JPS61238947A - Manufacture of al-si alloy blank - Google Patents

Manufacture of al-si alloy blank

Info

Publication number
JPS61238947A
JPS61238947A JP8094685A JP8094685A JPS61238947A JP S61238947 A JPS61238947 A JP S61238947A JP 8094685 A JP8094685 A JP 8094685A JP 8094685 A JP8094685 A JP 8094685A JP S61238947 A JPS61238947 A JP S61238947A
Authority
JP
Japan
Prior art keywords
alloy
powder
wear resistance
particles
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8094685A
Other languages
Japanese (ja)
Other versions
JPH0121856B2 (en
Inventor
Shigenori Yamauchi
重徳 山内
Susumu Inumaru
犬丸 晋
Kazuhisa Shibue
渋江 和久
Hideo Sano
秀男 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP8094685A priority Critical patent/JPS61238947A/en
Publication of JPS61238947A publication Critical patent/JPS61238947A/en
Publication of JPH0121856B2 publication Critical patent/JPH0121856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an Al-Si alloy blank having superior wear resistance and workability by mixing powder of an Al-Si alloy having a specified composition as the 1st alloy with powder of an Al-Si alloy having a specified composition as the 2nd alloy in a specified ratio, and by compacting the mixture so as to regulate the average and maximum diameters. CONSTITUTION:Powder of an Al-Si alloy consisting of 15-34% Si and the balance Al as the 1st alloy is mixed with powder of an Al-Si alloy consisting of 35-50% Si and the balance Al as the 2nd alloy in 1:(0.05-2) ratio. The mixture is compacted so as to regulate the average diameter of the Si grains to 5-15mum and the maximum diameter to 10-30mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば、内燃機関のシリンダブロック、シ
リンダライナ、シリンダスリーブ、ピストンや動弁部品
(バルブリフター、バルブスプリングリテイナー、バル
ブシートリング、ロッカーアーム等)、自動車のシンク
ロナイザリング、ロータリーコンプレッサーのベーンや
VTRシリンダなどに用いられるAl−Si系合金素材
の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to, for example, cylinder blocks, cylinder liners, cylinder sleeves, pistons and valve train parts (valve lifters, valve spring retainers, valve seat rings, rockers) of internal combustion engines. The present invention relates to a method of manufacturing Al-Si alloy materials used for automobile synchronizer rings, rotary compressor vanes, VTR cylinders, etc.

[従来の技術] 従来、この種の合金として、耐摩耗性、低熱膨張性およ
び耐熱性に優れた特性を有する過共晶Arr−s;系合
金が知られている。
[Prior Art] As this type of alloy, hypereutectic Arr-s alloys have been known that have excellent properties such as wear resistance, low thermal expansion, and heat resistance.

この合金では、Si添加量が増加するにつれて、耐摩耗
性、低熱膨張性などの特性を向上させることができるが
、逆に、初晶Siの粒子径が30μm以上と大ぎくなる
ために、押出性、圧延性、鍛造性などの加工性、被切削
性、被研摩性などが劣るようになり、Si添加量を35
%以上に増やすことはできない。
In this alloy, as the amount of Si added increases, properties such as wear resistance and low thermal expansion can be improved. Processability such as hardness, rollability, forgeability, machinability, polishability, etc. became inferior, and the amount of Si added was reduced to 35%.
It cannot be increased by more than %.

これを解決する手段として、合金中にPを添加してSi
粒子を微細にする方法が知られているが、この方法でも
、なお初晶Si粒子の大きさを30〜40μm以下にす
ることができない。
As a means to solve this problem, P is added to the alloy and Si
Although a method of making particles finer is known, even with this method it is still not possible to reduce the size of primary Si particles to 30 to 40 μm or less.

