JP2003034803A - Iron-base mixed powder for powder metallurgy - Google Patents

Iron-base mixed powder for powder metallurgy

Info

Publication number
JP2003034803A
JP2003034803A JP2001259470A JP2001259470A JP2003034803A JP 2003034803 A JP2003034803 A JP 2003034803A JP 2001259470 A JP2001259470 A JP 2001259470A JP 2001259470 A JP2001259470 A JP 2001259470A JP 2003034803 A JP2003034803 A JP 2003034803A
Authority
JP
Japan
Prior art keywords
powder
iron
machinability
calcium
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259470A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Junichi Ota
純一 太田
Akio Sonobe
秋夫 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001259470A priority Critical patent/JP2003034803A/en
Priority to US10/080,234 priority patent/US6648941B2/en
Priority to CA002372780A priority patent/CA2372780C/en
Priority to CA002501417A priority patent/CA2501417A1/en
Priority to EP02004120A priority patent/EP1258537A3/en
Priority to CNB021084777A priority patent/CN100347324C/en
Publication of JP2003034803A publication Critical patent/JP2003034803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron-base mixed powder which improves machinability of a sintered compact without generating degradation of the mechanical properties. SOLUTION: This iron-base mixed powder includes calcium phosphate and/or hydroxyapatite, or further calcium fluoride, of 0.02-0.39 mass% in total in Ca terms, as a powder for improving machinability, against the total quantity of an iron-base powder, a powder for an alloy and the powder for improving machinability, when being manufactured by means of mixing the powder for the alloy, the powder for improving machinability and a lubricant, with the iron-base powder. The ratio of a calcium fluoride content to a total content of calcium phosphate and/or hydroxyapatite is preferably 0.8 or more, in order to improve the machinability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金用鉄基混
合粉に係り、とくにSによって焼結炉の発熱体、搬送ベ
ルト等が汚染されるのを防止でき、かつ焼結体の切削性
改善を可能とする粉末冶金用鉄基混合粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based mixed powder for powder metallurgy, and in particular, it is possible to prevent S from contaminating a heating element of a sintering furnace, a conveyor belt, etc. The present invention relates to an iron-based mixed powder for powder metallurgy that enables improvement.

【0002】[0002]

【従来の技術】粉末冶金技術の進歩により、高寸法精度
の複雑な形状の部品をニアネット形状に製造することが
可能となっている。鉄系粉末冶金製品は、鉄基粉末に、
銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、
ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合
粉を金型に充填したのち、加圧成形し、ついで焼結処理
を施され焼結体とされたのち、必要に応じ切削加工され
て、製品とされる。このようにして製造された焼結体
は、空孔の含有比率が高く、溶解法による金属材料にく
らべ、切削抵抗が高い。そのため、従来から、焼結体の
切削性を向上する目的で、Pb、Se、Te、MnS 、S等、種
々の粉末が鉄基混合粉に添加、あるいは鉄粉に合金化し
て添加することが行われてきた。しかしながら、Pbは融
点が330 ℃と低いため焼結過程で溶融し、しかも鉄中に
固溶せず基地中に均一に分散させることが難しいという
問題があり、Se、Teは焼結体を脆化させるため、焼結体
の機械的特性の劣化が著しいという問題があった。これ
らの粉末以外にも、切削性改善用粉末として、種々の粉
末を用いることが提案されている。
2. Description of the Related Art Advances in powder metallurgy have made it possible to manufacture parts with high dimensional accuracy and complicated shapes in a near net shape. Iron-based powder metallurgy products are iron-based powders,
Alloy powder such as copper powder and graphite powder, zinc stearate,
After filling an iron-based mixed powder mixed with a lubricant such as lithium stearate into a mold, press-molding it, then subjecting it to a sintering process to obtain a sintered body, and then cutting if necessary. , As a product. The sintered body produced in this manner has a high content ratio of voids, and has a higher cutting resistance than the metal material produced by the melting method. Therefore, conventionally, various powders such as Pb, Se, Te, MnS, and S have been added to the iron-based mixed powder or alloyed with the iron powder to improve the machinability of the sintered body. Has been done. However, since Pb has a low melting point of 330 ° C, it melts during the sintering process, and there is a problem that it is difficult to uniformly disperse it in the matrix because it does not form a solid solution in iron. However, there is a problem that the mechanical properties of the sintered body are significantly deteriorated. In addition to these powders, it has been proposed to use various powders as the machinability improving powder.

【0003】例えば、特公昭46-39654号公報には、鉄ま
たは鉄基合金に、BaSO4 、BaS を単独、あるいは複合し
て添加した粉末冶金法で製造された快削性金属材料が開
示されている。この技術ではBaSO4 、BaS を単独、ある
いは複合して添加することにより切削などの機械加工性
が向上するとしている。また、特開昭52-16684号公報に
は、鉄系原料粉に硫化カルシウムCaS あるいは硫酸カル
シウムCaSO4 を添加した混合粉を圧縮成形したのち、焼
結する快削焼結鋼の製造方法が提案されている。
For example, Japanese Patent Publication No. 46-39654 discloses a free-cutting metal material produced by powder metallurgy in which BaSO 4 and BaS are added alone or in combination to iron or an iron-based alloy. ing. It is said that this technology improves machinability such as cutting by adding BaSO 4 and BaS alone or in combination. Further, Japanese Patent Laid-Open No. 52-16684 proposes a method for producing a free-cutting sintered steel in which a mixed powder obtained by adding calcium sulfide CaS or calcium sulfate CaSO 4 to an iron-based raw material powder is compression-molded and then sintered. Has been done.

【0004】しかしながら、切削性改善用粉末として、
SあるいはMnS 等のSを含む化合物を混合すると、焼結
時に発生するH2S が焼結炉の耐火物、搬送用のメッシュ
ベルト、発熱体等を汚染し、それら部品の寿命を短くす
るという問題があった。さらに加えて、焼結体の外観不
良という問題もあり、Sを含む化合物粉を切削性改善用
粉末として鉄基混合粉に混合することは敬遠されてい
る。また、BaS 、CaS 等が焼結体中に残留すると、BaS
、CaS の吸湿性に起因して焼結体が錆びやすいという
問題もある。
However, as the machinability improving powder,
When S or compounds containing S such as MnS are mixed, H 2 S generated during sintering contaminates the refractory in the sintering furnace, the mesh belt for transportation, the heating element, etc. and shortens the life of these parts. There was a problem. In addition, there is also a problem that the appearance of the sintered body is poor, and it is avoided to mix the S-containing compound powder with the iron-based mixed powder as the machinability improving powder. Also, if BaS, CaS, etc. remain in the sintered body, BaS
However, there is also a problem that the sintered body is easily rusted due to the hygroscopicity of CaS.

【0005】このような問題に対し、例えば、特開昭57
-198201 号公報には、Ca:0.001 〜0.10%、O:0.05〜
1.0 %含有する被削性の良好な焼結体を与える焼結用鋼
粉末が開示されている。しかしながら、特開昭57-19820
1 号公報に記載された焼結用粉末で製造された焼結体で
は、Sを含まないため焼結炉の汚染という問題はない
が、カルシウム酸化物は吸湿性を有するため、粉体の流
動性が劣化し、成形が不安定になるという問題があっ
た。
To solve such a problem, for example, Japanese Patent Laid-Open No. 57-57
-198201 discloses that Ca: 0.001 to 0.10%, O: 0.05 to
Disclosed is a steel powder for sintering which gives a sintered body containing 1.0% and having good machinability. However, JP-A-57-19820
The sintered body manufactured with the sintering powder described in Japanese Patent No. 1 does not contain S, so that there is no problem of contamination of the sintering furnace, but since calcium oxide has hygroscopicity, the powder flow There is a problem in that the molding deteriorates and the molding becomes unstable.

