JPH02101125A - Manufacture of aluminum alloy excellent in tensile strength and fatigue strength - Google Patents

Manufacture of aluminum alloy excellent in tensile strength and fatigue strength

Info

Publication number
JPH02101125A
JPH02101125A JP25194088A JP25194088A JPH02101125A JP H02101125 A JPH02101125 A JP H02101125A JP 25194088 A JP25194088 A JP 25194088A JP 25194088 A JP25194088 A JP 25194088A JP H02101125 A JPH02101125 A JP H02101125A
Authority
JP
Japan
Prior art keywords
alloy
strength
powder
toughness
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25194088A
Other languages
Japanese (ja)
Other versions
JP2746390B2 (en
Inventor
Shigenori Yamauchi
重徳 山内
Kazuhisa Shibue
渋江 和久
Yoshimasa Okubo
喜正 大久保
Yoshihiko Nishimura
西村 嘉彦
Akio Kikuchi
昭雄 菊池
Yasuhiro Fukuda
福田 康廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP63251940A priority Critical patent/JP2746390B2/en
Publication of JPH02101125A publication Critical patent/JPH02101125A/en
Application granted granted Critical
Publication of JP2746390B2 publication Critical patent/JP2746390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Al alloy having high toughness and excellent in tensile strength and fatigue strength by melting an alloy material having a specific composition consisting of Si, Fe, Cu, Mg, Ti, and Al or further containing Mn, rapidly cooling the resulting molten alloy to solidify it into a powder, and then treating the above powder at a specific temp. CONSTITUTION:An alloy material having a composition which consists of, by weight, 15.5-18.5% Si, 4-7% Fe, 1-6% Cu, 0.3-3% Mg, 0.01-2% Ti, and the balance Al with inevitable impurities or further contains 0.3-3% Mn and in which the total content of Fe and Mn is regulated to <=8% is melted and then rapidly cooled so as to be solidified and formed into a powder. The resulting rapidly solidified powder is precompacted, if necessary, and then subjected to degassing treatment at 400-520 deg.C. Subsequently, the above alloy is made dense, it necessary, by means of hot pressing and then extruded to >=4 extrusion ratio at 300-500 deg.C. The Al alloy in which mutual powder grains are bound together, by means of the resulting metal flow is hot-forged into the desired shape, followed by heat treatment, such as solution heat treatment, hardening, and tempering. By this method, the Al alloy excellent in tensile strength and fatigue strength can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に内燃機関のコネクティングロッド(コン
ロッド)その他バルブリフタ、バルブスプリングリテー
ナ−ロッカーアーム、ンンクロナイサリング等に適した
、引張および疲労強度にずくれたアルミニウム合金の製
造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is particularly suitable for connecting rods of internal combustion engines, valve lifters, valve spring retainers, rocker arms, mechanical rings, etc. This invention relates to a method for manufacturing a sagging aluminum alloy.

[従来の技術] 自動車やオートパイなどの省エネルギ一対策としてその
軽量化の要望か高い。特に内燃機関の部品なかんづくコ
ンロッドを軽量化すれば、エンジンの性能が大幅に向上
するため、このコンロッドを中心に他の部品とともにア
ルミニウム化したいという要望が高い。
[Prior Art] There is a high demand for weight reduction in automobiles, autopilots, etc. as a measure to save energy. In particular, reducing the weight of internal combustion engine parts, especially connecting rods, can greatly improve engine performance, so there is a strong desire to make these connecting rods and other parts aluminum.

ところで、コンロッドは常温から 200℃で用いられ
る。このため、コンロッド材料には常温〜200℃にお
ける引張強度、疲労強度が必要とされ、また縦弾性係数
が高いこと、線膨張係数が低いことも重要である。
By the way, connecting rods are used at temperatures ranging from room temperature to 200°C. For this reason, connecting rod materials are required to have tensile strength and fatigue strength at room temperature to 200°C, and it is also important that they have a high modulus of longitudinal elasticity and a low coefficient of linear expansion.

従来、高温強度にすぐれたアルミニウム合金としてはA
 221B、A 2618なとか知られている。
Conventionally, A is an aluminum alloy with excellent high-temperature strength.
221B and A 2618 are known.

又、急冷凝固粉末を成形したアルミニウム合金材が提案
されており、本出願人もさきに特願昭62−28365
7号、特願昭62−21+3[i5g号を提案した。
In addition, an aluminum alloy material formed from rapidly solidified powder has been proposed, and the present applicant also previously filed Japanese Patent Application No. 62-28365.
No. 7, proposed patent application No. 1982-21+3 [i5g.

[発明が解決しようとする課題] 上記従来の高温強度にすぐれたアルミニウム合金とされ
ている合金であっても、その引張強度、疲労強度、切欠
疲労強度は150℃以上においては未だ十分ではない。
[Problems to be Solved by the Invention] Even with the above-mentioned conventional aluminum alloys that are considered to have excellent high-temperature strength, their tensile strength, fatigue strength, and notch fatigue strength are still insufficient at temperatures of 150° C. or higher.

そこで本出願人は上記の発明をさきに出願したが引張お
よび疲労強度を重視すると靭性が劣り、靭性を重視する
と強度が十分でないなど、未だ改良の余地がある。
Therefore, the present applicant filed the above-mentioned invention earlier, but there is still room for improvement, such as when emphasis is placed on tensile and fatigue strength, the toughness is inferior, and when emphasis is placed on toughness, the strength is insufficient.

本発明は、高強度(例えば54kgr/ll1m’ 以
上)を維持したままその靭性をも改良した合金を提供せ
んとするものである。
The present invention aims to provide an alloy with improved toughness while maintaining high strength (for example, 54 kgr/11 m' or more).

[課題を解決するための手段] 本発明は、重量%で、S i : 15.5〜18.5
%、Fe:4〜7%、Cu:I 〜B96、MgO,3
〜3%、Ti:0.旧〜2%あるいはさらにMn:0.
3〜3%[ただしFe+Mn≦ 8%]を含み、残り不
可避不純物とAIとからなる合金材料を、溶解後、平均
冷却速度103℃/sec以上で冷却する粉末製造工程
、400〜520℃における脱ガス工程、300〜50
0℃において押出比4以上に押出す押出工程、400〜
500℃における熱間鍛造工程および熱処理工程に付す
ることを特徴とする引張および疲労強度にすぐれたアル
ミニウム合金の製造方法である。
[Means for Solving the Problems] The present invention provides Si: 15.5 to 18.5 in weight%.
%, Fe: 4-7%, Cu:I-B96, MgO, 3
~3%, Ti:0. Old ~2% or even Mn:0.
A powder manufacturing process in which an alloy material containing 3% to 3% [however, Fe+Mn≦8%] and remaining unavoidable impurities and AI is cooled at an average cooling rate of 103°C/sec or more after melting, and desorption at 400 to 520°C. Gas process, 300-50
Extrusion step of extruding at an extrusion ratio of 4 or more at 0°C, 400 ~
This is a method for producing an aluminum alloy with excellent tensile and fatigue strength, which is characterized by subjecting the aluminum alloy to a hot forging process and a heat treatment process at 500°C.

本発明における合金材料の組成の限定理由は下記のとお
りである。
The reasons for limiting the composition of the alloy material in the present invention are as follows.

Si:Feと共存してAl−5t−Fe系化合物として
分散し、疲労強度、切欠疲労強度を高める。また、弾性
係数を高め、線膨脹係数をドげる。その量が15.5%
未満では疲労強度、切欠疲労強度が低くなり、線膨脹係
数が大きくなる。18.5%を越えると靭性が劣ってく
る。
Si: Coexists with Fe and disperses as an Al-5t-Fe based compound, increasing fatigue strength and notch fatigue strength. It also increases the elastic modulus and lowers the linear expansion coefficient. The amount is 15.5%
If it is less than that, the fatigue strength and notch fatigue strength will be low and the linear expansion coefficient will be large. If it exceeds 18.5%, the toughness will deteriorate.

Fe:Siと共存してAl−8i−Fe系化合物として
分散し、またSi粒子を微細にする。これらにより引張
強度、疲労強度、切欠疲労強度を高める。また、弾性係
数を高め、線膨脹係数を下げる。その量が4%未満では
引張強度、疲労強度、切欠疲労強度が不足する。7%を
越えると靭性が著しく低下する。また、鍛造性も劣って
くる。
Fe: Coexists with Si and is dispersed as an Al-8i-Fe-based compound, and also makes Si particles fine. These increase tensile strength, fatigue strength, and notch fatigue strength. It also increases the elastic modulus and lowers the linear expansion coefficient. If the amount is less than 4%, tensile strength, fatigue strength, and notch fatigue strength will be insufficient. If it exceeds 7%, the toughness will decrease significantly. Furthermore, forgeability is also deteriorated.

Cu:Mgと共存し、時効硬化性を付与する。Cu: Coexists with Mg and imparts age hardening properties.

時効硬化により引張強度、疲労強度、切欠疲労強度が向
上する。その量が126未満ては効果か十分でなく、6
%を越えると靭性が劣る。
Age hardening improves tensile strength, fatigue strength, and notch fatigue strength. If the amount is less than 126, the effect is not sufficient, and 6
If it exceeds %, the toughness will be poor.

M g : Cuと共存し、時効効果を生じ、引張強度
、疲労強度、切欠疲労強度が向上する。
Mg: Coexists with Cu, produces an aging effect, and improves tensile strength, fatigue strength, and notch fatigue strength.

その量が0.3%未満では効果が十分でなく、3%を越
えると効果が飽和するばかりでなく、靭性も低下する。
If the amount is less than 0.3%, the effect will not be sufficient, and if it exceeds 3%, the effect will not only be saturated, but also the toughness will decrease.

Ti :Al−Ti、Al−5i−Ti系化合物として
分散し、靭性の向上に寄与する。その量が0.01%未
満では効果が十分でなく、2%を越えると逆に靭性が低
下する。
Ti: Dispersed as an Al-Ti, Al-5i-Ti based compound and contributes to improving toughness. If the amount is less than 0.01%, the effect will not be sufficient, and if it exceeds 2%, the toughness will decrease.

Mn : A l−3i−Mn系化合物として分散し、
靭性をほとんど低下させることなく、引張強度、疲労強
度、切欠疲労強度を向上させる。その量が0.3%未満
では効果が十分でなく、3%を越えると靭性が低下する
。また、Fe+MnQが8%を越えるとやはり靭性が低
下し、鍛造性も劣ってくる。
Mn: Dispersed as an Al-3i-Mn-based compound,
Improves tensile strength, fatigue strength, and notch fatigue strength with almost no reduction in toughness. If the amount is less than 0.3%, the effect will not be sufficient, and if it exceeds 3%, the toughness will decrease. Moreover, if Fe+MnQ exceeds 8%, the toughness will decrease and the forgeability will also deteriorate.

次に製造工程の限定理由について説明する。Next, the reasons for limiting the manufacturing process will be explained.

粉末製造工程:ガスアトマイズ、単ロール法、双ロール
法、噴霧ロール法などの急冷凝固法をもいる。平均冷却
速度は103℃/sec以上とすることが、強度および
靭性向上のために必要である。
Powder manufacturing process: There are also rapid solidification methods such as gas atomization, single roll method, twin roll method, and spray roll method. It is necessary to set the average cooling rate to 103° C./sec or more in order to improve strength and toughness.

脱ガス工程:靭性の向上のために脱ガスは重要である。Degassing process: Degassing is important for improving toughness.

脱ガス温度が400℃未満では脱ガス効果が不十分とな
って靭性か低くなり、520℃を越えると化合物粒子の
成長が生じて強度が低ドする。脱ガスは粉末を缶に詰め
で行ったり、真空炉中で行ったりする。
If the degassing temperature is less than 400°C, the degassing effect will be insufficient and the toughness will be reduced, and if it exceeds 520°C, compound particles will grow and the strength will be reduced. Degassing can be done by packing the powder into cans or in a vacuum furnace.

脱ガス時の雰囲気は、真空、N2ガス、不活性ガスなど
としたり、場合によっては空気中加熱後短時間真空引き
をしたりする。
The atmosphere during degassing may be vacuum, N2 gas, inert gas, or the like, or, depending on the case, may be evacuated for a short time after heating in air.

押出工程;押出によりメタルフローを与えることは靭性
の向上に重要である。押出比4未満ては粉末同士の結合
が不十分てあり、靭性が不足する。押出温度が300℃
末病では変形抵抗が大きく押出が困難となり、又押出温
度か500℃を越えると、押出割れが生じる。
Extrusion process: Providing metal flow through extrusion is important for improving toughness. If the extrusion ratio is less than 4, the bonding between the powders is insufficient and the toughness is insufficient. Extrusion temperature is 300℃
In terminal diseases, the deformation resistance is large, making extrusion difficult, and if the extrusion temperature exceeds 500°C, extrusion cracks occur.

熱間鍛造:熱間鍛造によって所望形状とする。Hot forging: A desired shape is obtained by hot forging.

鍛造温度が400℃未1x−では変形能か十分てなく割
れを生じる。また、500°Cを越えても鍛造割れを生
じる。
If the forging temperature is less than 400°C, the deformability will not be sufficient and cracks will occur. Furthermore, forging cracks occur even when the temperature exceeds 500°C.

熱処理工程・溶体化処理、焼入れ、焼戻しにより時効硬
化を生じさせ、強度を向上させる。
The heat treatment process, solution treatment, quenching, and tempering causes age hardening and improves strength.

通當焼入れは水冷によって行い、焼戻しは最高強度が得
られる条件で行う。たたし、焼入れ歪みや残留応力を緩
和するために温水焼入れや比較的高温での過時効焼戻し
も行われる。
Through-quenching is performed by water cooling, and tempering is performed under conditions that provide maximum strength. However, hot water quenching and over-aging tempering at relatively high temperatures are also performed to alleviate quenching distortion and residual stress.

本発明は上記各り程を必須の要件とするが、必要に応じ
て工程を付加することができる。例えば、脱ガス工程の
前に粉末をr備圧縮しておいたり、脱ガス後真空を保持
したままホットプレスによって緻密化し、それから押出
を行うなとの工程を採用することかできる。さらには、
粉末やフレーク、リボンの粉砕、分級なども適宜実施す
る。
The present invention requires each of the above steps as essential requirements, but steps can be added as necessary. For example, the powder may be compressed before the degassing step, or the powder may be densified by hot pressing while maintaining a vacuum after degassing, and then extrusion may be performed. Furthermore,
Grinding and classification of powder, flakes, and ribbons are also carried out as appropriate.

[実施例コ 実施例1 第1表に示す組成の各種合金を溶解後、エアアトマイズ
により粉末を製造した。そして149μm以下に分級し
た。こうして得た粉末の平均粒径は60μmであり、・
1′均冷却速度はBXI(]3℃/secであった。
[Example 1] After melting various alloys having the compositions shown in Table 1, powders were produced by air atomization. Then, it was classified to 149 μm or less. The average particle size of the powder thus obtained was 60 μm,
The 1' uniform cooling rate was BXI (]3°C/sec.

この粉末をCI P (Cold l5ostaLic
 Pressing)により]’ 6iii圧縮し、ア
ルミニウム)IIの中に装入して真空脱ガスを行った。
This powder was mixed with CI P (Cold l5ostaLic).
Pressing)]' 6iii was compressed and placed in aluminum) II for vacuum degassing.

脱ガス温度は490°Cとした。その後、アルミニウム
缶を密封し、押出用ビレットとじた。この後、400℃
において押出を行い、断面形状30X 110 mmの
角棒を得た。
The degassing temperature was 490°C. Thereafter, the aluminum can was sealed and formed into a billet for extrusion. After this, 400℃
Extrusion was performed to obtain a square bar with a cross-sectional shape of 30 x 110 mm.

このとき押出比は15であった。この押出棒を鍛造素材
として、第1図に示すようなコンロッド形状に鍛造した
。鍛造温度は450℃であった。
At this time, the extrusion ratio was 15. This extruded rod was used as a forging material and was forged into a connecting rod shape as shown in FIG. The forging temperature was 450°C.

この後、490℃×1hr→水冷−175℃X(it+
rの熱処理を行った。
After this, 490℃ x 1hr → water cooling -175℃X (it+
A heat treatment of r was performed.