一方、Si粒子を微細化する手段として、Si15〜3
5%の合金を冷却速度100℃/秒以上の急冷凝固法を
用いて合金粉末を製造し、この粉末を成形することによ
り、Si粒子の平均径を1〜5μlとするものが知られ
ている。しかしながら、この方法によると、初晶Siが
あまりにも微細になるため、かえって耐摩耗性が劣るこ
とになってしまう。
On the other hand, as a means of making Si particles finer, Si15-3
It is known that alloy powder is produced using a rapid solidification method using a 5% alloy at a cooling rate of 100° C./sec or more, and this powder is molded to make the average diameter of Si particles 1 to 5 μl. . However, according to this method, the primary crystal Si becomes too fine, so that the wear resistance is rather deteriorated.

し発明が解決しようとする問題点1 以上のことから、耐摩耗性等を有するとともに加工性を
向上させるには、Si粒子の平均径を5〜15μ慣、最
大径を10〜30μmとする必要がある。
Problem to be Solved by the Invention 1 From the above, in order to have wear resistance and improve workability, it is necessary to set the average diameter of Si particles to 5 to 15 μm and the maximum diameter to 10 to 30 μm. There is.

しかし、単にSi 35〜50%のA1合金から合金粉
末を製造して、成形することにより、上記のようなSi
粒子の粒度を達成することもできるが、この方法による
素材では、延性や加工性が著しく劣るので実用的でない
However, by simply manufacturing an alloy powder from an A1 alloy containing 35 to 50% Si and molding it, the above-mentioned Si
Although it is possible to achieve a certain particle size, the material produced by this method has significantly poor ductility and processability, making it impractical.

本発明は、上記従来の技術の問題点を探求することによ
り達成されたもので、耐摩耗性に優れた特性を有すると
ともに、押出、圧延や切削などの加工性のよいA1−S
i系合金素材を得ることができる製造方法を提供するこ
とを目的とする。
The present invention was achieved by exploring the problems of the above-mentioned conventional technology.
It is an object of the present invention to provide a manufacturing method capable of obtaining an i-based alloy material.

[問題点を解決するための手段] 上記目的を達成するためになされた本発明は、Si15
〜34%、残部A文のへ女−Si合金から製造した第1
の合金粉末と、Si 35〜50%、残部AMのA1−
Si合金から製造した第2の合金粉末とを1 :0.0
5〜2の比率で混合して成形し、Si粒子の平均径を5
〜15μ信、最大径を10〜30μmとすることを特徴
とするものである。
[Means for solving the problems] The present invention, which has been made to achieve the above object, is based on Si15
~ 34%, the remainder Amonohena-Si alloy manufactured from the first
of alloy powder, Si 35-50%, balance AM A1-
and a second alloy powder manufactured from a Si alloy at a ratio of 1:0.0.
They are mixed at a ratio of 5 to 2 and molded, and the average diameter of the Si particles is set to 5.
It is characterized by having a thickness of ~15 μm and a maximum diameter of 10 to 30 μm.

ここで、第1および第2の合金粉末は、上記した元素の
他、時効硬化特性を付加するために、Cu0.5〜10
%、M(10,3〜6%、他に20を含有してもよく、
また、耐熱性を付加するために、Fe % Mn 1N
i 、Co 、Zrを9%以下含んでもよい。
Here, in addition to the above-mentioned elements, the first and second alloy powders contain Cu0.5-10 to add age hardening properties.
%, M (10, 3 to 6%, may also contain 20,
In addition, to add heat resistance, Fe%Mn 1N
It may contain 9% or less of i, Co, and Zr.

また、合金粉末の製造には、たとえば急冷凝固によるア
トマイズ法や、ロールに霧状金属を吹き付けるいわゆる
ロール法(シングルロール法、ツインロール法)あるい
は、遠心噴霧法などを用いることができ、粉末の平均粒
径を5〜300μmになるように製造する。
In addition, for the production of alloy powder, for example, an atomization method using rapid solidification, a so-called roll method (single roll method, twin roll method) in which atomized metal is sprayed onto a roll, or a centrifugal atomization method can be used. It is manufactured so that the average particle size is 5 to 300 μm.