【0006】また、特表平7-507358号公報には、鉄基粉
末組成物中に0.1 〜0.6 重量%のフッ化カルシウムCaF2
を含有し切削性を改善する粉末組成物が提案されてい
る。しかしながら、フッ化カルシウムCaF2の不純物は、
寸法変化や機械的特性に影響をおよぼす。そのため、純
度の高いフッ化カルシウムを使用する必要がありコスト
的に問題があった。
In addition, in Japanese Patent Publication No. 7-507358, an iron-based powder composition contains 0.1 to 0.6% by weight of calcium fluoride CaF 2
There has been proposed a powder composition containing the above to improve machinability. However, the impurities of calcium fluoride CaF 2 are
Affects dimensional changes and mechanical properties. Therefore, it is necessary to use high-purity calcium fluoride, which is a cost problem.

【0007】また、特開平9-279204号公報には、鉄粉を
主体とし、アノールサイト相および/またはゲーレナイ
ト相を有する平均粒径50μm 以下のCaO-Al2O3-SiO2系複
合酸化物の粉末を0.02〜0.3 重量%含有する粉末冶金用
鉄系混合粉末が開示されている。しかしながら、不純物
が少なく、かつ粒度を制限したCaO-Al2O3-SiO2系複合酸
化物の粉末を使用しないと、粉体特性、焼結体特性が低
下するという問題があった。
Further, Japanese Patent Laid-Open No. 9-279204 discloses a CaO-Al 2 O 3 -SiO 2 -based composite oxide mainly composed of iron powder and having an anorthite phase and / or a grenenite phase and having an average particle size of 50 μm or less. Of the iron-based mixed powder for powder metallurgy containing 0.02 to 0.3% by weight of the above powder. However, there is a problem that unless the powder of the CaO-Al 2 O 3 -SiO 2 composite oxide containing a small amount of impurities and having a limited particle size is used, the powder characteristics and the sintered body characteristics are deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題を解決し、焼結体の機械的特性の劣化を生
じることなく切削性を向上できる鉄基混合粉を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides an iron-based mixed powder capable of improving the machinability without deteriorating the mechanical properties of the sintered body. To aim.

【0009】[0009]

【課題を解決するための手段】本発明者らは、焼結体の
機械的特性の劣化を生じることなく切削性を向上できる
切削性改善用粉末について、鋭意研究した。その結果、
このような目的にはリン酸カルシウムが有効であること
を見いだした。まず、本発明者らが行った基礎的な実験
結果について説明する。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied a machinability improving powder capable of improving machinability without causing deterioration of mechanical properties of a sintered body. as a result,
It has been found that calcium phosphate is effective for this purpose. First, the basic experimental results conducted by the present inventors will be described.

【0010】鉄基粉末として水アトマイズ鉄粉に、合金
用粉末として平均粒径4μm の黒鉛粉末と、潤滑剤とし
てステアリン酸亜鉛と、さらに切削性改善用粉末とし
て、リン酸三カルシウム粉末(Ca3(PO4)2 )を、混合機
に装入し均一となるように混合し、鉄基混合粉とした。
配合量は、鉄基粉末と、合金用粉末と、切削性改善用粉
末との合計量に対し、黒鉛粉末を0.7 質量%、切削性改
善用粉末を0〜1.2 質量%とした。また、潤滑剤の配合
量は鉄基粉末と、合金用粉末と、切削性改善用粉末との
合計量100 重量部に対し、0.75重量部とした。
Water atomized iron powder as an iron-based powder, graphite powder having an average particle size of 4 μm as an alloy powder, zinc stearate as a lubricant, and tricalcium phosphate powder (Ca 3 (PO 4 ) 2 ) was charged into a mixer and mixed to obtain an iron-based mixed powder.
The blending amount was 0.7% by mass of the graphite powder and 0 to 1.2% by mass of the machinability improving powder with respect to the total amount of the iron-based powder, the alloying powder and the machinability improving powder. Further, the compounding amount of the lubricant was 0.75 part by weight based on 100 parts by weight of the total amount of the iron-based powder, the alloying powder and the machinability improving powder.

【0011】これら鉄基混合粉を金型に挿入し、圧縮成
形し、外径35mm×内径14mm×高さ10mmの圧壊試験用リン
グ状試験片、および外径60mm×高さ10mmのドリル穿孔試
験用円盤状試験片とした。ついで、これら試験片をRXガ
ス雰囲気中でメッシュベルト炉を使用し1130℃×20min
焼結した。これら焼結体試験片を用いて、JIS Z 2507の
規定に準拠した圧壊試験、および回転数10000rpm、送
り:0.012mm/rev の条件でドリル穿孔試験を、それぞれ
実施し、圧壊強さおよび穿孔数を求めた。なお、穿孔数
は、ドリル(ハイス製1.2mmφ) が折損するまでに開い
た孔の数とした。これらの結果を、図1および図2に示
す。
These iron-based mixed powders are inserted into a mold, compression-molded, an outer diameter 35 mm × an inner diameter 14 mm × a height 10 mm, a ring-shaped test piece for a crushing test, and an outer diameter 60 mm × a height 10 mm, a drilling test. A disc-shaped test piece was prepared. Then, these test pieces were used in a RX gas atmosphere using a mesh belt furnace at 1130 ° C for 20 min.
Sintered. Using these sintered test pieces, a crushing test according to JIS Z 2507 and a drilling test under the conditions of a rotation speed of 10,000 rpm and a feed of 0.012 mm / rev were carried out, respectively, and the crushing strength and the number of holes were determined. I asked. The number of drilled holes was the number of holes opened before the drill (1.2 mmφ made by HSS) was broken. The results are shown in FIGS. 1 and 2.

【0012】図1から、鉄基混合粉中のリン酸三カルシ
ウム粉末の含有量の増加に従い、穿孔数はほぼ直線的に
増加することがわかる。一方、リン酸三カルシウム粉末
の含有量が1.0 質量%以上で飽和する。また図2から、
鉄基混合粉中のリン酸三カルシウム粉末の含有量が1.0
質量%を超えると、急激に圧壊強さが低下する。これら
のことから、鉄基混合粉中のリン酸三カルシウム粉末の
含有量を0.05〜1.0 質量%の範囲とすることにより、優
れた切削性と高い圧壊強さを併せ有することができるこ
とになるという知見を得た。
It can be seen from FIG. 1 that the number of perforations increases almost linearly as the content of the tricalcium phosphate powder in the iron-based mixed powder increases. On the other hand, when the content of tricalcium phosphate powder is 1.0% by mass or more, it is saturated. Also from FIG.
The content of tricalcium phosphate powder in the iron-based mixed powder is 1.0
When it exceeds the mass%, the crush strength is rapidly reduced. From these facts, by setting the content of the tricalcium phosphate powder in the iron-based mixed powder in the range of 0.05 to 1.0 mass%, it is possible to have both excellent machinability and high crush strength. I got the knowledge.

