミド,ポリエチレン,ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。
The material of the inorganic primary particles that are the material of the porous particles is not particularly limited, but it is preferable to use metal oxide fine powder. Type of metal oxide fine powder, it is preferred to use a fine powder of SiO 2, TiO 2, Fe 2
When granulating inorganic fine powder to produce porous particles, it is preferable to add a lubricant to the inorganic fine powder. The types of lubricants include metal soaps (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (for example, ethylene bisstearic acid amide), fatty acid amides including monoamides (for example, stearic acid monoamide, erucic acid amide) Etc.), fatty acids (eg oleic acid, stearic acid, etc.), liquid lubricants (eg phosphate esters, polyol esters, mineral oil, polyglycol etc.), thermoplastic resins (eg polyamide, polyethylene, polyacetal etc.) This is preferable because it has the effect of reducing the unplugged output.
ただし脂肪酸や液状潤滑剤のような室温で液体となる潤滑剤は、無機物微粉末の粒子間に液架橋を生じて、粒子同士が付着し凝集するので、流動性が低下する惧れがある。また、脂肪酸アミドのようなワックス系の潤滑剤は、室温で固体であるが、粘着性が高いので、粒子同士が付着し凝集するので、流動性が低下する惧れがある。無機物微粉末を造粒する際に添加する潤滑剤は、これらの特性を考慮して適宜選択する。その際、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。 However, a lubricant that becomes liquid at room temperature, such as a fatty acid or a liquid lubricant, causes liquid cross-linking between the particles of the inorganic fine powder, and the particles adhere to each other and aggregate. In addition, wax-based lubricants such as fatty acid amides are solid at room temperature, but have high adhesiveness, so that the particles adhere and aggregate to each other, which may reduce fluidity. The lubricant added when granulating the inorganic fine powder is appropriately selected in consideration of these characteristics. In that case, you may use individually, respectively, and may use 2 or more types together.
あるいは、無機物微粉末を造粒した多孔質粒子に潤滑剤を含浸させても良い。その潤滑剤の種類は、金属石鹸(たとえばステアリン酸亜鉛,ステアリン酸マンガン,ステアリン酸リチウム等),ビスアミド(たとえばエチレンビスステアリン酸アミド等),モノアミドを含む脂肪酸アミド(たとえばステアリン酸モノアミド,エルカ酸アミド等),脂肪酸(たとえばオレイン酸,ステアリン酸等),液状潤滑剤(たとえばリン酸エステル,ポリオールエステル,鉱油,ポリグリコール等),熱可塑性樹脂(たとえばポリアミド,ポリエチレン,ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。 Alternatively, porous particles obtained by granulating inorganic fine powder may be impregnated with a lubricant. The types of lubricants include metal soaps (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (for example, ethylene bisstearic acid amide), fatty acid amides including monoamides (for example, stearic acid monoamide, erucic acid amide) Etc.), fatty acids (eg oleic acid, stearic acid, etc.), liquid lubricants (eg phosphate esters, polyol esters, mineral oil, polyglycol etc.), thermoplastic resins (eg polyamide, polyethylene, polyacetal etc.) This is preferable because it has the effect of reducing the unplugged output.
脂肪酸や液状潤滑剤は、多孔質粒子に含浸させ易いので好ましい。無機物微粉末を造粒して得た多孔質粒子に含浸させる潤滑剤は、これらの特性を考慮して、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
また、無機物微粉末に潤滑剤を添加して造粒しても良い。このようにしても、潤滑剤を含浸する多孔質粒子を得ることができる。
Fatty acids and liquid lubricants are preferred because they are easily impregnated into the porous particles. In consideration of these characteristics, the lubricant impregnated into the porous particles obtained by granulating the inorganic fine powder may be used alone or in combination of two or more.
Moreover, you may granulate by adding a lubrication agent to an inorganic fine powder. Even in this case, porous particles impregnated with the lubricant can be obtained.
潤滑剤の添加量(合計)が、無機物微粉末100質量部に対して20質量部未満では、圧粉体の抜出力を低減する効果が得られない。一方、400質量部を超えると、無機物微粉末粒子あるいは多孔質粒子が凝集するので、流動性が低下する惧れがある。したがって、無機物微粉末を造粒する際に添加する潤滑剤と、無機物微粉末を造粒して得た多孔質粒子に含浸させる潤滑剤と、の合計含有量は無機物微粉末100質量部に対して20〜400質量部の範囲内とすることが好ましい。 If the addition amount (total) of the lubricant is less than 20 parts by mass with respect to 100 parts by mass of the inorganic fine powder, the effect of reducing the extraction force of the green compact cannot be obtained. On the other hand, when the amount exceeds 400 parts by mass, the fine inorganic powder particles or the porous particles agglomerate, which may reduce the fluidity. Therefore, the total content of the lubricant added when granulating the inorganic fine powder and the lubricant impregnated into the porous particles obtained by granulating the inorganic fine powder is 100 parts by mass of the inorganic fine powder. And preferably within the range of 20 to 400 parts by mass.