粉末を混合した後の成形手段としては、焼結、ホットプ
レス、HI P (Hot  IsostaticPr
essing ) 、押出、鍛造または圧延などの方法
を用いることができる。
Forming methods after mixing the powders include sintering, hot pressing, and HI P (Hot Isostatic Pr).
Methods such as essing), extrusion, forging or rolling can be used.

[作用] Siの成分濃度が異なる2つのA1−Si合金の粉末を
混合して成形することにより、Si 35〜50%のA
4合金粉末では、初晶のSiの粒径が大きいため耐摩耗
性が確保され、一方、Si15〜34%のA1合金粉末
では、Siの粒径自体は小さいから加工性を向上させる
。したがって、百合金粉末の特性を利用することにより
、耐摩耗性と加工性を兼備した優れたAjl−Si系合
金素材を製造することができる。
[Function] By mixing and molding two A1-Si alloy powders with different Si component concentrations, A1 with Si of 35 to 50%
In the case of the A4 alloy powder, wear resistance is ensured because the primary crystal Si particle size is large, while in the case of the A1 alloy powder containing 15 to 34% Si, the Si particle size itself is small, so that workability is improved. Therefore, by utilizing the characteristics of the 100% alloy powder, it is possible to produce an excellent Ajl-Si alloy material that has both wear resistance and workability.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1図に示すように、Si15〜34%を含有したA1
合金およびSi 35〜50%を含有したへ女合金の粉
末であって、第1表に示す各種組成のものをアトマイズ
法を用いて製造した。すなわち、ガス流体中に上記合金
組成からなる溶融金属を落し、ガス霧状化した状態で、
10〜10’℃/ secの冷却速度で冷却して、平均
粒径70μmの第1および第2の合金粉末A1〜A5、
B1〜B4を製造した。
As shown in Figure 1, A1 containing 15-34% Si
Powders of alloys and Heme alloys containing 35 to 50% Si and having various compositions shown in Table 1 were manufactured using an atomization method. That is, a molten metal having the above alloy composition is dropped into a gas fluid, and in a gas atomized state,
Cooled at a cooling rate of 10 to 10'C/sec to form first and second alloy powders A1 to A5 with an average particle size of 70 μm;
B1 to B4 were manufactured.

ついで、第2表に示すように、上記合金粉末のうち2p
J類を混合し、直径60.2m1ll、高さ2001円
筒金型に充填して、圧力30 kg/ mmzの1軸圧
縮により圧縮成形を行なった。
Next, as shown in Table 2, 2p of the above alloy powder
Class J was mixed and filled into a cylindrical mold with a diameter of 60.2ml and a height of 2001mm, and compression molding was performed by uniaxial compression at a pressure of 30 kg/mmz.

さらに、真空脱ガス処理を行なった後に、熱間押出加工
処理を行なって素材を製造した。押出加工処理の条件と
して、温度430℃、押出速度1m/分、押出比15を
採用した。
Furthermore, after performing vacuum degassing treatment, hot extrusion processing was performed to produce the material. As conditions for extrusion processing, a temperature of 430° C., an extrusion speed of 1 m/min, and an extrusion ratio of 15 were adopted.

つぎに、第1表の組合せのうち、Cu 、Mgを含有し
ない試料N0.10以外の試料については、時効硬化処
理を行ない、試料No、10については該処理を行なわ
なかった。上記時効硬化処理は、まず、500℃で1時
間溶体化処理を行なった後に、水冷し、さらに175℃
にて6時間焼もどしを行なった。
Next, among the combinations in Table 1, samples other than sample No. 10, which did not contain Cu or Mg, were subjected to age hardening treatment, and sample No. 10 was not subjected to this treatment. In the above age hardening treatment, first, solution treatment is performed at 500°C for 1 hour, then water-cooled, and then further heated to 175°C.
Tempering was performed for 6 hours.