【0013】また、本発明者らは、リン酸カルシウムと
同様にヒドロキシアパタイトも、焼結体の機械的特性を
劣化させることなく、切削性を向上させることができる
という知見を得た。さらに、本発明者らは、リン酸カル
シウムおよび/またはヒドロキシアパタイトの添加量、
或いは後述のように、これらに追加して添加するフッ化
カルシウムの添加量について検討した。その結果、焼結
体の機械的特性を劣化させることなく切削性を向上させ
る効果は、上記化学種のCa換算による添加量に依存する
との知見を得た。すなわち、前記のリン酸三カルシウム
における鉄基混合粉中の添加量範囲0.05〜1.0 質量%
は、上記化学種のCa換算による添加量の0.02〜0.39質量
%としても同様の効果があることを見出したのである。
The present inventors have also found that hydroxyapatite, like calcium phosphate, can improve the machinability without deteriorating the mechanical properties of the sintered body. Furthermore, the present inventors have found that the amount of calcium phosphate and / or hydroxyapatite added is
Alternatively, as described later, the amount of calcium fluoride added additionally was examined. As a result, it was found that the effect of improving the machinability without deteriorating the mechanical properties of the sintered body depends on the addition amount of the above chemical species calculated as Ca. That is, the addition amount range of the above-mentioned tricalcium phosphate in the iron-based mixed powder is 0.05 to 1.0% by mass.
Found that the same effect can be obtained even if the addition amount of the above chemical species in terms of Ca is 0.02 to 0.39% by mass.

【0014】本発明は、上記した知見に基づき、さらに
検討を加えて完成されたものである。すなわち、本発明
は鉄基粉末、合金用粉末、切削性改善用粉末および潤滑
剤を混合してなる鉄基混合粉末であって、前記切削性改
善用粉末をリン酸カルシウムおよび/またはヒドロキシ
アパタイトとし、鉄基粉末、合金用粉末および切削性改
善用粉末の合計量に対しCa換算で合計0.02〜0.39質量%
含有することを特徴とする粉末冶金用鉄基混合粉であ
る。また、本発明では、前記切削性改善用粉末が、リン
酸カルシウムおよび/またはヒドロキシアパタイトに加
えさらにフッ化カルシウムを含有し、該切削性改善用粉
末を鉄基粉末、合金用粉末および切削性改善用粉末の合
計量に対しCa換算で合計0.02〜0.39質量%含有すること
が好ましい。また、本発明では、前記フッ化カルシウム
と、前記リン酸カルシウムおよび/またはヒドロキシア
パタイトを、Ca換算で、(フッ化カルシウムの含有量)
/(リン酸カルシウムおよび/またはヒドロキシアパタ
イトの合計含有量)が0.8 以上となるように含有するこ
とが好ましい。
The present invention has been completed by further studies based on the above findings. That is, the present invention is an iron-based powder, an alloy powder, a machinability improving powder and an iron-based mixed powder prepared by mixing a lubricant, wherein the machinability improving powder is calcium phosphate and / or hydroxyapatite, and 0.02 to 0.39 mass% in total of Ca based on the total amount of base powder, alloy powder and machinability improving powder
It is an iron-based mixed powder for powder metallurgy characterized by containing. In the present invention, the machinability improving powder further contains calcium fluoride in addition to calcium phosphate and / or hydroxyapatite, and the machinability improving powder is an iron-based powder, an alloy powder and a machinability improving powder. It is preferable to contain 0.02 to 0.39 mass% in total in terms of Ca based on the total amount of. Further, in the present invention, the calcium fluoride and the calcium phosphate and / or hydroxyapatite, in terms of Ca, (content of calcium fluoride)
It is preferable that the content of (/ total content of calcium phosphate and / or hydroxyapatite) be 0.8 or more.

【0015】また、本発明では、前記リン酸カルシウム
が、リン酸三カルシウム、リン酸一水素カルシウムおよ
びリン酸二水素カルシウムのうちから選ばれた1種また
は2種以上であることが好ましい。また、本発明では、
合金用粉末の含有量は、鉄基粉末、合金用粉末および切
削性改善用粉末の合計量に対し5質量%以下とするのが
好ましい。
In the present invention, the calcium phosphate is preferably one or more selected from tricalcium phosphate, calcium monohydrogen phosphate and calcium dihydrogen phosphate. Further, in the present invention,
The content of the alloy powder is preferably 5% by mass or less with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder.

【0016】また、本発明では、前記潤滑剤の含有量
は、鉄基粉末、合金用粉末および切削性改善用粉末の合
計量100 重量部に対し0.2 〜1.5 重量部とすることが好
ましい。また、本発明では、前記鉄基粉末の一部または
すべてが、表面に合金用粉末および/または切削性改善
用粉末を固着してなることが好ましい。
Further, in the present invention, the content of the lubricant is preferably 0.2 to 1.5 parts by weight based on 100 parts by weight of the total amount of the iron-based powder, the alloy powder and the machinability improving powder. Further, in the present invention, it is preferable that a part or all of the iron-based powder has an alloy powder and / or a machinability improving powder adhered to the surface thereof.

【0017】[0017]

【発明の実施の形態】本発明の粉末冶金用鉄基混合粉
は、鉄基粉末、合金用粉末、切削性改善用粉末および潤
滑剤を混合してなる鉄基混合粉であり、切削性改善用粉
末をリン酸カルシウムおよび/またはヒドロキシアパタ
イトとし、鉄基粉末、合金用粉末および切削性改善用粉
末の合計量に対しCa換算で合計0.02〜0.39質量%含有す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The iron-based mixed powder for powder metallurgy of the present invention is an iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder and a lubricant. The powder for use is calcium phosphate and / or hydroxyapatite, and the total content of iron-based powder, alloy powder and machinability improving powder is 0.02 to 0.39 mass% in terms of Ca.

【0018】本発明の鉄基混合粉は、切削性改善用粉末
としてリン酸カルシウムおよび/またはヒドロキシアパ
タイトを用いることに特徴がある。リン酸カルシウム、
ヒドロキシアパタイトを用いることにより、機械的特性
の劣化が少なくて切削性の顕著な改善が得られるのであ
る。リン酸カルシウムには、リン酸三カルシウム(Ca
3(PO4)2 )、リン酸一水素カルシウム(CaHPO4あるいは
CaHPO4・2H2O)、リン酸二水素カルシウム(Ca(H2PO4)2
あるいはCa(H2PO4)2・H2O))があるが、本発明ではいず
れも好適に使用できる。なかでもリン酸三カルシウム
(Ca3(PO4)2 )とリン酸一水素カルシウム(CaHPO4ある
いはCaHPO4・2H2O)を用いるのが好ましい。
The iron-based mixed powder of the present invention is characterized by using calcium phosphate and / or hydroxyapatite as the machinability improving powder. Calcium phosphate,
By using hydroxyapatite, the mechanical properties are less deteriorated and the machinability is remarkably improved. Calcium phosphate contains tricalcium phosphate (Ca
3 (PO 4 ) 2 ), calcium monohydrogen phosphate (CaHPO 4 or
CaHPO 4 · 2H 2 O), calcium dihydrogen phosphate (Ca (H 2 PO 4) 2
Alternatively, there is Ca (H 2 PO 4 ) 2 · H 2 O), and any of them can be preferably used in the present invention. Above all, it is preferable to use tricalcium phosphate (Ca 3 (PO 4 ) 2 ) and calcium monohydrogen phosphate (CaHPO 4 or CaHPO 4 · 2H 2 O).