多孔質粒子の素材である炭材は、Cを主成分とするものであれば良く、特に材質を限定しない。ただし、安価で容易に入手できる天然黒鉛粉,人造黒鉛粉,コークス粉等を使用することが好ましい。これらの微粉末は、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
多孔質粒子の素材である有機物は、特に材質を限定しないが、セルロース,乳糖,ポリテトラフルオロエチレン,ポリエチレン,アクリル系ポリマー,メタアクリル系ポリマー等を使用することが好ましい。これらの微粉末は、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
The carbonaceous material that is a material for the porous particles is not particularly limited as long as it is mainly composed of C. However, it is preferable to use natural graphite powder, artificial graphite powder, coke powder or the like that is inexpensive and easily available. These fine powders may be used alone or in combination of two or more.
The organic material that is the material of the porous particles is not particularly limited, but it is preferable to use cellulose, lactose, polytetrafluoroethylene, polyethylene, acrylic polymer, methacrylic polymer, or the like. These fine powders may be used alone or in combination of two or more.
ここで上記の(B)について説明する。
無機物の多孔質粒子としては、ケイ酸ゾルの重合と二次的な凝集によって得られる多孔質シリカ,ゼオライト等が好適である。炭材の多孔質粒子としては、木材のおが屑を高温でガスや薬品に反応させることによって得られる活性炭等が好適である。有機物の多孔質粒子としては、セルロース,グルコース,澱粉,カルボキシメチルセルロース等に加えて、特開2006-131738号公報に記載された方法で得られるメタアクリル系の中空多孔質重合体粒子が好適である。
Here, the above (B) will be described.
As the inorganic porous particles, porous silica, zeolite, and the like obtained by polymerization of silicate sol and secondary aggregation are suitable. As the carbon material porous particles, activated carbon obtained by reacting wood sawdust with gas or chemicals at high temperature is suitable. As the organic porous particles, in addition to cellulose, glucose, starch, carboxymethyl cellulose and the like, methacrylic hollow porous polymer particles obtained by the method described in JP-A-2006-131738 are suitable. .
これらの多孔質粒子に、(A)と同様に潤滑剤を含浸させる。使用する潤滑剤および含浸技術は(A)と同じであるから説明を省略する。
次に、本発明で使用する鉄粉について説明する。
鉄粉は、有機結合剤を介してその表面に合金用粉末や切削性改善粉末を付着させたもの(以下、合金成分外装鉄粉という)が好ましい。鉄粉の表面に合金用粉末や切削性改善粉末を付着させることによって、合金用粉末や切削性改善粉末の偏析を防止する。使用する鉄粉の特性は限定せず、圧粉体を焼結した焼結製品に要求される仕様に応じて適宜選択する。
These porous particles are impregnated with a lubricant as in (A). Since the lubricant used and the impregnation technique are the same as those in (A), description thereof is omitted.
Next, the iron powder used in the present invention will be described.
The iron powder is preferably one in which an alloy powder or a machinability improving powder is attached to the surface of the iron powder via an organic binder (hereinafter referred to as alloy component exterior iron powder). By attaching the alloy powder or the machinability improving powder to the surface of the iron powder, segregation of the alloy powder or the machinability improving powder is prevented. The characteristics of the iron powder to be used are not limited, and are appropriately selected according to the specifications required for the sintered product obtained by sintering the green compact.
有機結合剤の種類は、脂肪酸アミド,金属石鹸を用いることが好ましい。これらの有機結合剤をそれぞれ単独で使用しても良いし、あるいは2種を併用しても良い。
有機結合剤の添加量が0.05質量%未満では、鉄粉の表面に合金用粉末や切削性改善粉末を均一かつ十分に付着できない。一方、0.6質量%を超えると、鉄粉同士が付着し凝集するので、流動性が低下する惧れがある。したがって、有機結合剤の添加量は0.05〜0.6質量%の範囲内とするのが好ましい。なお、有機結合剤の添加量(質量%)は、粉末冶金用鉄基粉末の質量に占める有機結合剤の比率を指す。
The organic binder is preferably a fatty acid amide or a metal soap. These organic binders may be used alone or in combination of two kinds.