第1図中の中央部(棹部)Jより丸棒試験片を切り出し
、各種試験を行った。すなわち、常温および150℃に
おける引張試験(150℃の場合はI 00 h r保
持後)、常温における切欠引張試験(切欠の形状係数2
.4)を行い、又、常温において形状係数3.1の切欠
を持つ試験片を用いて応力振幅11kgf/n+m2に
よる疲労試験(小野式回転曲げ試験)を行い、破断まで
の繰返し数(寿命)を測定した。靭性は切欠耐力比(切
欠引張強さ/平滑試験での耐力)の大きさにより評価し
た。
A round bar test piece was cut out from the center part (shape part) J in FIG. 1, and various tests were conducted. That is, tensile tests at room temperature and 150°C (after holding I 00 hr at 150°C), notch tensile tests at room temperature (notch shape factor 2),
.. 4), and also conducted a fatigue test (Ono type rotating bending test) using a test piece with a notch with a shape factor of 3.1 at room temperature using a stress amplitude of 11 kgf/n+m2 to determine the number of repetitions until rupture (life). It was measured. Toughness was evaluated based on the notch yield strength ratio (notch tensile strength/proof stress in smoothness test).

結宋は第2表に示す通りであった。本発明により得られ
た合金No、1〜8の場合、常温および150℃におけ
る強度が高く、切欠耐力比も0.91以上とかなり大き
く、靭性がかなり高いとみなされる。また、疲労試験に
おける寿命も長い。比較例合金No、9はSinが少な
いため強度か低い。No、10合金はSi瓜が多いため
切欠耐力比(靭性)か低い。No、11合金はFenが
少ないため強度が低い。No、12合金はFe1iが多
いため切欠耐力比(靭性)か小さい。No、13合金は
Cuが少ないため強度、寿命が小さい。
The ending of the Sung Dynasty was as shown in Table 2. In the case of alloy Nos. 1 to 8 obtained according to the present invention, the strength at room temperature and 150° C. is high, the notch yield strength ratio is also quite large at 0.91 or more, and the toughness is considered to be quite high. It also has a long life in fatigue tests. Comparative example alloy No. 9 has low strength because it has a small amount of Sin. No. 10 alloy has a low notch yield strength ratio (toughness) because it has a large amount of Si. Alloy No. 11 has low strength because it contains less Fen. Since the No. 12 alloy has a large amount of Fe1i, the notch yield strength ratio (toughness) is small. Alloy No. 13 has a small amount of Cu, so its strength and life are short.

NO,14合金はCuが多いため切欠耐力比(靭性)が
小さい。No、15合金はMgが少ないため強度か低い
。No、I[i合金はMgが多いため強度向上効果かみ
られないばかりか、切欠耐力比(靭性)もやや低い。N
o、17a金はTiを含まないため靭性かやや低い。N
o、1.8合金はTiff1が多いため靭性が低い。N
o、19合金はMnが多く、また、N o、20合金は
F e + M nか多いため、靭性が低い。
Since the NO,14 alloy contains a lot of Cu, the notch yield strength ratio (toughness) is low. Alloy No. 15 has low strength due to low Mg content. Since the No. I [i alloy contains a large amount of Mg, not only is it not effective in improving strength, but also the notch yield strength ratio (toughness) is somewhat low. N
o, 17a Since gold does not contain Ti, its toughness is somewhat low. N
o, 1.8 alloy has a large amount of Tiff1 and therefore has low toughness. N
The o,19 alloy has a large amount of Mn, and the no,20 alloy has a large amount of Fe + Mn, so its toughness is low.