【0019】また、ヒドロキシアパタイト(Ca10(PO4)6
(OH)2 )は、リン酸カルシウムと同様な効果を有し、単
独またはリン酸カルシウムと複合して使用できる。複合
して使用しても、単独使用と同様、またはそれ以上の効
果を有する。鉄基混合粉中のリン酸カルシウムおよび/
またはヒドロキシアパタイトの含有量は、鉄基粉末、合
金用粉末および切削性改善用粉末の合計量に対しCa換算
で合計0.02〜0.39質量%とする。リン酸カルシウムおよ
び/またはヒドロキシアパタイトの含有量(合計)がCa
換算で0.02質量%未満では、切削性の向上が顕著に認め
られない。一方、Ca換算で0.39質量%を超えると、圧縮
性の低下、圧壊強さの低下等機械的特性が低下する。こ
のため、鉄基混合粉中のリン酸カルシウムおよび/また
はヒドロキシアパタイトの含有量はCa換算で合計0.02〜
0.39質量%とした。なお、リン酸三カルシウム(Ca3(PO
4)2 )を単独で用いた場合には、含有量は0.05〜0.6 質
量%の範囲とすることが好ましい。この範囲内であれ
ば、焼結体の寸法変化率も小さく、寸法精度上は問題と
ならない。また、切削性改善用粉末の最大粒径は、45μ
m 以下とするのが、混合の均質化の観点から好ましい。
なお、本発明では、粒径はレーザーを用いたマイクロト
ラック法で測定した値を用いるものとする。
Hydroxyapatite (Ca 10 (PO 4 ) 6
(OH) 2 ) has the same effect as calcium phosphate, and can be used alone or in combination with calcium phosphate. Even when used in combination, it has the same or more effects as the single use. Calcium phosphate in iron-based mixed powder and /
Alternatively, the content of hydroxyapatite is 0.02 to 0.39 mass% in total in terms of Ca based on the total amount of the iron-based powder, the alloy powder and the machinability improving powder. Calcium phosphate and / or hydroxyapatite content (total) is Ca
If it is less than 0.02% by mass, the machinability is not significantly improved. On the other hand, when it exceeds 0.39 mass% in terms of Ca, mechanical properties such as a decrease in compressibility and a decrease in crush strength are deteriorated. Therefore, the content of calcium phosphate and / or hydroxyapatite in the iron-based mixed powder is 0.02 in total in terms of Ca.
It was set to 0.39 mass%. In addition, tricalcium phosphate (Ca 3 (PO
4 ) When 2 ) is used alone, its content is preferably in the range of 0.05 to 0.6 mass%. Within this range, the dimensional change rate of the sintered body is small, and there is no problem in dimensional accuracy. The maximum particle size of the machinability improving powder is 45μ.
It is preferably m or less from the viewpoint of homogenization of mixing.
In the present invention, the particle size is a value measured by the microtrack method using a laser.

【0020】なお、切削性改善用粉末は、上記したリン
酸カルシウムおよび/またはヒドロキシアパタイトに加
えて、フッ化カルシウムCaF2を含有してもよい。この場
合、切削性改善用粉の含有量、すなわち、リン酸カルシ
ウムおよび/またはヒドロキシアパタイトならびにフッ
化カルシウムの含有量は鉄基粉末、合金用粉末および切
削性改善用粉末の合計量に対し、Ca換算で合計0.02〜0.
39質量%とすることが好ましい。なお、フッ化カルシウ
ムCaF2の含有量は、鉄基粉末、合金用粉末および切削性
改善用粉末の合計量に対しCa換算で0.05〜0.15質量%の
範囲内とするのが好ましい。フッ化カルシウムを、リン
酸カルシウムおよび/またはヒドロキシアパタイトと複
合して含有することにより、フッ化カルシウム単独で含
有する時よりも加工性が向上する。
The machinability-improving powder may contain calcium fluoride CaF 2 in addition to the above-mentioned calcium phosphate and / or hydroxyapatite. In this case, the content of the machinability improving powder, that is, the content of calcium phosphate and / or hydroxyapatite and calcium fluoride is calculated in terms of Ca with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder. 0.02 to 0 in total.
It is preferably 39% by mass. The content of calcium fluoride CaF 2 is preferably in the range of 0.05 to 0.15 mass% in terms of Ca with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder. By containing calcium fluoride in combination with calcium phosphate and / or hydroxyapatite, workability is improved as compared with the case where calcium fluoride is contained alone.

【0021】また、切削性改善用粉末として、フッ化カ
ルシウムをリン酸カルシウムおよび/またはヒドロキシ
アパタイトと複合して含有する場合には、Ca換算で、フ
ッ化カルシウムの含有量と、リン酸カルシウムおよび/
またはヒドロキシアパタイトの含有量の比、FC 値=(
フッ化カルシウムの含有量)/(リン酸カルシウムおよ
び/またはヒドロキシアパタイトの合計含有量)が、0.
8 以上となるように含有することが好ましい。これによ
り、工具の摩耗量が顕著に低減でき、焼結体の機械的特
性の劣化が少なくて切削性の顕著な改善が得られる。な
お、フランク摩耗量で評価する場合の工具の切削性の顕
著な向上のためには、フッ化カルシウム、リン酸カルシ
ウムおよび/またはヒドロキシアパタイトの含有量(合
計)は、鉄基粉末、合金用粉末および切削性改善用粉末
の合計量に対し、Ca換算で0.05質量%以上とすることが
好ましい。なお、リン酸カルシウムとしてはリン酸三カ
ルシウムとすることがより好ましい。
When calcium fluoride is contained as a machinability-improving powder in combination with calcium phosphate and / or hydroxyapatite, the content of calcium fluoride and calcium phosphate and / or calcium phosphate in terms of Ca
Or the ratio of hydroxyapatite content, FC value = (
The content of calcium fluoride) / (total content of calcium phosphate and / or hydroxyapatite) is 0.
It is preferable that the content be 8 or more. Thereby, the wear amount of the tool can be remarkably reduced, the mechanical properties of the sintered body are less deteriorated, and the machinability is remarkably improved. In addition, in order to significantly improve the machinability of the tool when evaluated by the amount of flank wear, the content (total) of calcium fluoride, calcium phosphate and / or hydroxyapatite should be iron-based powder, alloy powder and cutting powder. It is preferably 0.05% by mass or more in terms of Ca based on the total amount of the property improving powder. The calcium phosphate is more preferably tricalcium phosphate.

【0022】また、鉄基混合粉に含有される合金用粉末
としては、黒鉛粉、銅粉等を、所望の製品特性に要求さ
れる特性に応じ選定し含有される。本発明では、鉄基粉
末としては、アトマイズ鉄粉、還元粉等の純鉄粉、ある
いは鉄粉に代えて合金元素を予め合金した鋼粉(予合金
鋼粉)、あるいは合金元素が部分合金化された鋼粉(部
分合金化鋼粉)がいずれも好適に用いることができる。
また、これらを混合して使用してもよいことはいうまで
もない。
As the alloy powder contained in the iron-based mixed powder, graphite powder, copper powder, etc. are selected and contained according to the characteristics required for desired product characteristics. In the present invention, as the iron-based powder, atomized iron powder, pure iron powder such as reduced powder, or steel powder in which alloy elements are prealloyed in place of iron powder (prealloyed steel powder), or alloy elements are partially alloyed Any of the produced steel powder (partially alloyed steel powder) can be preferably used.
Needless to say, these may be mixed and used.

【0023】鉄基混合粉に含有される潤滑剤としては、
ステアリン酸亜鉛、ステアリン酸リチウム等の金属石
鹸、あるいはワックスが好ましい。なお、潤滑剤の配合
量は、鉄基粉末、合金用粉末および切削性改善用粉末の
合計量100 重量部に対し0.2 〜1.5 重量部とするのが好
ましい。潤滑剤の配合量が0.2 重量部未満では、金型と
の摩擦が著しく増加し抜出力が増大するため金型寿命が
低下する。一方、1.5 重量部を超えると、成形体密度の
低下が著しくなり、焼結体密度が低下する。
As the lubricant contained in the iron-based mixed powder,
Metal soap such as zinc stearate and lithium stearate, or wax is preferable. The amount of the lubricant blended is preferably 0.2 to 1.5 parts by weight based on 100 parts by weight of the total amount of the iron-based powder, the alloy powder and the machinability improving powder. If the amount of the lubricant compounded is less than 0.2 parts by weight, the friction with the mold increases remarkably and the ejection force increases, so that the mold life is shortened. On the other hand, if it exceeds 1.5 parts by weight, the density of the compact will be remarkably reduced and the density of the sintered body will be reduced.