When the addition amount of the organic binder is less than 0.05% by mass, the alloy powder and the machinability improving powder cannot be uniformly and sufficiently adhered to the surface of the iron powder. On the other hand, if it exceeds 0.6% by mass, the iron powder adheres and agglomerates, which may reduce the fluidity. Therefore, the amount of organic binder added is preferably in the range of 0.05 to 0.6% by mass. In addition, the addition amount (mass%) of an organic binder points out the ratio of the organic binder to the mass of the iron-base powder for powder metallurgy.
合金用粉末の種類は、黒鉛粉末,銅粉末,Ni粉末が用いられ、切削性改善用粉末はMnS粉末等が用いられる。これらの合金用粉末あるいは切削性改善用粉末をそれぞれ単独で使用しても良いし、あるいは2種を併用しても良い。
さらに遊離潤滑剤を添加すると、粉末冶金用鉄基混合粉の流動性を向上させることが可能である。遊離潤滑剤は、多孔質粒子に内包させた潤滑剤とは別に添加し、その添加量は粉末冶金用鉄基混合粉の質量に占める割合で0.05〜0.5質量%の範囲内が好ましい。遊離潤滑剤の種類は、金属石鹸(たとえばステアリン酸亜鉛,ステアリン酸マンガン,ステアリン酸リチウム等),ビスアミド(たとえばエチレンビスステアリン酸アミド等),モノアミドを含む脂肪酸アミド(たとえばステアリン酸モノアミド,エルカ酸アミド等),脂肪酸(たとえばオレイン酸,ステアリン酸等),熱可塑性樹脂(たとえばポリアミド,ポリエチレン,ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。
Graphite powder, copper powder, and Ni powder are used for the alloy powder, and MnS powder or the like is used for the machinability improving powder. These alloy powders or machinability improving powders may be used alone or in combination of two kinds.
Furthermore, when a free lubricant is added, the fluidity of the iron-based mixed powder for powder metallurgy can be improved. The free lubricant is added separately from the lubricant encapsulated in the porous particles, and the amount added is preferably in the range of 0.05 to 0.5% by mass as a proportion of the mass of the iron-based mixed powder for powder metallurgy. The types of free lubricants include metal soaps (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (for example, ethylene bisstearic acid amide), fatty acid amides including monoamides (for example, stearic acid monoamide, erucic acid amide) Etc.), fatty acids (for example, oleic acid, stearic acid, etc.), and thermoplastic resins (for example, polyamide, polyethylene, polyacetal, etc.) are preferred because they have the effect of reducing the output of the green compact.
以上のようにして得た多孔質粒子と合金成分外装鉄粉と遊離潤滑剤等を混合して、粉末冶金用鉄基混合粉末を得る。混合装置は、従来から知られている攪拌翼型ミキサー(たとえばヘンシェルミキサー等)や容器回転型ミキサー(たとえばV型ミキサー,ダブルコーンミキサー等)が使用できる。この粉末冶金用鉄基混合粉末は優れた流動性と充填性を有し、かつ圧粉体の抜出力を低減できる。しかも、安価な材料を用いて粉末冶金用鉄基混合粉末を製造できる。 The porous particles obtained as described above, the alloy component-coated iron powder, the free lubricant and the like are mixed to obtain an iron-based mixed powder for powder metallurgy. As the mixing apparatus, conventionally known stirring blade type mixers (for example, Henschel mixer) and container rotation type mixers (for example, V type mixer, double cone mixer, etc.) can be used. This iron-based mixed powder for powder metallurgy has excellent fluidity and filling properties, and can reduce the output of the green compact. Moreover, an iron-based mixed powder for powder metallurgy can be produced using an inexpensive material.
鉄粉の表面に有機結合剤を介して合金用粉末を付着させて合金成分外装鉄粉とした。使用した有機結合剤とその添加量は表1に示す通りである。なお、有機結合剤の添加量(質量%)は、粉末冶金用鉄基混合粉末の質量に占める有機結合剤の比率を指す。合金用粉末は、銅粉末と黒鉛粉末を使用し、その添加量はそれぞれCu:2質量%,C:0.8質量%である。なお、Cu,Cの添加量(質量%)は、粉末冶金用鉄基混合粉末の質量に占めるCu,Cの比率を指す。 The powder for alloy was made to adhere to the surface of the iron powder through an organic binder to obtain an alloy component exterior iron powder. The organic binder used and the amount added are as shown in Table 1. In addition, the addition amount (mass%) of an organic binder points out the ratio of the organic binder to the mass of the iron group mixed powder for powder metallurgy. As the alloy powder, copper powder and graphite powder are used, and the addition amounts thereof are Cu: 2 mass% and C: 0.8 mass%, respectively. In addition, the addition amount (mass%) of Cu and C points out the ratio of Cu and C to the mass of the iron-based mixed powder for powder metallurgy.