また、比較例として、単一の組成のAM−Si合金から
なる合金粉末についても同様な処理を行ない、第1表、
第2表に併記する。
In addition, as a comparative example, the same treatment was performed on an alloy powder made of an AM-Si alloy with a single composition, and Table 1 shows
Also listed in Table 2.

つぎに、上記各素材について、粒子径の測定およびこの
粒子径の大小による耐摩耗性の判定、さらに、熱間押出
性、熱間鍛造性、引張強さおよび伸びに関しての加工性
を検査した。
Next, for each of the above-mentioned materials, the particle diameter was measured, the wear resistance was determined based on the size of the particle diameter, and the workability in terms of hot extrudability, hot forgeability, tensile strength, and elongation was examined.

上記試験において、Si粒子径の大きさに依存して、耐
摩耗性が向上することから、Si粒子径の大小に基いて
耐摩耗性の良否を判定した。
In the above test, the wear resistance was judged based on the size of the Si particles, since the wear resistance improved depending on the size of the Si particles.

一方、熱間押出性は、熱間押出加工処理によって得られ
た素材の割れの有無を目視により検査した。また、熱間
鍛造性の試験については、押出後の素材から直径141
11L長さ151の試料を成形し、これを450℃に加
熱して、据込み率(高さ減少率)50%の鍛造を行ない
、割れ発生の有無から熱間鍛造性を評価した。
On the other hand, hot extrudability was visually inspected for the presence or absence of cracks in the material obtained by hot extrusion processing. In addition, for the hot forgeability test, the diameter of the material after extrusion was 141 mm.
A sample with a length of 11L and 151 mm was formed, heated to 450° C., and forged at an upsetting rate (height reduction rate) of 50%, and hot forgeability was evaluated based on the presence or absence of cracks.

第2表に示すように、本実施例によれば、8115〜3
4%−A1合金からなる第1の合金粉末と、Si35〜
50%−A1合金からなる第2の合金粉末とを混合比1
:0.2〜2で混合して成形した。これにより、Si粒
子の最大径が19〜29μmで、比較例における813
5%以上(NO915〜18)に相当する最大径が確保
されるので耐摩耗性が向上し、しかも、比較例のNo、
15〜18では引張強さ、伸び、熱間押出性、熱間鍛造
性などの加工性や機械的特性がよくないのに対し、本実
施例では、加工性および機械的特性についても優れてい
る。
As shown in Table 2, according to this example, 8115-3
A first alloy powder consisting of 4%-A1 alloy and Si35~
50% - a second alloy powder consisting of A1 alloy at a mixing ratio of 1
:0.2 to 2 and molded. As a result, the maximum diameter of the Si particles is 19 to 29 μm, and 813 μm in the comparative example.
Since the maximum diameter corresponding to 5% or more (No. 915 to 18) is secured, wear resistance is improved, and moreover, the comparative example No.
15 to 18 have poor workability and mechanical properties such as tensile strength, elongation, hot extrudability, and hot forgeability, whereas this example has excellent workability and mechanical properties. .

[発明の効果] 以上説明したように、本発明によれば、耐摩耗性および
加工性の優れたA1−5+系合金素材を製造rぎる。
[Effects of the Invention] As explained above, according to the present invention, an A1-5+ alloy material having excellent wear resistance and workability can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による製造方法を示す工程図
である。
FIG. 1 is a process diagram showing a manufacturing method according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] Si15〜34%、残部AlのAl−Si合金から製造
した第1の合金粉末と、Si35〜50%、残部Alの
Al−Si合金から製造した第2の合金粉末とを1:0
.05〜2の比率で混合して成形し、Si粒子の平均径
を5〜15μm、最大径を10〜30μmとすることを
特徴とするAl−Si系合金素材の製造方法。
A first alloy powder manufactured from an Al-Si alloy containing 15 to 34% Si and the balance Al and a second alloy powder manufactured from an Al-Si alloy containing 35 to 50% Si and the balance Al at 1:0.
.. A method for producing an Al-Si alloy material, characterized in that the Si particles are mixed at a ratio of 0.05 to 2 and molded, and the average diameter of Si particles is 5 to 15 μm, and the maximum diameter is 10 to 30 μm.
JP8094685A 1985-04-16 1985-04-16 Manufacture of al-si alloy blank Granted JPS61238947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094685A JPS61238947A (en) 1985-04-16 1985-04-16 Manufacture of al-si alloy blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094685A JPS61238947A (en) 1985-04-16 1985-04-16 Manufacture of al-si alloy blank

Publications (2)

Publication Number Publication Date
JPS61238947A true JPS61238947A (en) 1986-10-24
JPH0121856B2 JPH0121856B2 (en) 1989-04-24

Family

ID=13732660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094685A Granted JPS61238947A (en) 1985-04-16 1985-04-16 Manufacture of al-si alloy blank

Country Status (1)

Country Link
JP (1) JPS61238947A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307240A (en) * 1987-06-05 1988-12-14 Mitsubishi Metal Corp High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPH02232324A (en) * 1988-09-26 1990-09-14 Pechiney Rech Group Interet Economique Production of parts made of aluminum alloy keeping high fatigue strength even after being kept in high temperature for hours
WO1994029489A1 (en) * 1993-06-04 1994-12-22 Brico Engineering Limited Aluminium alloys
JP2021008651A (en) * 2019-07-01 2021-01-28 スズキ株式会社 Aluminum alloy working material and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5937339A (en) * 1977-10-06 1984-02-29 ステイ−バ−・デヴイジヨン・デル・ボルグ−ワ−ナ−・ジ−エムビ−エツチ Synchronous ring and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5937339A (en) * 1977-10-06 1984-02-29 ステイ−バ−・デヴイジヨン・デル・ボルグ−ワ−ナ−・ジ−エムビ−エツチ Synchronous ring and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307240A (en) * 1987-06-05 1988-12-14 Mitsubishi Metal Corp High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPH02232324A (en) * 1988-09-26 1990-09-14 Pechiney Rech Group Interet Economique Production of parts made of aluminum alloy keeping high fatigue strength even after being kept in high temperature for hours
WO1994029489A1 (en) * 1993-06-04 1994-12-22 Brico Engineering Limited Aluminium alloys
US5613184A (en) * 1993-06-04 1997-03-18 The Aluminium Powder Company Limited Aluminium alloys
JP2021008651A (en) * 2019-07-01 2021-01-28 スズキ株式会社 Aluminum alloy working material and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0121856B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
KR20040070318A (en) Method for producing sintered components from a sinterable material
JPS6338541B2 (en)
JPS61238947A (en) Manufacture of al-si alloy blank
JPS634031A (en) Manufacture of wear-resistant alloy
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
US5613184A (en) Aluminium alloys
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
US6024806A (en) A1-base alloy having excellent high-temperature strength
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JPH01108338A (en) Aluminum alloy having excellent tensile and fatigue strength
JPS6328841A (en) Manufacture of aluminum alloy material and sliding member
JPH04131352A (en) Al-si-mg sintered alloy having excellent wear resistance
JPH01279701A (en) Production of forged member
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPH04131346A (en) Sintered al-si based alloy excellent in wear resistance
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP2004099996A (en) Process for manufacturing component part of internal-combustion engine
JPH02101125A (en) Manufacture of aluminum alloy excellent in tensile strength and fatigue strength
JPH0247202A (en) Steel powder for heat and wear resistant sintered alloy
JP2002115513A (en) Iron group sintered alloy two-layer valve seat and method of its manufacture
KR0163994B1 (en) High silicon aluminium alloy and process thereof
JPH01100233A (en) Heat-resistant aluminum alloy and its manufacture