第1表 第2表 注・σlI:引張強さ、σ。、:耐力、δ 伸びσ7.
切欠引張強さ(切欠の形状係数2.4)実施例2 A I −17,0s i −5,5F e −4,5
Cu −0,8M g −0,20T i −0,5M
 n合金を用いて製造条件の影響について検討した。す
なわち、第3表に示す条件でコンロッドを製造した。こ
の後490℃X1hr−e水冷→175℃X61+rの
熱処理を行った。N o、2L’ N o、22は本発
明による方法であり、No、23〜28は製造条件のい
ずれかが本発明方法と異なる比較例である。なお熱処理
条件はいずれも同・−とした。
Table 1 Table 2 Note: σlI: Tensile strength, σ. , : proof stress, δ elongation σ7.
Notch tensile strength (notch shape factor 2.4) Example 2 A I -17,0s i -5,5F e -4,5
Cu -0,8M g -0,20T i -0,5M
The influence of manufacturing conditions was investigated using n-alloy. That is, connecting rods were manufactured under the conditions shown in Table 3. Thereafter, heat treatment was performed at 490°C x 1hr water cooling → 175°C x 61+r. No. 2L' No. 22 is the method according to the present invention, and No. 23 to 28 are comparative examples in which any of the manufacturing conditions are different from the method of the present invention. Note that the heat treatment conditions were the same in both cases.

試験結果は第4表に示す通りである。No、21.22
は強度゛および疲労寿命ともにすぐれ、靭性もかなり高
い。No、23は冷却速度が小さいために、強度、靭性
が低い。’No、24は脱ガス温度が低いために靭性が
低い。No、25は脱ガス温度が高いために強度が低い
。No、26は押出温度が高いために押出割れを生じた
ものである。No、27は押出比が低いために靭性が低
い。N o、28は鍛造温度が高いために鍛造割れが生
じたものである。
The test results are shown in Table 4. No, 21.22
It has excellent strength and fatigue life, and has considerably high toughness. No. 23 has low strength and toughness because the cooling rate is low. 'No. 24 has low toughness due to low degassing temperature. No. 25 has low strength due to high degassing temperature. In No. 26, extrusion cracking occurred due to the high extrusion temperature. No. 27 had low toughness due to the low extrusion ratio. In No. 28, forging cracks occurred due to the high forging temperature.

σN:切欠引張強さ(切欠の形状係数2.4)[発明の
効果] 本発明によれば、引張および疲労強度にすぐれ、靭性も
かなり高いアルミニウム合金か得られる。このものは、
特に内燃機関のコンロッドに適用して、その軽量化とエ
ンジンの出力増加、旨効率化、騒音減少を可能にする。
σN: Notch tensile strength (notch shape factor 2.4) [Effects of the invention] According to the present invention, an aluminum alloy with excellent tensile and fatigue strength and considerably high toughness can be obtained. This thing is
It is especially applied to internal combustion engine connecting rods, making it possible to reduce their weight, increase engine output, improve efficiency, and reduce noise.

その他、ロッカーアーム、バルブリフタ、バルブスプリ
ングリテーナ−シンクロナイザ−リング等にも適用して
、それらの軽量化をr+工能にする。
In addition, it can also be applied to rocker arms, valve lifters, valve spring retainers, synchronizer rings, etc., making their weight reduction an R+ technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって得られるコンロッドの正面図で
ある。 1・・・中央部(棟部) 第 図 特許出願人 住友軽金属工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏
FIG. 1 is a front view of a connecting rod obtained by the present invention. 1...Central part (ridge part) Figure Patent applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent attorney Hide Komatsu Agent Patent attorney Hiroshi Asahi

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、Si:15.5〜18.5%、Fe:
4〜7%、Cu:1〜6%、Mg0.3〜3%、Ti:
0.01〜2%あるいはさらにMn:0.3〜3%[た
だしFe+Mn≦8%]を含み、残り不可避不純物とA
lとからなる合金材料を、溶解後、平均冷却速度10^
3℃/sec以上で冷却する粉末製造工程、400〜5
20℃における脱ガス工程、300〜500℃において
押出比4以上に押出す押出工程、400〜500℃にお
ける熱間鍛造工程および熱処理工程に付することを特徴
とする引張および疲労強度にすぐれたアルミニウム合金
の製造方法。
(1) In weight%, Si: 15.5-18.5%, Fe:
4-7%, Cu: 1-6%, Mg0.3-3%, Ti:
Contains 0.01-2% or further Mn: 0.3-3% [however, Fe+Mn≦8%], and the remaining unavoidable impurities and A
After melting an alloy material consisting of l, the average cooling rate is 10^
Powder manufacturing process cooling at 3°C/sec or more, 400-5
Aluminum with excellent tensile and fatigue strength characterized by being subjected to a degassing process at 20°C, an extrusion process at 300 to 500°C to an extrusion ratio of 4 or more, a hot forging process and a heat treatment process at 400 to 500°C. Alloy manufacturing method.
JP63251940A 1988-10-07 1988-10-07 Manufacturing method of aluminum alloy with excellent tensile and fatigue strength Expired - Lifetime JP2746390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251940A JP2746390B2 (en) 1988-10-07 1988-10-07 Manufacturing method of aluminum alloy with excellent tensile and fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251940A JP2746390B2 (en) 1988-10-07 1988-10-07 Manufacturing method of aluminum alloy with excellent tensile and fatigue strength

Publications (2)

Publication Number Publication Date
JPH02101125A true JPH02101125A (en) 1990-04-12
JP2746390B2 JP2746390B2 (en) 1998-05-06

Family

ID=17230240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251940A Expired - Lifetime JP2746390B2 (en) 1988-10-07 1988-10-07 Manufacturing method of aluminum alloy with excellent tensile and fatigue strength

Country Status (1)

Country Link
JP (1) JP2746390B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250902A (en) * 1988-05-12 1990-02-20 Sumitomo Electric Ind Ltd Method for forming aluminum alloy for product having large diameter
JPH02277731A (en) * 1989-04-20 1990-11-14 Honda Motor Co Ltd Production of product by using rapidly solidified powder of aluminum
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188739A (en) * 1986-02-14 1987-08-18 Honda Motor Co Ltd Al alloy stock
JPS62188738A (en) * 1986-02-15 1987-08-18 Honda Motor Co Ltd Structural member made of sintered al or al alloy and its production
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188739A (en) * 1986-02-14 1987-08-18 Honda Motor Co Ltd Al alloy stock
JPS62188738A (en) * 1986-02-15 1987-08-18 Honda Motor Co Ltd Structural member made of sintered al or al alloy and its production
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250902A (en) * 1988-05-12 1990-02-20 Sumitomo Electric Ind Ltd Method for forming aluminum alloy for product having large diameter
JPH02277731A (en) * 1989-04-20 1990-11-14 Honda Motor Co Ltd Production of product by using rapidly solidified powder of aluminum
JPH05305380A (en) * 1992-04-28 1993-11-19 Mazda Motor Corp Manufacture of magnesium alloy member

Also Published As

Publication number Publication date
JP2746390B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JPH0480081B2 (en)
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JPS61117204A (en) High-strength al alloy member for structural purpose
JP3845035B2 (en) Method for manufacturing piston for internal combustion engine and piston for internal combustion engine
JPH01198444A (en) Aluminum alloy material, especially, rod material having improved fatique strength
JPS63243245A (en) Aluminum-alloy member excellent in forgeability
JPH02101125A (en) Manufacture of aluminum alloy excellent in tensile strength and fatigue strength
US4992117A (en) Heat resistant aluminum alloy excellent in tensile strength, ductility and fatigue strength
JP2000319742A (en) Aluminum alloy extruded material with excellent crushing characteristic in axial direction
JPH01152237A (en) Aluminum alloy material for engine member
JPH01108338A (en) Aluminum alloy having excellent tensile and fatigue strength
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH02277751A (en) Manufacture of aluminum powder alloy connecting rod
JP3245652B2 (en) High temperature aluminum alloy and method for producing the same
JP2729479B2 (en) Manufacturing method of aluminum alloy excellent in high temperature strength
US5174955A (en) Heat-resisting aluminum alloy
JPH01108337A (en) Aluminum alloy having excellent tensile and fatigue strength
JPH0121856B2 (en)
JP2737376B2 (en) Al alloy two-stage powder forged member with high fatigue strength and high toughness
EP0137180A1 (en) Heat-resisting aluminium alloy
JPS62238346A (en) Aluminum alloy stock for connecting rod for internal combustion engine
JPH06145864A (en) Production of heat resistant aluminum alloy for automotive engine and parts made of heat resistant aluminum alloy
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JP3005354B2 (en) Heat treatment method of Al powder alloy
JPH08143999A (en) Aluminum alloy powder hot forged member excellent in high temperature strength and high temperature ductility