また表2に示す金属酸化物微粉末を造粒して多孔質粒子とした。造粒時に添加した潤滑剤の種類とその添加量は表2に示す通りである。なお、造粒時に添加した潤滑剤の添加量(質量%)は、粉末冶金用鉄基混合粉末の質量に占める潤滑剤の比率を指す。
得られた多孔質粒子の粒径は表2に示す通りである。また、多孔質粒子に含浸させた潤滑剤とは別に遊離潤滑剤を使用した。遊離潤滑剤の種類とその添加量は表2に示す通りである。なお、遊離潤滑剤の添加量(質量%)は、粉末冶金用鉄基混合粉末の質量に占める潤滑剤の比率を指す。
Moreover, the metal oxide fine powder shown in Table 2 was granulated to form porous particles. Table 2 shows the types and amounts of lubricant added during granulation. In addition, the addition amount (mass%) of the lubricant added at the time of granulation indicates the ratio of the lubricant to the mass of the iron-based mixed powder for powder metallurgy.
The particle size of the obtained porous particles is as shown in Table 2. A free lubricant was used separately from the lubricant impregnated in the porous particles. Table 2 shows the types of free lubricants and the amounts added. In addition, the addition amount (mass%) of a free lubricant points out the ratio of the lubricant to the mass of the iron group mixed powder for powder metallurgy.
造粒時に添加した潤滑剤と遊離潤滑剤との合計量を、金属酸化物微粉末100質量部に対する割合で表2に示す。 Table 2 shows the total amount of the lubricant added during granulation and the free lubricant in a ratio with respect to 100 parts by mass of the metal oxide fine powder.
これらの合金成分外装鉄粉と多孔質粒子と遊離潤滑剤とを混合して粉末冶金用鉄基混合粉末とし、その充填性を図1に示す充填試験機で調査した。
粉末冶金用鉄基混合粉末の充填試験を行なうにあたって、図1に示すように粉末冶金用鉄基混合粉末1を収容した粉箱2を速度200mm/秒で移動し、キャビティー3(長さ20mm,深さ40mm,幅0.5mm)上で0.5秒停止して粉末冶金用鉄基混合粉末1をキャビティー3に充填した。なお、図1中の矢印Xは粉箱2の移動方向を示す。
These alloy component-coated iron powder, porous particles, and free lubricant were mixed to obtain an iron-based mixed powder for powder metallurgy, and the filling property was investigated with a filling tester shown in FIG.
In conducting the filling test of the iron-based mixed powder for powder metallurgy, the
次にキャビティー3内の粉末冶金用鉄基混合粉末1の質量を測定し、キャビティー3の体積から粉末冶金用鉄基混合粉末1の充填密度を算出した。その充填密度を、充填前の粉末冶金用鉄基混合粉末1の見掛け密度(JIS規格Z2504に準拠して測定した値)に対する比率(以下、充填率という)に換算して表3に示す。表3の充填率は充填試験10回の平均値である。また充填率のバラツキを標準偏差で併せて示す。なお充填率は、大きいほど充填性が良いことを示しており、100%は完全に充填されたことを意味する。
Next, the mass of the iron-based
表3から明らかなように、発明例は、比較例に比べて充填率が高く、しかもバラツキが小さかった。
次いで、粉末冶金用鉄基混合粉末1を金型(外径11mm,高さ11mm)に充填し、室温で圧力588MPaを加えて加圧成形し、円柱状の圧粉体とした。この圧粉体を金型から取り出す際の抜出力を測定した。その結果を表3に示す。また、得られた圧粉体の密度を測定した。その結果を表3に併せて示す。
As is apparent from Table 3, the inventive example had a higher filling rate and a smaller variation than the comparative example.
Next, the iron-based
表3から明らかなように、発明例は、比較例に比べて抜出力が低かった。 As is clear from Table 3, the invention example had a lower output than the comparative example.