【0024】本発明の鉄基混合粉は、上記した鉄基粉末
に、上記した合金用粉末、切削性改善用粉末、さらに潤
滑剤を添加して、Vブレンダ、ダブルコーンブレンダ等
の通常公知の混合機を用いる方法で、一度に混合し、あ
るいは2回以上に分けて混合し鉄基混合粉とするか、あ
るいは合金用粉末および/または切削性改善用粉末を結
合材により鉄基粉末の表面に固着する偏析防止処理を施
した鉄基混合粉としてもよい。このような鉄基粉末を用
いることにより、より偏析が少なく、流動性に優れた鉄
基混合粉とすることができる。
The iron-based mixed powder of the present invention is prepared by adding the above-mentioned alloy powder, machinability improving powder and lubricant to the above-mentioned iron-based powder to obtain a generally known V blender, double cone blender or the like. By using a mixer, the iron-based mixed powder can be obtained by mixing at once, or by dividing the mixture into two or more times to obtain an iron-based mixed powder, or by using an alloy powder and / or a machinability improving powder with a binder. It may be an iron-based mixed powder that has been subjected to a segregation-preventing treatment that adheres to the. By using such an iron-based powder, it is possible to obtain an iron-based mixed powder with less segregation and excellent fluidity.

【0025】偏析防止処理としては、例えば、特許第30
04800 号公報に示されるように、鉄基粉末と、合金用粉
末と、切削性改善用粉末を、結合材の作用を有する特定
の有機化合物とともに混合し、ついで少なくとも該特定
の有機化合物のうちの最低融点+10℃以上に加熱して、
該有機化合物のうちの1種を溶融させたのち冷却固化し
て、合金用粉末および/または切削性改善用粉末を鉄基
粉末の表面に固着させる方法が好ましい。特定の有機化
合物としては、高級脂肪酸、高級脂肪酸アミド、ワック
スが好ましい。高級脂肪酸もしくは高級脂肪酸アミドと
しては、ステアリン酸、オレイン酸アミド、ステアリン
酸アミド、エチレンビスステアリン酸アミド、ステアリ
ン酸アミドとエチレンビスステアリン酸アミドの溶融混
合物、等が例示できる。
As the segregation prevention treatment, for example, Patent No. 30
As disclosed in 04800, an iron-based powder, an alloy powder, and a machinability improving powder are mixed with a specific organic compound having the action of a binder, and then at least one of the specific organic compounds is mixed. Heat to the minimum melting point + 10 ℃ or higher,
A method is preferred in which one of the organic compounds is melted and then cooled and solidified to fix the alloy powder and / or the machinability improving powder to the surface of the iron-based powder. As the specific organic compound, higher fatty acid, higher fatty acid amide, and wax are preferable. Examples of the higher fatty acid or higher fatty acid amide include stearic acid, oleic acid amide, stearic acid amide, ethylenebisstearic acid amide, and a molten mixture of stearic acid amide and ethylenebisstearic acid amide.

【0026】[0026]

【実施例】(実施例1)鉄基粉末として水アトマイズ鉄
粉(商品名:川崎製鉄製KIP301 A)を用い、該鉄基
粉末100 kgに、合金用粉末として黒鉛粉末(平均粒径4
μm )、あるいは電解銅粉(平均粒径35μm )を鉄基粉
末と合金用粉末と切削性改善用粉末との合計量に対し表
1に示す量(質量%)と、さらに切削性改善用粉末とし
て、表1に示す配合量(質量%)の各種のリン酸カルシ
ウム粉末、ヒドロキシアパタイト粉末、フッ化カルシウ
ム粉末と、さらに潤滑剤としてステアリン酸亜鉛(平均
粒径:20μm )を鉄基粉末と合金用粉末と切削性改善用
粉末との合計量100 重量部に対し表1に示す量(重量
部)と、をVブレンダに装入し、均一混合して、鉄基混
合粉とした。なお、鉄基粉末として、一部の鉄基混合粉
では、ミルスケール還元鉄粉(商品名:川崎製鉄製KI
P255 M)、あるいは水アトマイズ鉄粉表面にNi、Mo、
Cuが拡散付着した部分合金化鋼粉(4mass%Ni-0.5mass
%Mo-1.5mass%Cu-Fe )、および水アトマイズ鉄粉と鉄
粉表面にNi、Mo、Cuが拡散付着した部分合金化鋼粉(2
mass%Ni-0.5mass%Mo-1.5mass%Cu-Fe )との混合粉を
使用した。また、一部の鉄基混合粉では、切削性改善用
粉末を含有しないもの、切削性改善用粉末としてMnS を
使用したものも含めた。
(Example 1) Water atomized iron powder (trade name: KIP301 A made by Kawasaki Steel) was used as an iron-based powder, and 100 kg of the iron-based powder was used as a graphite powder (average particle size 4
μm) or electrolytic copper powder (average particle size 35 μm) in the amount shown in Table 1 (mass%) with respect to the total amount of iron-based powder, alloy powder, and machinability improving powder, and further machinability improving powder. As various types of calcium phosphate powders, hydroxyapatite powders, calcium fluoride powders in the blending amounts (% by mass) shown in Table 1, zinc stearate (average particle size: 20 μm) as a lubricant, an iron-based powder and an alloy powder. The amount (parts by weight) shown in Table 1 with respect to 100 parts by weight of the total amount of the powder for improving machinability was charged into a V blender and uniformly mixed to obtain an iron-based mixed powder. As the iron-based powder, in some iron-based mixed powders, mill scale reduced iron powder (trade name: Kawasaki Steel KI
P255 M), or Ni, Mo, on the surface of water atomized iron powder
Partially alloyed steel powder (4mass% Ni-0.5mass) with Cu diffused and adhered
% Mo-1.5mass% Cu-Fe), and water-atomized iron powder and partially alloyed steel powder with Ni, Mo and Cu diffused and adhered to the iron powder surface (2
mass% Ni-0.5mass% Mo-1.5mass% Cu-Fe) was used. In addition, some iron-based mixed powders do not contain the machinability improving powder and those that use MnS as the machinability improving powder are also included.

【0027】これら鉄基混合粉を金型に挿入し、面圧:
392MPaで圧縮成形し、外径35mm×内径14mm×高さ10mmの
圧壊試験用および外径寸法変化率測定用のリング状試験
片成形体、および外径60mm×高さ10mmのドリル穿孔試験
用円盤状試験片成形体、10×10×55mmの直方体の成形体
とした。直方体の成形体について、アルキメデス法を用
いて、密度を測定した。アルキメデス法とは、被測定物
である成形体を水中に浸漬して体積を測定することによ
り密度を測定する方法である。
These iron-based mixed powders were inserted into a mold, and the surface pressure:
A ring-shaped test piece compact for compression testing and outer diameter 35 mm x inner diameter 14 mm x height 10 mm and outer diameter dimensional change rate compression-molded at 392 MPa, and a disk for drilling test of outer diameter 60 mm x height 10 mm. The test piece molded body was a rectangular parallelepiped molded body of 10 × 10 × 55 mm. The density of the rectangular parallelepiped molded body was measured using the Archimedes method. The Archimedes method is a method of measuring the density by immersing a molded article as an object to be measured in water and measuring the volume.

【0028】ついで、これら試験片成形体をRXガス雰囲
気中でメッシュベルト炉を使用し1130℃×20min で焼結
し、焼結体とした。これら焼結体(試験片)について、
JIS Z 2507の規定に準拠した圧壊試験、外径寸法変化率
測定試験、および回転数10000rpm、送り:0.012mm/rev
の条件でドリル穿孔試験を、それぞれ実施し、圧壊強さ
(N/mm2 )、外径寸法変化率および穿孔数(個)を求
めた。なお、圧壊強さ(N/mm2 )は、JIS Z 2507の規
定に準拠して求めた。外径寸法変化率は、金型の外径を
基準として焼結後のリング状試験片外径を測定し、金型
外径に対する変化率(={(焼結後のリング状試験片の
平均外径−金型外径)/(金型外径)}×100 %)を求
め、外径寸法変化率とした。また、穿孔数(個)はドリ
ル(ハイス製1.2mm φ) が折損するまでに開いた穴の数
とした。
Next, these test piece compacts were sintered in a RX gas atmosphere using a mesh belt furnace at 1130 ° C. for 20 minutes to obtain sintered bodies. For these sintered bodies (test pieces),
Crush test according to JIS Z 2507, outer diameter dimension change rate measurement test, rotation speed 10,000 rpm, feed: 0.012 mm / rev
The drilling test was carried out under the conditions of No. 1 to obtain the crush strength (N / mm 2 ), the outer diameter dimensional change rate, and the number of holes (pieces). The crushing strength (N / mm 2 ) was determined in accordance with the regulations of JIS Z 2507. The outer diameter dimensional change rate is obtained by measuring the outer diameter of the ring-shaped test piece after sintering with reference to the outer diameter of the mold, and changing the outer diameter of the mold (= {(average of ring-shaped test piece after sintering. Outer diameter−Mold outer diameter) / (Mold outer diameter)} × 100%) was obtained and used as the outer diameter dimensional change rate. The number of holes (pieces) was defined as the number of holes opened before the drill (1.2 mmφ made by HSS) was broken.

【0029】それらの結果を、表1に示す。The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】本発明例はいずれも、成形体密度が高く、
さらに焼結体の圧壊強さも高く、また外径寸法変化率も
小さいうえ、穿孔数も大きく切削性に優れた焼結体を形
成でき、粉末冶金用鉄基混合粉として優れた特性を有し
ている。これに対し、本発明の範囲を外れる比較例、従
来例は、いずれも成形体密度が低いか、あるいは圧壊強
さが低いか、外径寸法変化率が大きいか、あるいは切削
性が低下していた。また、Sを含む切削性改善用粉末を
含む鉄基混合粉(従来例)では、焼結体における外観不
良が見られた。 (実施例2)鉄基粉末として水アトマイズ鉄粉(商品
名:川崎製鉄製KIP301 A)を用い、該鉄基粉末100
kgに、合金用粉末として天然黒鉛粉末(平均粒径4μm
)、あるいはさらに電解銅粉(平均粒径35μm )を鉄
基粉末と合金用粉末と切削性改善用粉末との合計量に対
し表2に示す量(質量%)と、さらに切削性改善用粉末
として、表2に示す配合量(質量%)のリン酸三カルシ
ウム粉末(最大粒径:45μm 以下)、リン酸一水素カル
シウムCaHPO4・2H2O(最大粒径:28μm)、リン酸二水
素カルシウムCa(HPO42 ・H2O (最大粒径:31μm)
と、さらに結合材としてステアリン酸亜鉛(融点:120
℃)を鉄基粉末と合金用粉末と切削性改善用粉末との合
計量100 重量部に対し0.4 重量部添加して、一次混合し
たのち、120℃に加熱し結合材を加熱溶融しながら混合
し冷却して、合金用粉末および/または切削性改善用粉
末を鉄基粉末表面に固着させた偏析防止処理を施した鉄
基粉末とした。ついで、このような偏析防止処理を施し
た鉄基粉末に、さらに潤滑剤として、ステアリン酸亜鉛
(平均粒径:20μm )を鉄基粉末と合金用粉末と切削性
改善用粉末との合計量100 重量部に対し表2に示す量
(重量部)添加して均一混合して、鉄基混合粉とした。
In each of the examples of the present invention, the density of the molded body is high,
Furthermore, the crush strength of the sintered body is high, the outside diameter dimensional change rate is small, the number of holes is large, and a sintered body with excellent machinability can be formed, and it has excellent properties as an iron-based mixed powder for powder metallurgy. ing. On the other hand, in Comparative Examples and Conventional Examples out of the scope of the present invention, the compact density is low, the crush strength is low, the outer diameter dimensional change rate is large, or the machinability is deteriorated. It was In addition, with the iron-based mixed powder (conventional example) containing the machinability-improving powder containing S, a poor appearance was observed in the sintered body. (Example 2) As the iron-based powder, water atomized iron powder (trade name: Kawasaki Steel KIP301 A) was used.
In kg, natural graphite powder as an alloy powder (average particle size 4 μm
), Or an amount of electrolytic copper powder (average particle size 35 μm) shown in Table 2 with respect to the total amount of iron-base powder, alloy powder and machinability improving powder, and further machinability improving powder. as a blending amount shown in Table 2 tricalcium phosphate powder (mass%) (maximum particle size: 45 [mu] m or less), calcium hydrogen phosphate CaHPO 4 · 2H 2 O (maximum particle size: 28 .mu.m), dihydrogen phosphate Calcium Ca (HPO 4 ) 2 · H 2 O (maximum particle size: 31 μm)
And zinc stearate as a binder (melting point: 120
℃) was added 0.4 parts by weight to 100 parts by weight of the total amount of iron-based powder, alloying powder and machinability improving powder, and the mixture was primary mixed and then heated to 120 ° C and mixed while heating and melting the binder. Then, the powder for alloying and / or the powder for improving machinability was fixed to the surface of the iron-based powder and subjected to segregation prevention treatment to obtain an iron-based powder. Then, the iron-based powder that had been subjected to such segregation prevention treatment was further coated with zinc stearate (average particle size: 20 μm) as the total amount of the iron-based powder, the alloy powder, and the machinability improving powder to 100%. The amount (parts by weight) shown in Table 2 was added to parts by weight and uniformly mixed to obtain an iron-based mixed powder.

【0033】これら鉄基混合粉を、実施例1と同様に、
金型に挿入し、面圧:490MPaで圧縮成形し、外径35mm×
内径14mm×高さ10mmの圧壊試験用および外径寸法変化率
測定用のリング状試験片成形体、および外径60mm×高さ
10mmのドリル穿孔試験用円盤状試験片成形体、10×10×
55mmの直方体の成形体とした。直方体の成形体につい
て、アルキメデス法を用いて、密度を測定した。
These iron-based mixed powders were treated in the same manner as in Example 1,
Inserted in the mold, compression molded at a surface pressure of 490 MPa, outer diameter 35 mm ×
Ring-shaped test piece compact for inner diameter 14 mm × height 10 mm for crush test and outer diameter dimensional change rate, and outer diameter 60 mm × height
Disc-shaped test piece compact for 10 mm drilling test, 10 × 10 ×
A 55 mm rectangular parallelepiped molded body was used. The density of the rectangular parallelepiped molded body was measured using the Archimedes method.

【0034】ついで、これら試験片成形体をRXガス雰囲
気中でメッシュベルト炉を使用し1120℃×15min で焼結
し、焼結体とした。これら焼結体(試験片)について、
実施例1と同様な方法で、圧壊試験、外径寸法変化率測
定試験、およびドリル穿孔試験を、それぞれ実施し、圧
壊強さ(N/mm2 )、外径寸法変化率および穿孔数
(個)を求めた。
Next, these test piece compacts were sintered in a RX gas atmosphere using a mesh belt furnace at 1120 ° C. × 15 min to obtain sintered bodies. For these sintered bodies (test pieces),
In the same manner as in Example 1, a crushing test, an outer diameter dimensional change rate measurement test, and a drill piercing test were performed, respectively, and the crush strength (N / mm 2 ), the outer diameter dimensional change rate, and the number of holes (pieces) ) Was asked.

【0035】それらの結果を、表2に示す。The results are shown in Table 2.

【0036】[0036]

【表3】 [Table 3]

【0037】本発明例はいずれも、成形体密度が高く、
さらに焼結体の圧壊強さも高く、また外径寸法変化率も
小さいうえ、穿孔数も大きく切削性に優れた焼結体を形
成でき、粉末冶金用鉄基混合粉として優れた特性を有し
ている。これに対し、本発明の範囲を外れる比較例は、
切削性が低下していた。 (実施例3)鉄基粉末として水アトマイズ鉄粉(商品
名:川崎製鉄KIP301 A)を用い、該鉄基粉末 100kg
に、合金用粉末として天然黒鉛粉末(平均粒径4μm)
と電解銅粉(平均粒径35μm)を鉄基粉末と合金用粉末
と切削性改善用粉末との合計量に対し表3に示す量(質
量%)と、さらに切削性改善用粉末として、表3に示す
配合量(質量%)のリン酸三カルシウム粉末(最大粒径
45μm )、フッ化カルシウム粉末(平均粒径30μm )
と、さらに潤滑剤としてステアリン酸亜鉛(平均粒径:
20μm)を鉄基粉末と合金用粉末切削性改善用粉末との
合計量 100重量部に対し表3に示す量(重量部)と、を
Vブレンダに装入し、均一混合して、鉄基混合粉とし
た。また、切削性改善用粉末として一部の鉄基混合粉で
はヒドロオキシアパタイト粉末を添加した。また、一部
の鉄基混合粉では、切削性改善用粉末を含有しないもの
も含めた。
In each of the examples of the present invention, the density of the molded body is high,
Furthermore, the crush strength of the sintered body is high, the outside diameter dimensional change rate is small, the number of holes is large, and a sintered body with excellent machinability can be formed, and it has excellent properties as an iron-based mixed powder for powder metallurgy. ing. On the other hand, a comparative example outside the scope of the present invention is
The machinability was reduced. (Example 3) Water atomized iron powder (trade name: Kawasaki Steel KIP301 A) was used as the iron-based powder, and 100 kg of the iron-based powder was used.
In addition, natural graphite powder as alloy powder (average particle size 4 μm)
And the amount of electrolytic copper powder (average particle size 35 μm) shown in Table 3 with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder, and further as the machinability improving powder. Compounding amount (mass%) of tricalcium phosphate powder shown in 3 (maximum particle size
45 μm), calcium fluoride powder (average particle size 30 μm)
In addition, zinc stearate as lubricant (average particle size:
20 μm) of the total amount of iron-based powder and powder for improving alloy machinability of 100 parts by weight, and the amount (parts by weight) shown in Table 3 were charged into a V blender and uniformly mixed to form an iron-based powder. It was mixed powder. In addition, as a powder for improving machinability, hydroxyapatite powder was added to some iron-based mixed powders. In addition, some iron-based mixed powders did not include the machinability improving powder.

【0038】これら鉄基混合粉を金型に挿入し、成形体
密度が6.8Mg/m3になるように圧縮成形し、外径60mm×内
径20mm×高さ30mmの旋削試験用リング状試験片成形体と
した。ついで、これら試験片成形体をRXガス雰囲気中で
メッシュベルト炉を使用し1130℃×20min で焼結し、焼
結体とした。これら焼結体(試験片)について、NCマ
シンニングセンターを用いて外径の旋削試験を行った。
旋削試験条件は、切削速度100m/min、切り込み量:0.4m
m 、工具はサーメット製工具(東芝タンガロイ製)を用
いた。
These iron-based mixed powders were inserted into a mold, compression-molded so that the density of the molded body was 6.8 Mg / m 3 , and a ring-shaped test piece for outer diameter 60 mm × inner diameter 20 mm × height 30 mm for turning test. It was a molded body. Next, these test piece compacts were sintered in a RX gas atmosphere using a mesh belt furnace at 1130 ° C. for 20 minutes to obtain sintered compacts. An outer diameter turning test was performed on these sintered bodies (test pieces) using an NC machining center.
Turning test conditions are cutting speed 100m / min, depth of cut: 0.4m
m, the tool used was a cermet tool (Toshiba Tungaloy).

【0039】外径を1000m旋削ごとに、工具先端を50倍
の投影機を用いて観察し、最大5000m旋削して工具のフ
ランク摩耗量を測定した。なお、フランク摩耗量とは、
JISB 4011の規定に準拠して測定される量であり、試験
後の工具の摩耗状況の変化をいう。また、試験後の試験
片切削面について、目視で外観光沢の有無を観察した。
得られた結果を表3に示す。
Each time the outer diameter was turned by 1000 m, the tip of the tool was observed using a projector with a magnification of 50, and the tool was turned up to 5000 m to measure the flank wear amount of the tool. The amount of flank wear is
It is the amount measured according to JIS B 4011 and refers to the change in the wear condition of the tool after the test. Further, the presence or absence of appearance gloss was visually observed on the cut surface of the test piece after the test.
The results obtained are shown in Table 3.

【0040】[0040]

【表4】 [Table 4]

【0041】本発明例はいずれも、フランク摩耗量が少
なく、切削性に優れた焼結体となっている。切削性改善
用粉末における、フッ化カルシウム量とリン酸三カルシ
ウムおよび/またはヒドロオキシアパタイト量 (合計
量)との比、FC値が0.8 以上となる本発明例では、フ
ランク摩耗量が少なくかつ切削面に光沢があり外観の優
れた焼結体 (製品)となっている。
Each of the examples of the present invention is a sintered body having a small amount of flank wear and excellent machinability. In the present invention example in which the ratio of the amount of calcium fluoride to the amount of tricalcium phosphate and / or the amount of hydroxyapatite (total amount) in the machinability improving powder, FC value was 0.8 or more, the flank wear amount was small and the cutting was performed. It is a sintered body (product) with a glossy surface and an excellent appearance.

【0042】これに対し、本発明の範囲を外れる比較例
は、フランク摩耗量が大きく、切削性に劣る焼結体とな
っている。
On the other hand, the comparative examples which are out of the range of the present invention are sintered bodies having a large amount of flank wear and poor machinability.

【0043】[0043]

【発明の効果】以上の説明のように、本発明によれば、
焼結体の機械的特性劣化を生じることなく切削性を向上
できる。さらに、本発明によれば、切削性改善用粉末を
Sを含有しない粉末とすることができ、Sによる焼結時
の炉内汚染や焼結体への悪影響もなく、焼結製品の製造
ができ、産業上格段の効果を奏する。
As described above, according to the present invention,
The machinability can be improved without deteriorating the mechanical properties of the sintered body. Further, according to the present invention, the machinability improving powder can be a powder not containing S, and there is no contamination in the furnace at the time of sintering by S and no adverse effect on the sintered body, so that a sintered product can be manufactured. It is possible and produces a remarkable effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】ドリル穿孔試験における穿孔数とリン酸カルシ
ウム含有量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the number of holes and the calcium phosphate content in a drill hole test.

【図2】圧壊試験における圧壊強さとリン酸カルシウム
含有量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between crush strength and calcium phosphate content in a crush test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園部 秋夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K018 AA29 AA30 BA15 BC12 CA07 CA08 CA11 DA11 KA01 KA51   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akio Sonobe             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Chiba Steel Works, Ltd. F term (reference) 4K018 AA29 AA30 BA15 BC12 CA07                       CA08 CA11 DA11 KA01 KA51

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄基粉末、合金用粉末、切削性改善用粉
末および潤滑剤を混合してなる鉄基混合粉であって、前
記切削性改善用粉末をリン酸カルシウムおよび/または
ヒドロキシアパタイトとし、鉄基粉末、合金用粉末およ
び切削性改善用粉末の合計量に対しCa換算で合計0.02〜
0.39質量%含有することを特徴とする粉末冶金用鉄基混
合粉。
1. An iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder and a lubricant, wherein the machinability improving powder is calcium phosphate and / or hydroxyapatite. A total of 0.02 in terms of Ca based on the total amount of base powder, alloy powder and machinability improving powder
An iron-based mixed powder for powder metallurgy, which contains 0.39% by mass.
【請求項2】 前記切削性改善用粉末が、さらにフッ化
カルシウムを含み、該切削性改善用粉末を鉄基粉末、合
金用粉末および切削性改善用粉末の合計量に対しCa換算
で合計0.02〜0.39質量%含有することを特徴とする請求
項1に記載の粉末冶金用鉄基混合粉。
2. The machinability improving powder further contains calcium fluoride, and the machinability improving powder has a total of 0.02 in terms of Ca based on the total amount of the iron-based powder, the alloying powder and the machinability improving powder. The iron-based mixed powder for powder metallurgy according to claim 1, wherein the iron-based mixed powder is contained in an amount of ˜0.39 mass%.
【請求項3】 前記フッ化カルシウムと、前記リン酸カ
ルシウムおよび/またはヒドロキシアパタイトを、Ca換
算で、(フッ化カルシウムの含有量)/(リン酸カルシ
ウムおよび/またはヒドロキシアパタイトの合計含有
量)が、0.8 以上となるように含有することを特徴とす
る請求項2に記載の粉末冶金用鉄基混合粉。
3. The calcium fluoride and the calcium phosphate and / or hydroxyapatite have a (calcium fluoride content) / (total content of calcium phosphate and / or hydroxyapatite) of 0.8 or more in terms of Ca. The iron-based mixed powder for powder metallurgy according to claim 2, characterized in that it is contained as follows.
【請求項4】 前記リン酸カルシウムが、リン酸三カル
シウム、リン酸一水素カルシウムおよびリン酸二水素カ
ルシウムのうちから選ばれた1種または2種以上である
ことを特徴とする請求項1ないし3のいずれかに記載の
粉末冶金用鉄基混合粉。
4. The calcium phosphate is one kind or two or more kinds selected from tricalcium phosphate, calcium monohydrogen phosphate and calcium dihydrogen phosphate. Iron-based mixed powder for powder metallurgy according to any one of claims.
【請求項5】 前記鉄基粉末の一部またはすべてが、表
面に合金用粉末および/または切削性改善用粉末を結合
材により固着してなることを特徴とする請求項1ないし
4のいずれかに記載の粉末冶金用鉄基混合粉。
5. The iron-based powder according to claim 1, wherein a part or all of the iron-based powder has an alloy powder and / or a machinability-improving powder fixed to the surface by a binder. Iron-based mixed powder for powder metallurgy according to.
JP2001259470A 2000-08-29 2001-08-29 Iron-base mixed powder for powder metallurgy Pending JP2003034803A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001259470A JP2003034803A (en) 2000-08-29 2001-08-29 Iron-base mixed powder for powder metallurgy
US10/080,234 US6648941B2 (en) 2001-05-17 2002-02-21 Iron-based mixed powder for powder metallurgy and iron-based sintered compact
CA002372780A CA2372780C (en) 2001-05-17 2002-02-21 Iron-based mixed powder for powder metallurgy and iron-based sintered compact
CA002501417A CA2501417A1 (en) 2001-05-17 2002-02-21 Iron-based mixed powder for powder metallurgy and iron-based sintered compact
EP02004120A EP1258537A3 (en) 2001-05-17 2002-02-25 Iron-based mixed powder for powder metallurgy and iron-based sintered compact
CNB021084777A CN100347324C (en) 2001-05-17 2002-02-28 Iron-based mixed powder for powder metallurgy, and iron-based sintering brequette

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000258796 2000-08-29
JP2000-258796 2000-08-29
JP2001-148513 2001-05-17
JP2001148513 2001-05-17
JP2001259470A JP2003034803A (en) 2000-08-29 2001-08-29 Iron-base mixed powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2003034803A true JP2003034803A (en) 2003-02-07

Family

ID=27344453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259470A Pending JP2003034803A (en) 2000-08-29 2001-08-29 Iron-base mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2003034803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348335A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Iron-based mixed powder for powder metallurgy
JP2007023318A (en) * 2005-07-13 2007-02-01 Honda Motor Co Ltd High strength member having excellent self-consistency after breakage division, and powdery mixture for obtaining the high strength member
US7300490B2 (en) 2004-09-27 2007-11-27 Jfe Steel Corporation Iron-based mixed powder for powder metallurgy and sintered body
JP2008524447A (en) * 2005-04-04 2008-07-10 シーブイアールディ、インコ、リミテッド Diffusion bonded nickel-copper powder metallurgy powder
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
KR20180008732A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy, method for producing the same, sintered body made using the same and method for producing the same
JP2020147768A (en) * 2019-03-11 2020-09-17 Ntn株式会社 Powder for sintered metal component and sintered metal component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300490B2 (en) 2004-09-27 2007-11-27 Jfe Steel Corporation Iron-based mixed powder for powder metallurgy and sintered body
JP2008524447A (en) * 2005-04-04 2008-07-10 シーブイアールディ、インコ、リミテッド Diffusion bonded nickel-copper powder metallurgy powder
JP2006348335A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Iron-based mixed powder for powder metallurgy
JP2007023318A (en) * 2005-07-13 2007-02-01 Honda Motor Co Ltd High strength member having excellent self-consistency after breakage division, and powdery mixture for obtaining the high strength member
JP4515345B2 (en) * 2005-07-13 2010-07-28 本田技研工業株式会社 Mixed powder for high-strength members excellent in self-alignment after fracture division, high-strength member excellent in self-alignment after fracture division, and method for producing high-strength members
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
KR20180008732A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy, method for producing the same, sintered body made using the same and method for producing the same
KR102102584B1 (en) 2015-05-27 2020-04-21 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy and manufacturing method therefor, and sintered body produced therefrom and manufacturing method thereof
JP2020147768A (en) * 2019-03-11 2020-09-17 Ntn株式会社 Powder for sintered metal component and sintered metal component
JP7233255B2 (en) 2019-03-11 2023-03-06 Ntn株式会社 Method for evaluating filling properties of powder for sintered metal parts

Similar Documents

Publication Publication Date Title
TWI412416B (en) Iron-based powder mixture and method of manufacturing iron-based compacted body and iron-based sintered body
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
US3836355A (en) Steel powder containing phosphorus
EP2379764A1 (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
JP7141827B2 (en) Powder metal composition for simple machining
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2003034803A (en) Iron-base mixed powder for powder metallurgy
JP4709210B2 (en) Iron-based powder composition and fired product
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
US5777247A (en) Carbon steel powders and method of manufacturing powder metal components therefrom
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
JP2009242887A (en) Iron-based powdery mixture
JP6760495B2 (en) Mixed powder for powder metallurgy
JP2003221602A (en) Iron-base mixed powder for powder metallurgy
JP2014025109A (en) Mixed powder for powder metallurgy
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
JP4808375B2 (en) Iron-based powder mixture for powder metallurgy
JP3855899B2 (en) Iron-based mixed powder for powder metallurgy
WO2018232813A1 (en) Mixed powder for use with electric tool and preparation method therefor
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JP2009221576A (en) Iron-based powdery mixture
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JP2005200698A (en) Iron-based powder mixture for high-strength sintered component
CA2268581A1 (en) Carbon steel powders and method of manufacturing powder metal components therefrom