JPS63286535A - Manufacture of worked product of hard-to-work alloy - Google Patents

Manufacture of worked product of hard-to-work alloy

Info

Publication number
JPS63286535A
JPS63286535A JP62120315A JP12031587A JPS63286535A JP S63286535 A JPS63286535 A JP S63286535A JP 62120315 A JP62120315 A JP 62120315A JP 12031587 A JP12031587 A JP 12031587A JP S63286535 A JPS63286535 A JP S63286535A
Authority
JP
Japan
Prior art keywords
powder
alloy
metal
ductile
ductile metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120315A
Other languages
Japanese (ja)
Inventor
Yasushi Sasaki
康 佐々木
Eiki Takeshima
鋭機 竹島
Kiyoshi Takatsu
高津 清
Akira Sakakura
坂倉 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62120315A priority Critical patent/JPS63286535A/en
Publication of JPS63286535A publication Critical patent/JPS63286535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To simply and easily manufacture a worked product of hard-to-work alloy, by mixing respective powders of high-ductile metal and low-ductile metal in the prescribed ratio to carry out mechanical alloying and by subjecting this powdery material to compacting and to annealing so as to alloy both metals. CONSTITUTION:Metallic components constituting a difficult-to-cold-form alloy is sorted into metals having superior ductility and metals having inferior ductility. These high-ductile metal powder and low-ductile metal powder are mixed so that desired alloy composition is reached. The resulting powder mixture is formed into a powdery material having a composite structure in which the low-ductile metal powder is mechanically dispersed into the matrix of the high- ductile metal by a mechanical alloying method. Subsequently, in the state of the above-mentioned composite structure, the powdery material is subjected to compaction by rolling reduction to undergo mutual joining of the high-ductile metal and/or to presintering. The resulting preformed body is subjected, if necessary, to process annealing and then to cold working into the shape of the final product. Then, annealing is applied to the above-mentioned worked product to alloy both metals, so that desired worked product with hard-to-work alloy structure can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷間成形加工が困難か或いは実質上できない
合金材料を冷間加工によって所望製品ニ加工できるよう
にした難加工性合金の加工品の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the processing of difficult-to-form alloys, which allows alloy materials that are difficult or virtually impossible to cold-form to be processed into desired products by cold-working. Concerning the manufacturing method of the product.

〔従来の技術及び問題点〕[Conventional technology and problems]

これまで各種の優れた合金が多数開発されてきた。例え
ば磁性材料としてのセンダストやフェクラロイは非常に
優れた特性を有する。しかし、かような合金は成形が著
しく困難であるという共通の問題がある。このため、特
殊な技術1例えば急冷噴霧粉をHIP処理や押し出し加
工を行なうなどにより成型している。また超耐熱合金と
してジェットエンジンなどに用いられているlN−10
0合金はPra t t & Wh i tney社に
よるGatorizing法と称する超塑性等温鍛造に
よる方法で成形されている。
A large number of various excellent alloys have been developed so far. For example, Sendust and Feclaroy as magnetic materials have very excellent properties. However, a common problem with such alloys is that they are extremely difficult to form. For this reason, molding is performed using a special technique 1, such as HIP processing or extrusion processing of rapidly cooled spray powder. In addition, lN-10 is used as a super heat-resistant alloy in jet engines, etc.
The 0 alloy is formed by a superplastic isothermal forging method called the Gatorizing method by Pratt & Whitney.

このようなことから、従来開発された各種の難加工性合
金は、その製造性、成形加工性の面から非常に高価な材
料とならざるを得す、このために汎用化ができないとい
う共通の問題がある。
For this reason, the various difficult-to-work alloys that have been developed so far have to be extremely expensive materials in terms of manufacturability and formability, which makes them unusable for general use. There's a problem.

もし、これらの種々の難加工性0合金が筒車かつ安価に
加工と成形ができる手段が確立されれば。
If a means to process and form these various difficult-to-work 0 alloys using hour wheels at low cost could be established.

その利用価値は飛躍的に高まるであろう。Its utility value will increase dramatically.

〔発明の目的〕[Purpose of the invention]

本発明は、難加工性合金を比較的箭単且つ容易に加工、
成形する技術の確立を目的としてなされたものである。
The present invention enables relatively simple and easy processing of difficult-to-process alloys.
This was done for the purpose of establishing molding technology.

〔発明の要旨〕[Summary of the invention]

前記の目的を達成せんとする本発明の要旨とすするとこ
ろは、冷間加工や成形が困難か或いは実質上できない合
金を構成する金属成分のうち、延性に富む金属と延性が
劣る金属とに選り分けて延性に富む金属粉末と延性が劣
る金属粉末とを準備し、この準備した延性に富む金属粉
末と延性が劣る金属粉末を目標とする合金組成になるよ
うに混合し、この混合粉末材料をメカニカルアロイング
法に供して延性に富む金属のマトリックス中に延性が劣
る金属粉末が機械的に分散した複合組織の粉状材料とし
、この複合組織の粉状材料を、この複合組織を実質上維
持したままで且つ延性に富む金属同士が互いに接合し合
うに十分な圧下を加えて成形するかおよび/または該複
合組織が維持される条件での予備焼結を行って延性に富
む複合組織の予備成形体を製造し、この予備成形体を最
終製品の形状まで中間焼鈍を行うかまたは行わずに冷間
加工し、この加工品を、延性に富む金属と延性が劣る金
属とが合金化するに十分な温度と時間で焼鈍して目標と
する難加工性合金の組織にすること、を特徴とするもの
である。
The gist of the present invention, which aims to achieve the above object, is that among the metal components constituting an alloy that is difficult or virtually impossible to cold work or form, a metal with high ductility and a metal with low ductility are used. A metal powder with high ductility and a metal powder with low ductility are sorted and prepared, and the prepared metal powder with high ductility and the metal powder with low ductility are mixed to have a target alloy composition, and this mixed powder material is mixed. A powder material with a composite structure in which a metal powder with poor ductility is mechanically dispersed in a matrix of a highly ductile metal is obtained by subjecting it to a mechanical alloying method, and the powder material with a composite structure substantially maintains this composite structure. Preliminary preparation of a ductile composite structure by applying sufficient rolling pressure to bond the ductile metals together and/or performing preliminary sintering under conditions that maintain the composite structure. A compact is produced, the preform is cold-worked to the shape of the final product with or without intermediate annealing, and the workpiece is alloyed with a more ductile metal and a less ductile metal. It is characterized by annealing at a sufficient temperature and time to form the target difficult-to-work alloy structure.

すなわち本発明者らは、難加工性の合金においても構成
元素の中に延性に富む金属が含まれる場合がある事に着
目し、この延性に富む金属を利用して加工成形すること
を試み1本発明に至ったものである。この加工成形の処
法として、延性に富む金属の微粉末のマトリックス内に
、延性が劣る金属の微粒子を、該マトリックスの延性が
それほど阻害されない程度に機械的に埋め込んで分散さ
せた複合組織の粉体を製造したうえ、この粉体中の延性
に富む金属のマトリックス同士が接合した状態の延性に
富む複合組織の予備成形品を作り。
In other words, the present inventors focused on the fact that even in difficult-to-work alloys, the constituent elements may contain highly ductile metals, and attempted to process and form them using these ductile metals. This led to the present invention. As a process for processing and forming, fine particles of metal with poor ductility are mechanically embedded and dispersed in a matrix of fine powder of metal with high ductility to the extent that the ductility of the matrix is not significantly inhibited. After manufacturing the powder, we created a preformed product with a ductile composite structure in which the ductile metal matrix in this powder was bonded to each other.

これを加工に供するという処法を採用する点に本発明の
基本的な特徴がある。そして2合金化はこの最終加工品
を焼鈍することによって行うのである。
The basic feature of the present invention is that it employs a method of subjecting this material to processing. The 2-alloying process is then performed by annealing this final processed product.

本発明法で適用する延性が劣る金属粉末は、純金属元素
の粉末のほか1合金粉末または金属間化合物のいずれか
であってもよい。したがって1本明細書において延性が
劣る金属粉末とは、延性が劣る合金粉末および延性が劣
る金属間化合物をも含む意味で使用している。また、使
用する延性に富む金属粉末および延性が劣る金属粉末に
、粒径が0.1μmから20μmの範囲の微粉体である
のがよい、そして延性に富む金属粉末は、混合材料中少
なくとも40容量%以上の範囲であるのが好ましい。
The metal powder with poor ductility used in the method of the present invention may be either a pure metal element powder, an alloy powder, or an intermetallic compound. Therefore, in this specification, the term "metal powder with poor ductility" is used to include alloy powder with poor ductility and intermetallic compounds with poor ductility. In addition, it is preferable that the ductile metal powder and the less ductile metal powder used be fine powders with a particle size in the range of 0.1 μm to 20 μm, and the ductile metal powder should have a volume of at least 40 μm in the mixed material. % or more is preferable.

〔発明の詳細な 説明の実施にあたり、まず難加工性合金を構成する成分
のうち、延性に富む金属の微粉と、他の延性が劣る金属
粉末の微粉を製造する。いずれの微粉も粒径が0.1μ
m〜20μmの範囲の微粉とする。そして、難加工性合
金の組成となるようにこれらを混合し、この混合材料を
メカニカルアロイング法を用いて延性が劣る金属マトリ
ックス中に延性が劣る金属微粒子(純金属元素のほか1
合金または金属間化合物の微粒子であってもよい)が機
械的に埋め込まれた2相組織の複合材料を作製する。こ
の複合材料の作成において、延性に富む金属中に分散さ
せるべき金属1合金、金属間化合物の粒子の粒径は小さ
い程、後の加工及び拡散処理が容易になる。このため延
性が劣る金属粉末は少なくとも5μl以下望ましくに、
μ領以下のものを使用するとよい。このような微粉はメ
カニカルアロイング法実施の過程でも形成される。
[In carrying out the detailed description of the invention, first, among the components constituting the difficult-to-work alloy, a fine powder of a highly ductile metal and a fine powder of another metal powder having poor ductility are produced. The particle size of both fine powders is 0.1μ
Fine powder in the range of m to 20 μm. Then, these are mixed to form a composition of a difficult-to-work alloy, and this mixed material is placed in a metal matrix with poor ductility using a mechanical alloying method.
A composite material having a two-phase structure in which particles (which may be fine particles of an alloy or an intermetallic compound) are mechanically embedded is prepared. In creating this composite material, the smaller the particle size of the metal 1 alloy or intermetallic compound particles to be dispersed in the ductile metal, the easier the subsequent processing and diffusion treatment will be. For this reason, the metal powder with poor ductility should desirably be at least 5 μl or less.
It is better to use one below the μ range. Such fine powder is also formed during the mechanical alloying process.

粉体のメカニカルアロイング法に、例えば回転ドラム内
に剛性のボールを入れた機械によって行うことができる
。そのさい、易酸化性の粉体を使用する場合にはドラム
内の雰囲気を不活性雰囲気にしておくのが好ましい。メ
カニカルアロイング法によると、原料粉が粉砕されて新
表面ができ。
Mechanical alloying of powders can be carried out using, for example, a machine containing rigid balls in a rotating drum. At this time, if easily oxidizable powder is used, it is preferable to maintain an inert atmosphere in the drum. According to the mechanical alloying method, the raw material powder is crushed to form a new surface.

また原料粉はボールの衝突で塑性変形する。この変形が
進むと表面の汚染皮膜が破壊されて新表面が露出し、原
料粉同志の冷間接合が起き、同時に接合によって大きく
なりすぎた粉末は塑性変形に耐えることができなくなり
、再粉砕が起こる。この再粉砕と接合の繰り返しによっ
て異種の原料粉同志が細く畳み込まれて複合体となって
いく。つまりメカニカルアロイング法によると表面が酸
化されずに微細な粒子が分散した複合粉を作ることがで
きる。これは通常の機械的混合では得られないものであ
る6例えばStのように酸化しやすい粉末とFe粉の焼
結体を作る場合には、Siの表面に薄いSin、酸化被
膜が不可避的に存在するので、この2種の粉末を単に機
械的混合をしたのち焼結してもSiOオ皮膜のために拡
散がいちじるしく阻害され均一化する事が非常に困難と
なるが。
In addition, the raw material powder is plastically deformed by the impact of the ball. As this deformation progresses, the contaminated film on the surface is destroyed and a new surface is exposed, causing cold bonding of the raw material powders, and at the same time, the powders that have become too large due to bonding cannot withstand plastic deformation and are forced to re-grind. happen. By repeating this re-grinding and joining, different kinds of raw material powders are folded into fine particles to form a composite material. In other words, using the mechanical alloying method, it is possible to create a composite powder in which fine particles are dispersed without oxidizing the surface. This cannot be obtained by normal mechanical mixing6. For example, when making a sintered body of easily oxidized powder such as St and Fe powder, a thin Si or oxide film is inevitably formed on the surface of the Si. Therefore, even if these two types of powders are simply mechanically mixed and then sintered, the SiO2 film will significantly inhibit diffusion and make it extremely difficult to achieve uniformity.

メカニカルアロイング法ではこのようなことは避けられ
る。
This can be avoided with the mechanical alloying method.

次いで1本発明ではメカニカルアロイング法で得られた
複合粉末を、後の加工を行うための予備成形品を作る。
Next, in the present invention, the composite powder obtained by the mechanical alloying method is used to prepare a preform for subsequent processing.

この予備成型の目的は、延性のある金属マトリックス中
に、延性が劣る微粒子が分散した状態の複合組織を保ち
ながら、塑性加工できる程度に延性に富む金属マトリッ
クス同士を結合することにある。この予備成形には、冷
間ブレスまたはCIPや粉末圧延を用いることができる
が、もしこの方法でまだ予備成形体としての成形保持強
度が十分でない場合は、延性に富む金属マトリックスと
中に分散している延性が劣る微粒子の拡散が無視できる
範囲の温度・時間でさらに焼結を行ってもよい。また、
軽度の圧粉成形体をこの条件で焼結して延性に富む複合
組織のケーキ状の予備成形品を製造することもできる。
The purpose of this preforming is to maintain a composite structure in which fine particles with poor ductility are dispersed in a ductile metal matrix, while bonding the ductile metal matrices to the extent that plastic processing is possible. For this preforming, cold pressing, CIP, or powder rolling can be used, but if this method still does not provide sufficient shape retention strength as a preform, a ductile metal matrix and dispersed in the preform may be used. Further sintering may be performed at a temperature and time within a range where diffusion of fine particles having poor ductility can be ignored. Also,
It is also possible to produce a cake-like preformed product with a highly ductile composite structure by sintering a light green compact under these conditions.

本発明においては、得られる予備成型品が延性に富む金
属マトリックス中に微細粒子(延性が劣る金属1合金ま
たは金属間化合物の微粒子)が互いに離れて分散してい
る状態の複合組織となっていることが必要であり、加工
による変形の大部分を延性に富む金属が受は持つことに
なる。そのさい、延性に富む金属マトリックスの量が多
い程加工は容易となるので、当初の粉末混合の段階で延
性に富む金属粉末が少なくとも体積%で40%以上とし
ておくのが好ましい。
In the present invention, the obtained preform has a composite structure in which fine particles (fine particles of metal 1 alloy or intermetallic compound having poor ductility) are dispersed apart from each other in a highly ductile metal matrix. This means that the ductile metal will bear most of the deformation caused by processing. In this case, the larger the amount of the highly ductile metal matrix, the easier the processing becomes, so it is preferable that the amount of the ductile metal powder be at least 40% by volume at the initial powder mixing stage.

次いで、この予備成型体を所定の最終形状まで加工した
後、この成型体が溶融しない温度域で焼鈍処理を行い、
微細分散粒子をマトリックス中に拡散させる事により均
一組成をもつ合金を得る。
Next, after processing this preform into a predetermined final shape, annealing is performed in a temperature range where this molded body does not melt.
An alloy with a uniform composition is obtained by diffusing finely dispersed particles into a matrix.

−最終形状までの加工の途中で、焼鈍による分散粒子の
拡散で合金化が進み加工性が悪くならない限り、少なく
とも1回以上の中間焼鈍を行って加工性を改善すること
もできる。この加工は冷間で行うことができる。
- In the middle of processing to the final shape, as long as alloying progresses due to diffusion of dispersed particles during annealing and does not deteriorate workability, intermediate annealing may be performed at least once to improve workability. This processing can be done cold.

最終の焼鈍による拡散処理において、拡散をより均一か
つすみやかに行うためは2分散させるべき延性が劣る微
細粒子として純金属を用いるよりも、延性に富む金属マ
トリックスを構成している金属との合金粉を用いる方が
望ましい。そしてこの場合には2合金化した粉体を用い
ることによって、その合金のそれぞれの構成元素の活、
flも下がることになり酸化しにくくなるという長所も
得られる。
In the final annealing diffusion treatment, in order to achieve more uniform and rapid diffusion, rather than using pure metal as fine particles with poor ductility, it is preferable to use an alloy powder with the metal that constitutes the highly ductile metal matrix. It is preferable to use In this case, by using two-alloyed powder, the activity of each constituent element of the alloy can be increased.
Since fl is also lowered, there is an advantage that oxidation is less likely to occur.

このようにして2本発明によると、難加工性合金でも比
較的容易に最終製品に成形加工ができ。
In this manner, according to the present invention, even difficult-to-work alloys can be relatively easily formed into final products.

難加工性であるが故に汎用化が出来なかった各種の優れ
た合金を安価に市場に提供できる。したがって本発明法
は、従来の難加工性合金のうち、その合金元素として比
較的延性に富む金属が比較的多量に含まれている合金で
あれば適用可能であり既述のセンダスト、フェクラロイ
合金の他、各種の合金の成形加工に適用が可能である。
Various excellent alloys that could not be widely used due to their difficult-to-process properties can be provided to the market at low cost. Therefore, the method of the present invention can be applied to any conventional difficult-to-work alloy that contains a relatively large amount of a relatively ductile metal as an alloying element. In addition, it can be applied to forming various alloys.

以下に難加工性合金として鉄基合金に本発明を適用した
実施例を代表例として挙げるが2本発明法はこの実施例
に限られるものではない。
Examples in which the present invention is applied to an iron-based alloy as a difficult-to-work alloy will be listed below as representative examples, but the method of the present invention is not limited to these examples.

〔実施例1〕 高純度化学■製の平均15μmのアトマイズ鉄粉150
gと高純度化学■製の平均粒径5μのシリコン粉Log
をよく混合したのち三井三池化工■製のアトライターを
用いてN!雰囲気で12時間メカニカルアロイングを行
った0回転数は200rpmで用いたボールは直径5I
llIの高Crt!!4である。
[Example 1] Atomized iron powder 150 with an average size of 15 μm manufactured by Kojundo Kagaku ■
Silicon powder Log with an average particle size of 5μ made by g and Kojundo Kagaku ■
After mixing thoroughly, use an attritor manufactured by Mitsui Miike Kako ■ to N! Mechanical alloying was performed in an atmosphere for 12 hours with a zero rotation speed of 200 rpm and the ball used had a diameter of 5I.
llI high Crt! ! It is 4.

得られた粉末を5 ton/cdの圧力で冷間ブレス加
工し直径5c+++厚さ4mmの円板を作成し、この円
板をH2雰雰囲気下12時間Cで10分間焼結して予備
成形品を得た。
The obtained powder was cold pressed at a pressure of 5 ton/cd to create a disc with a diameter of 5c+++ and a thickness of 4mm, and this disc was sintered at C for 10 minutes in an H2 atmosphere for 12 hours to obtain a preformed product. I got it.

次いでこの予備成形品の円板を、厚さ110μmまで中
間焼鈍なしで圧延し、得られた薄板を1200°CでH
8雰囲気中10時間拡散熱処理をした後、さらに90μ
mまで圧延した。そして、 1200°Cで10時間の
最終拡散熱処理を行って鉄−シリコン合金を得ることが
できた。
The disk of this preform was then rolled to a thickness of 110 μm without intermediate annealing, and the resulting thin plate was heated at 1200°C.
After diffusion heat treatment in 8 atmosphere for 10 hours, further 90μ
It was rolled to m. Then, a final diffusion heat treatment was performed at 1200°C for 10 hours to obtain an iron-silicon alloy.

得られた鉄シリコン合金から2幅12.5mm、標点距
#50mmのダンベル片を作成し、引張速度4.2×1
0−8閘m/sで引張試験を行った。その結果、引張り
強さ62kgf/I1m”、降伏強さ51kgf/mm
”であった。
Dumbbell pieces with a width of 12.5 mm and gauge length #50 mm were made from the obtained iron-silicon alloy, and the tensile speed was 4.2 x 1.
A tensile test was conducted at a speed of 0-8 m/s. As a result, the tensile strength was 62 kgf/I1m'' and the yield strength was 51 kgf/mm.
"Met.

これは、市販の3.2%硅素鋼に比べていづれも約10
kgf/m+w”程度、抗張力および降伏応力とも強く
なっている。
This is about 10% higher than commercially available 3.2% silicon steel.
kgf/m+w'', both tensile strength and yield stress are strong.

〔比較例1〕 実施例1で使用したのと同じアトマイズ鉄粉とシリコン
粉を混合し、これを高周波溶解炉でH2雰囲気下で溶解
してSIを約5.8%含むF e−S i合金を作り、
これを厚さが約21の薄板に切り出したのち、この合金
試料の圧延を試みたがすぐに割れが入り、圧延不能であ
った。
[Comparative Example 1] The same atomized iron powder and silicon powder used in Example 1 were mixed, and this was melted in a high frequency melting furnace in an H2 atmosphere to obtain Fe-Si containing about 5.8% SI. make an alloy,
After cutting this into a thin plate with a thickness of about 21 mm, an attempt was made to roll this alloy sample, but cracks appeared immediately and rolling was impossible.

〔実施例2〕 実施例1と同じ鉄粉150gと平均粒度5μ閣のフェロ
シリコン(シリコン含有量50wt、χ)20gを良く
混合したのち、実施例1と同じ方法で直径5cm厚さ4
mmの円板を作成し、この円板を1100℃で15分間
Hオ雰囲気下で焼結処理を行って予備成形品を作った。
[Example 2] After thoroughly mixing 150 g of the same iron powder as in Example 1 and 20 g of ferrosilicon (silicon content 50 wt,
A disk with a diameter of 1.0 mm was prepared, and this disk was sintered at 1100° C. for 15 minutes in an H atmosphere to produce a preform.

この予備成形品を厚120μまで圧延した。そしてこの
薄板を1200℃で12時間Hz雰囲気下で拡散熱処理
をして鉄−シリコン合金を得ることができた。
This preform was rolled to a thickness of 120μ. This thin plate was then subjected to diffusion heat treatment at 1200° C. for 12 hours in a Hz atmosphere to obtain an iron-silicon alloy.

この合金をEPMAによって観察したところ。This alloy was observed by EPMA.

Si濃度が高目の部分も少しあるがほぼSiが均一に分
布していることを確認した。また、鉄損を測定シタとこ
ろ* WIt/S@において0.58(WaH/kg)
を得た。これは市販の3.2%SIの珪素鋼板に比べて
低い鉄損値であり、電磁気材料として優れた特性を有し
ている。
Although there were some areas where the Si concentration was high, it was confirmed that Si was almost uniformly distributed. In addition, the iron loss was measured * 0.58 (WaH/kg) at WIt/S@
I got it. This has a lower core loss value than commercially available 3.2% SI silicon steel sheets, and has excellent properties as an electromagnetic material.

〔実施例3〕 平均粒径40μmのアトマイズ鉄粉150gと平均粒径
30μmの7sロクロム粉(Cr含有量61.9wt、
)75gを、メカニカルアロイング処理を24時間とし
た以外は実施例1と同じ条件でメカニカルアロイングを
行った。得られた複合粉末を5ton/cm”の圧力で
冷間ブレス加工し、直径51厚さ3n+mの円板を作成
し、この円板をH,雰囲気中1200°Cで20分間焼
鈍して予備成形品を得た。
[Example 3] 150 g of atomized iron powder with an average particle size of 40 μm and 7S Rochrome powder with an average particle size of 30 μm (Cr content 61.9 wt,
) 75 g was subjected to mechanical alloying under the same conditions as in Example 1, except that the mechanical alloying treatment was carried out for 24 hours. The obtained composite powder was cold-pressed at a pressure of 5 ton/cm'' to create a disk with a diameter of 5 mm and a thickness of 3 nm+m, and this disk was annealed at 1200°C for 20 minutes in an H atmosphere to preform. I got the item.

この円板状の予備成形品を厚さ200μmまで中間焼鈍
なしで冷間圧延を行った0次いで得られた薄板を5XI
OC11に切り出した後、 1200°CでH,雰囲気
下12時間の拡散熱処理を行ってクロム鉄合金を得るこ
とができた。
This disk-shaped preform was cold rolled to a thickness of 200 μm without intermediate annealing.
After cutting into OC11, diffusion heat treatment was performed at 1200°C in an H atmosphere for 12 hours to obtain a chromium iron alloy.

このクロム合金をINの30°CのHCIにおいて10
0時間の浸漬試験を行った所はとんど減量はみられなか
った。
This chromium alloy was tested in HCI at 30°C for 10
Almost no weight loss was observed in the 0-hour immersion test.

Claims (4)

【特許請求の範囲】[Claims] (1)冷間成形加工が困難か或いは実質上できない合金
材料を冷間加工によって所望製品に加工する方法におい
て、 該合金を構成する金属成分のうち、延性に富む金属と延
性が劣る金属とに選り分けて延性に富む金属粉末と延性
が劣る金属粉末とを準備し、準備した延性に富む金属粉
末と延性が劣る金属粉末を目標とする合金組成になるよ
うに混合し、該混合粉末材料をメカニカルアロイング法
に供して延性に富む金属のマトリックス中に延性が劣る
金属粉末が機械的に分散した複合組織の粉状材料とし、 この複合組織の粉状材料を、この複合組織を実質上維持
したままで且つ延性に富む金属同士が互いに接合し合う
に十分な圧下を加えて成形するかおよび/または該複合
組織が維持される条件での予備焼結を行って延性に富む
複合組織の予備成形体を製造し、 この予備成形体を最終製品の形状まで中間焼鈍を行うか
または行わずに冷間加工し、 この加工品を、延性に富む金属と延性が劣る金属とが合
金化するに十分な温度と時間で焼鈍して目標とする難加
工性合金の組織にすること、を特徴とする難加工性合金
の加工品の製造法。
(1) In a method of processing an alloy material that is difficult or virtually impossible to cold-form into a desired product by cold-working, a metal with high ductility and a metal with low ductility are separated from among the metal components constituting the alloy. A metal powder with high ductility and a metal powder with low ductility are prepared by sorting, the prepared metal powder with high ductility and the metal powder with low ductility are mixed to have a target alloy composition, and the mixed powder material is mechanically processed. A powder material with a composite structure in which metal powder with poor ductility is mechanically dispersed in a matrix of a highly ductile metal is obtained by subjecting it to an alloying method, and this powder material with a composite structure is substantially maintained. Preforming a ductile composite structure by applying a sufficient reduction to bond the ductile metals together and/or pre-sintering under conditions that maintain the composite structure. the preform is cold worked with or without intermediate annealing to the shape of the final product, and the workpiece is processed to form a material of sufficient ductile and less ductile metal to form an alloy. A method for manufacturing a processed product of a difficult-to-work alloy, which is characterized by annealing at a temperature and time to obtain a target structure of a difficult-to-work alloy.
(2)延性が劣る金属粉末は、金属元素の粉末、合金粉
末または金属間化合物の粉末である特許請求の範囲第1
項記載の製造法。
(2) The metal powder with poor ductility is a powder of a metal element, an alloy powder, or an intermetallic compound powder.
Manufacturing method described in section.
(3)延性に富む金属粉末および延性が劣る金属粉末に
、粒径が0.1μmから20μmの範囲の微粉体である
特許請求の範囲第1項、第2項または第3項記載の製造
法。
(3) The manufacturing method according to claim 1, 2 or 3, wherein the highly ductile metal powder and the less ductile metal powder are fine powders with particle sizes in the range of 0.1 μm to 20 μm. .
(4)延性に富む金属粉末は、混合材料中少なくとも4
0容量%以上の範囲である特許請求の範囲第1項、第2
項または第3項記載の製造法。
(4) The ductile metal powder should be at least 4% in the mixed material.
Claims 1 and 2 are in the range of 0% by volume or more.
The manufacturing method described in item 3 or item 3.
JP62120315A 1987-05-19 1987-05-19 Manufacture of worked product of hard-to-work alloy Pending JPS63286535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62120315A JPS63286535A (en) 1987-05-19 1987-05-19 Manufacture of worked product of hard-to-work alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120315A JPS63286535A (en) 1987-05-19 1987-05-19 Manufacture of worked product of hard-to-work alloy

Publications (1)

Publication Number Publication Date
JPS63286535A true JPS63286535A (en) 1988-11-24

Family

ID=14783197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120315A Pending JPS63286535A (en) 1987-05-19 1987-05-19 Manufacture of worked product of hard-to-work alloy

Country Status (1)

Country Link
JP (1) JPS63286535A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197535A (en) * 1989-01-24 1990-08-06 Hagishita Shirou Manufacture of intermetallic compound
EP0608692A1 (en) * 1993-01-25 1994-08-03 Abb Research Ltd. Process for making a material based on a doped intermetallic compound
WO1995024511A1 (en) * 1994-03-10 1995-09-14 Nippon Steel Corporation Titanium-aluminium intermetallic compound alloy material having superior high temperature characteristics and method for producing the same
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197535A (en) * 1989-01-24 1990-08-06 Hagishita Shirou Manufacture of intermetallic compound
EP0608692A1 (en) * 1993-01-25 1994-08-03 Abb Research Ltd. Process for making a material based on a doped intermetallic compound
WO1995024511A1 (en) * 1994-03-10 1995-09-14 Nippon Steel Corporation Titanium-aluminium intermetallic compound alloy material having superior high temperature characteristics and method for producing the same
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material

Similar Documents

Publication Publication Date Title
US5476632A (en) Powder metal alloy process
US5540883A (en) Method of producing bearings
US5516483A (en) Hi-density sintered alloy
US4365996A (en) Method of producing a memory alloy
JP2003253372A (en) Method for manufacturing high density iron-based forged parts
JP3367269B2 (en) Aluminum alloy and method for producing the same
US5512236A (en) Sintered coining process
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
EP0202886B1 (en) Canless method for hot working gas atomized powders
US3650729A (en) Internally nitrided steel powder and method of making
JPS63286535A (en) Manufacture of worked product of hard-to-work alloy
JPS6345306A (en) Production of sintered member
JPH04210448A (en) Functionally gradient material using zn-22al superplastic powder and method for forming the same
US4321091A (en) Method for producing hot forged material from powder
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS6119756A (en) Preparation of sintered high speed steel
JP2917999B2 (en) Method for producing high-strength aluminum alloy compact
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
JPH01201450A (en) Method for working wear-resistant aluminum alloy
JPH01279701A (en) Production of forged member
EP0846782A1 (en) Powder metal alloy process
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
JPS62179812A (en) Manufacture of composite cylindrical material
JPS60177101A (en) Improvement of moldability of ferrous powder