1 粉末冶金用鉄基混合粉末
2 粉箱
3 キャビティー
11 多孔質粒子
12 潤滑剤
13 一次微粒子
14 連結したチャンネル構造
1 Iron-based mixed powder for
11 Porous particles
12 Lubricant
13 Primary particles
14 Connected channel structure
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008013219A JP5170390B2 (en) | 2007-03-22 | 2008-01-24 | Iron-based mixed powder for powder metallurgy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074918 | 2007-03-22 | ||
JP2007074918 | 2007-03-22 | ||
JP2008013219A JP5170390B2 (en) | 2007-03-22 | 2008-01-24 | Iron-based mixed powder for powder metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008266776A JP2008266776A (en) | 2008-11-06 |
JP5170390B2 true JP5170390B2 (en) | 2013-03-27 |
Family
ID=40046643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008013219A Expired - Fee Related JP5170390B2 (en) | 2007-03-22 | 2008-01-24 | Iron-based mixed powder for powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5170390B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280906A (en) * | 2008-04-23 | 2009-12-03 | Jfe Steel Corp | Iron powder mixture for powder metallurgy |
CN107474258A (en) * | 2017-08-01 | 2017-12-15 | 清华大学 | A kind of composite lubricated material of porous oil-containing and preparation method thereof |
CN108380863A (en) * | 2017-02-03 | 2018-08-10 | 株式会社神户制钢所 | Mixed powder for powder metallurgy and its manufacturing method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010007176A (en) * | 2008-05-27 | 2010-01-14 | Jfe Steel Corp | Iron-based powdery mixture for powder metallurgy |
JP2010007175A (en) * | 2008-05-27 | 2010-01-14 | Jfe Steel Corp | Iron-based powdery mixture for powder metallurgy |
KR20160133015A (en) * | 2008-11-26 | 2016-11-21 | 회가내스 아베 (피유비엘) | Lubricant for powder metallurgical compositions |
JP6141181B2 (en) * | 2010-05-19 | 2017-06-07 | ヘガナーズ・コーポレーション | Compositions and methods for improved dimensional control in iron powder metallurgy applications |
EP3482852A1 (en) * | 2013-09-12 | 2019-05-15 | National Research Council of Canada | Lubricant for powder metallurgy and metal powder compositions containing said lubricant |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238540A (en) * | 1988-07-29 | 1990-02-07 | Komatsu Ltd | Production of nongreased sliding material |
SE9904367D0 (en) * | 1999-12-02 | 1999-12-02 | Hoeganaes Ab | Lubricant combination and process for the preparation thereof |
-
2008
- 2008-01-24 JP JP2008013219A patent/JP5170390B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280906A (en) * | 2008-04-23 | 2009-12-03 | Jfe Steel Corp | Iron powder mixture for powder metallurgy |
CN108380863A (en) * | 2017-02-03 | 2018-08-10 | 株式会社神户制钢所 | Mixed powder for powder metallurgy and its manufacturing method |
CN108380863B (en) * | 2017-02-03 | 2021-07-13 | 株式会社神户制钢所 | Mixed powder for powder metallurgy and method for producing same |
CN107474258A (en) * | 2017-08-01 | 2017-12-15 | 清华大学 | A kind of composite lubricated material of porous oil-containing and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2008266776A (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5170390B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP4379535B1 (en) | Iron-base powder for powder metallurgy and method for improving fluidity thereof | |
TW442347B (en) | Improved metal-based powder compositions containing silicon carbide as an alloying powder | |
JP4769806B2 (en) | Metallurgical powder composition and parts produced therefrom | |
KR101352883B1 (en) | Iron-based mixed powder for powdery metallurgy | |
CA2632460C (en) | Metallurgical powder composition | |
KR100808333B1 (en) | Iron-based powder composition comprising a combination of binder-lubricants and preparation of the powder composition | |
JP4964126B2 (en) | Method for producing a molded product | |
MXPA06014484A (en) | Lubricants for insulated soft magnetic iron-based powder compositions. | |
BRPI0620894A2 (en) | metallurgical powder composition and method for producing metallurgical powder composition | |
BRPI0620868A2 (en) | metallurgical powder composition | |
JP5245728B2 (en) | Iron-based mixed powder for powder metallurgy | |
EP1118404A1 (en) | Alloy powder, alloy sintered compact and method for their production | |
JP5223547B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP5439926B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP5023566B2 (en) | Iron-based powder for powder metallurgy | |
US6001150A (en) | Boric acid-containing lubricants for powered metals, and powered metal compositions containing said lubricants | |
JP2010007175A (en) | Iron-based powdery mixture for powder metallurgy | |
JP2010007176A (en) | Iron-based powdery mixture for powder metallurgy | |
JP4144326B2 (en) | Iron-based powder mixture for powder metallurgy and method for producing the same | |
US12023732B2 (en) | Iron-based mixed powder and method for manufacturing the same | |
JP2016517475A (en) | Method for solventless bonding of metallurgical compositions | |
JP3873547B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP2004002964A (en) | Iron-based powder mixture | |
JP2024017984A (en) | Iron-based powder mix for powder metallurgy, iron-based sintered body, and sintered mechanical component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5170390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |