JPH01201450A - Method for working wear-resistant aluminum alloy - Google Patents

Method for working wear-resistant aluminum alloy

Info

Publication number
JPH01201450A
JPH01201450A JP63130543A JP13054388A JPH01201450A JP H01201450 A JPH01201450 A JP H01201450A JP 63130543 A JP63130543 A JP 63130543A JP 13054388 A JP13054388 A JP 13054388A JP H01201450 A JPH01201450 A JP H01201450A
Authority
JP
Japan
Prior art keywords
powder
solid lubricant
aluminum alloy
density ratio
true density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63130543A
Other languages
Japanese (ja)
Other versions
JP2584488B2 (en
Inventor
Toshiyuki Yamamoto
俊之 山本
Koji Takahashi
耕二 高橋
Tadao Hirano
忠男 平野
Takeo Nakagawa
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63130543A priority Critical patent/JP2584488B2/en
Publication of JPH01201450A publication Critical patent/JPH01201450A/en
Application granted granted Critical
Publication of JP2584488B2 publication Critical patent/JP2584488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy causing no damage to mating materials and having high wear resistance with superior unit consumption of material by making a powder mixture in which prescribed amounts of solid lubricant is added to an Al-alloy powder, and sintering and forging it under specific conditions. CONSTITUTION:A powder mixture prepared by adding 0.5-20%, by weight, of solid lubricant to an Al-alloy powder is compacted at a temp. between the ordinary temp. and 300 deg.C so as to be formed into a preform of 70-95% true density ratio, which is sintered in vacuum or in an inert atmosphere at 450-600 deg.C. Subsequently, forging is applied to the above in a forging die of near-final shape at 200-550 deg.C without delay, by which a sintered compact of >=95% true density ratio is obtained. Further, it is desirable that a powder prepared by atomizing a molten alloy which has a composition consisting of, by weight, 10-30% Si and the balance essentially Al and containing, if necessary, either or both of 0.5-5.0% Cu and 0.2-3.0% Mg is used as the above Al-alloy powder. Moreover, it is preferable that the solid lubricant is composed of the grains or chops of one or more kinds among BN, graphite powder, graphite chops, and MoS2.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐摩耗性アルミニウム合金の製造に係り、特に
高耐摩耗性を必要とする摺動部材1機械部品等々に使用
可能なアルミニウム合金の加工方法に関するものである
。 (従来の技術) ここ数年、金属溶湯の急冷凝固法の急激な発達に伴い、
多量のSiを添加した高力耐摩耗性アルミニウム合金が
開発されている。また、この急冷凝固アルミニウム合金
粉末にSiC等のセラミックス粒子を添加し、耐摩耗性
特性のより一層の向上を図った複合材料の研究開発も盛
んに行われている(特開昭52〜109415号参照)
。 (発明が解決しようとする問題点) ところで、アルミニウムにセラミックス粒子を添加する
方法としては、アルミニウム溶湯中にSiC等のセラミ
ックス粒子を添加し、耐摩耗性の向上を狙った研究開発
も行われている。しかし、溶湯中にセラミックス粒子を
均一に添加するにはアルミニウムとセラミックス粒子と
の比重差等により非常に難しい技術を必要とする。 一方、アルミニウムの急冷凝固粉末を用いた場合は、セ
ラミックス粒子との複合化は比較的容易であるが、製造
された材料を摺動部材として使用する際、セラミックス
粒子は金属材料に比べ非常に硬い材料であるため、相手
材の金属を疵つけるといった問題がある。 また、急冷凝固アルミニウム粉末を用いる場合には、そ
の緻密化のための手段として熱間押出し法が一般的に採
用されているが、材料歩留が悪く、加工工程も複雑であ
る。しかも、固体nm剤、特に黒鉛粉末等をアルミニウ
ム合金に添加し、熱間押出しを行うと、固体潤滑剤が押
出し方向に薄く流れるため、高潤滑特性が得られなかっ
たり、潤滑剤の介在する部分から剥離したりする等の問
題がある。 また、セラミックス粒子を分散させたアルミニウム合金
は、切削性が悪化するので、機械部品等への成形加工に
は適さず、用途が限定されるという欠点があった。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、相手材を疵つけることなく、しかも
高耐摩耗性を有するアルミニウム合金を材料歩留良く、
安価に製造できる方法を提供することを目的とするもの
である。 (問題点を解決するための手段) 本発明者等は、前記従来技術の問題点を解決するために
鋭意研究、開発を行った。その結果、アルミニウム合金
粉末に固体潤滑剤又は固体潤滑剤とセラミックス粒子を
特定量で添加して混合粉末とし、まず最終形状に近い金
型に充填して真密度比70〜95%のプリフォームを作
成した後、不活性雰囲気中で焼結し、その後、直ちに最
終形状に近い鍛造型内で熱間鍛造を行えば、最終製品に
近い形状のものが得られ、切削加工等の後加工を殆ど必
要とせず、したがって、材料歩留良く安価に高耐摩耗性
アルミニウム合金が製造可能であることが判明した。し
かも、固体潤滑剤の作用により相手材を疵つけることの
ない高耐摩耗性を有するアルミニウム合金成形体が得ら
れることが明らかとなった。 そこで、更にそれらのためのプロセス条件を詳細に検討
して、ここに本発明をなすに至ったものである。 すなわち、本発明は、アルミニウム合金粉末に固体潤滑
剤を2〜20wt%添加混合する添加酸いは固体潤滑剤
2〜20wt%と硬質粒子2〜20νt%を添加混合し
た混合粉末を、常温〜300℃の温度で成形して真密度
比70〜95%のプリフォームを製造し、次いで該プリ
フォームを450〜600℃の真空又は不活性ガス雰囲
気中で焼結した後、200〜550℃の温度で鍛造して
真密度比95%以上の成形体を得ることを特徴とするも
のである。これにより、該固体潤滑剤又は該固体潤滑剤
と硬質粒子が該基地に均一に分散している組織を得るこ
とができる。特に、硬質粒子のみを添加した場合に比べ
、固体潤滑剤と硬質粒子を共に添加すると、相手材を疵
つけることなく耐摩耗性、強度を一層向上させることが
できる。 以下に本発明を更に詳細に説明する。 アルミニウム合金は、その軽量という特性を活かし、自
動車用部品のピストン、コンロッド、リテーナ−等の用
途が期待されている。これらの用途では強度以外に耐摩
耗性も必要とされているため、前述の如く、従来よりア
ルミニウム合金に耐摩耗性を与える研究、開発が多く試
みられてきたのである。 すなわち、一つの方法として、アルミニウム合金と固体
潤滑剤とを複合化し、相手材とアルミニウム合金との摩
擦係数を小さくすることにより、耐摩耗性を向上するこ
とが試みられている。アルミニウム合金の粉末冶金はそ
の粉末表面の酸化皮膜のために通常の圧粉成形〜焼結で
は強固な粉末間の結合が得られない。そのため、−量的
に、アルミニウム合金の粉末冶金には熱間押出し法が用
いられている。しかし、この手法では、熱間押出し時の
大きな剪断力により固体潤滑剤が引き伸ばされてアルミ
ニウム合金中に存在するため、そこでのアルミニウム粉
末同志の結合が十分に起こらず、その影響が大きくなる
とそこから割れが入るという問題が起こる。 そこで、本発明者等は、焼結鍛造法の適用を検討するた
めに、まず基礎実験として、大気アトマイズ法により得
られた100メツシユ以下のAl−16,0%5i−3
,0%Cu−1,0%Mg合金粉末に固体潤滑剤を5w
t%添加し、混合した後、冷間成形により35X95X
30mmで密度比75%のプリフォームを作成し、50
0 ’CX 30m1nの条件でN、雰囲気中で焼結し
た。その後直ちに400℃に加熱した金型内にて面圧8
 ton / cm2にて大気中で鍛造した。 これらの焼結鍛造材から摩耗試験片を切り出し、大館式
摩耗試験機により摩耗特性を調べた。その結果を第1図
に示す。同図より、いずれの摩耗速度においても比摩耗
量が10−’mm/ kgオーダーと非常に高い耐摩耗
特性を示すことが明らかとなった。 以上の基礎実験の好結果に基づき、更に各種条件につい
て詳細に研究を重ねた結果、アルミニウム合金粉末に固
体潤滑剤を添加して耐摩耗性アルミニウム合金を加工す
る方法を見い出したものである。 また、本発明者等は、耐摩耗性を向上させる別の方法と
してセラミックス粒子との複合化があるので、上記方法
にこれを適用する手法についても研究を重ねた。すなわ
ち、この複合化の方法は鋳造法によるものより粉末冶金
的手法の方が均一分散性の意味からは有利であるが、セ
ラミックス粒子は非常に硬いために、摺動部材として用
いた場合、相手材を逆に傷つけ削りとるような現象が起
こるという問題がある。そこで、上記加工方法において
、固体潤滑剤と併用するならば、摩耗係数を下げること
により相手材を保護できることが判明した。 しかし、この場合も単に熱間押出ししたのでは市記と同
様の理由により結合が十分に進まず、割れが入り易いと
いう欠点は避は得す、また成形後の切削加工時にも割れ
が発生し易い。 そこで、以下に説明するように1本発明においては、ア
ルミニウム合金粉末に固体潤滑剤又は固体潤滑剤と硬質
粒子を適量混合した混合粉末を、や\高温で予備成形し
て焼結した後に熱間鍛造加工することにより、割れの発
生もなく、切削加工を省いて歩留り良く成形体を得るこ
とが可能となったのである。 次に本発明の限定理由について説明する。 本発明で使用するアルミニウム合金粉末は、組成上特に
制限されるものではないが、一般に高強度(常温強度、
高温強度)、高耐摩耗性、高剛性、低熱膨張等のうちの
少なくとも1つの特性を要求される部材に使用される組
成のものが多用され、例えば、Al−高Si系、An−
Fe−Mo系、Al−Cu系、Al2〜31−Mg系、
Al2〜Zn −Mg系等々を挙げることができる。 具体的に例示するならば、Al−10〜30%Si系又
はこれにCu:0.5〜5.0%及び/又はMg:0.
2〜3.0%を含む組成の場合には、特に150℃位ま
で、の高温強度に優れるほか、耐摩耗性にも優れ、高剛
性、低熱膨張であるので、コンロッドやロッカーアーム
などの自動車部品に適している。またAΩ−10〜30
%5i−1〜15%(Fe、Mn及びNiのうちの少な
くとも1種)系の場合には、特に200℃位までの高温
強度に優れるほか、耐摩耗性にも優れ、高剛性、低熱膨
張であるので、ピストン、コンロッド、バルブリテーナ
−などの自動車部品に適している。 また、Al−6〜10%Fe−1〜4%Mo系の場合に
は、特に200〜350℃の範囲での高温強度に優れて
いると共に高剛性で優れ、低熱膨張でもあるので、コン
ロッドなどの機械構造部品に適している。 また、A Q−1,5〜6.0%Cuの2000番系(
AA規格合金名、以下同じ)の場合には、高剛性で優れ
、常温で高強度であるので、ネジ等の機械部品に適して
いる。更にAl−0,3〜1.8%5i−0,4〜1.
6%Mg(7) 6000番系の場合には、高剛性で優
れ、高強度でもあるので、機械部品、車両部品などに適
している。同様にAl−3゜5〜8.0%Zn−0,5
〜3.5%Mgの7000番系の場合には、高剛性で優
れ、高強度でもあるので、機械部品、車両部品、航空機
材、高速回転体などに適している。 なお、アルミニウム合金粉末は100メツシユ以下のも
のが望ましい。 本発明では、このようなアルミニウム合金粉末に固体潤
滑剤を0.5〜20wt%混合した混合粉末、或いはこ
の固体潤滑剤の他に更に硬質粒子を2〜20wt%混合
した混合粉末を準備し、これに以後の加工処理を施すこ
とにより、アルミニウム合金基地中に固体潤滑剤或いは
固体潤滑剤と高硬度である硬質粒子とを均一に分散させ
るのである。 固体潤滑剤の添加量は0.5〜20wt%が適当である
。添加量が0.5wt%未満であると耐摩耗性が改善さ
れず、固体潤滑剤を添加するメリットがない、また20
wt%を超えて添加すると粉末成形が困難になるので好
ましくない、固体潤滑剤としてはBN、黒鉛粉末、黒鉛
チョップ、Mo82等々、高温で分解ルないものが使用
でき、これらの1種又は2種以上を使用する。なお、2
種以上添加の場合は合計で2〜20νt%とするのが望
ましい。サイズは5〜50μ■の粉末でも良いし、50
〜500μ道程度のチョップ状のものでも支障はない。 また、固体潤滑剤と共に硬質粒子を添加する場合には、
硬質粒子の添加量は2〜20wt%が適当である。添加
量が2wt%未満であると固体潤滑剤のみの効果しか得
られず、添加のメリットがない。 また20wt%を超えると、硬質粒子単独添加であれば
成形は可能であるが、固体潤滑剤が同時に入ることによ
り、成形性の点で問題となるので、好ましくない。 硬質粒子の粒子径は5〜50μ朧の範囲が望ましく、5
〜30μmが好ましい、5μ鳳以下では粒子表面の活性
化エネルギーが増大し、粒子同志が凝集して基地中に分
散しにくくなり、混合手段として高エネルギーボールミ
ル等のコスト高の方法が必要となるので、好ましくない
。また50μ■を超えると分散強化が期待できなくなる
だけでなく、硬質粒子がAl合金粉末の接触を妨げるよ
うになり、結果としてプリフォームの成形性を悪くする
。 このような硬質粒子としては、S x C、313N 
4、Ajl、O,などを−例とする高強度の各種炭化物
、窒化物、酸化物の粒子を用いることができ、それらの
1種又は2種以上を上記添加量で添加することができる
。なお、2種以上を添加するときは合計で2〜20wt
%の範囲とするのが望ましい、硬質粒子を均一に分散さ
せるには、V型混合機等を用いて充分撹拌すれば良い。 次いで、上記のように調整した混合粉末を常温〜300
℃の温度で予備成形して真密度比70〜95%のプリフ
ォームを製造する。真密度比が70%未満であるとプリ
フォームのコーナ一部が欠ける等、ハンドリング上の問
題が生じる。真密度比が70%以上になれば、ハンドリ
ング上のこのような問題は生じない。 しかし、真密度比を95%以上にするためには成形圧を
高める必要があり、大きなプレスを必要とするため、設
備費が高価になる。この傾向は、高合金粉のような硬質
粉末の場合に顕著である。 また、圧粉成形後の真密度比を95%以上とすることは
、その後の焼結工程における脱ガスを阻害するという問
題がある。真密度比が95%以上になると、成形体中に
存在する空孔の多くは閉塞空孔(C1osed  P 
ore)となるため、Af1合金粉末表面に形成されて
いる酸化皮膜AI2.0.・3H,Oの結晶水或いは付
着、吸着水が加熱によって分解、発生する水素を主とす
るガスの成形体外への逸脱が阻害され、焼結後の成形体
は多量のガスを含有していたり、或いはブリスターと呼
ばれる成形体表面のふくれが発生したりする問題がある
。これを防ぐには、真密度比95%以下で真空脱気処理
等を施し、吸着水や結晶水を除去しておくのが効果があ
る。 プリフォームの成形には金型成形や冷間又は熱間静水圧
成形を用いるが、材質に応じ、常温或いは300℃まで
の高温で成形することが可能であす、特に高温成形によ
れば低い成形圧で高真密度比が実現される0例えば、2
000番系〜7000番系のアルミニウム合金粉末に固
体潤滑剤又は固体潤滑剤と共に硬質粒子を混合した場合
には、常温で成形することができ、成形圧力は3ton
f/cm”程度でよい、一方、AM−高Si系のアルミ
ニウム合金粉末に固体潤滑剤又は固体潤滑剤と共に硬質
粒子を混合した場合には、常温で成形するときは6 t
onf / cm”程度の成形圧であるが、200℃程
度の高温で成形するときは2 tonf / c+a2
位の成形圧で容易に予備成形することができるので、高
温成形が好ましい。 予備成形後は、プリフォームは450〜600℃の真空
又は不活性雰囲気中で焼結される。大気中で焼結した場
合には脱ガスが十分に進行しない。 成形体のガス量は5cc/ 100g−A n混合物以
下が好ましい。このため、真空又は不活性雰囲気中で焼
結することが必要である。真空の場合、真空度は0.I
Torr以下、望ましくは0.0ITorr以下にする
のがよい。Ar、N2のような不活性雰囲気では露点が
一10℃以下、望ましくは一20℃以下になるように不
活性雰囲気をコントロールするとよい。焼結温度が45
0℃より低いと焼結の進行が遅く、また、アルミニウム
酸化物表面に吸着した水分や結晶水を完全に除去するこ
とができない、600℃より高いと焼結は進行するもの
の組織の粗大化が生じ、機械的特性の劣化が生ずるので
好ましくない、焼結温度は材質に応じて決めることがで
き、Al−高Si系のアルミニウム合金を用いたときは
450〜550℃でよいが、2000番〜7000番系
のアルミニウム合金を用いたときは母相の融点が高いの
で450〜600℃の範囲で焼結する。なお、焼結時間
は、プリフォームの大きさに応じて適宜決定し、均一加
熱を図る。 鍛造は、200〜550℃の温度にて行い、熱間鍛造後
の成形体の真密度比を95%以上にする。 鍛造によってA2合金粉末に十分な塑性変形を与え、そ
の表面に形成されている酸化皮膜を破壊して新生活性表
面を現出させるためには、Al合合金金粉末を200℃
以上に加熱し軟化させておくのが好ましい、このために
は、プリフォームを200℃以上に保持するだけでなく
、鍛造用金型も200”C以上に加熱保持しておくとよ
い、温度が550℃を超えると、組織の粗大化が生じ機
械的性質の劣化が生ずるので好ましくない、鍛造温度は
材質に応じて決定し、2000番〜7000番系のA2
合金粉末を用いたものは低目の温度でよいが、Al−高
Si系のA2合金粉末を用いたものは高目の温度を選択
するのがよい。なお、プリフォームの加熱は焼結時の加
熱と兼ねるのが望ましく、プリフォームの温度降下及び
大気中にさらされることによるガス量の増加を少なくす
るため、焼結炉から取り出した後、直ちに鍛造すること
が望ましい、もし、鍛造前のプリフォームの加熱を焼結
時の加熱とは別途に行うのであるならば、真空或いは不
活性雰囲気中で450〜550℃に加熱することが必要
であり、炉から取り出した後の配慮は前記と同じである
。鍛造後の成形体の真密度比が95%より低いと、機械
的性質に劣るので好ましくない。 なお、鍛造後は必要に応じて再焼結(調質焼鈍)を行う
ことができる。再焼結は450〜550℃で行うのが好
ましい、再焼結の目的は、鍛造時に生じた新生活性面の
焼結を十分に行うためであり、このためには450℃以
上で行う必要がある。 550℃より温度が高いと組織の粗大化が生じ、引張強
度等の機械的性質が劣化するので、好ましくない。再焼
結は大気中で行っても支障ないが、望ましくは真空或い
は不活性雰囲気が良い、再焼結の際、鍛造後の成形体の
ガス量が5 cc/ (100g・Al混合物)より多
いと、ブリスターが発生したり或いは機械的性質の劣化
が生ずるため、再焼結の本来の目的を達成することがで
き難くなる。
(Field of Industrial Application) The present invention relates to the production of wear-resistant aluminum alloys, and particularly to a method for processing aluminum alloys that can be used for sliding members, mechanical parts, etc. that require high wear resistance. (Prior art) In recent years, with the rapid development of rapid solidification methods for molten metal,
High-strength, wear-resistant aluminum alloys with large amounts of Si added have been developed. In addition, research and development of composite materials in which ceramic particles such as SiC are added to this rapidly solidified aluminum alloy powder to further improve wear resistance properties is being actively conducted (Japanese Patent Application Laid-Open No. 109415-1988). reference)
. (Problems to be Solved by the Invention) By the way, as a method of adding ceramic particles to aluminum, research and development has been carried out with the aim of improving wear resistance by adding ceramic particles such as SiC to molten aluminum. There is. However, adding ceramic particles uniformly into molten metal requires extremely difficult techniques due to the difference in specific gravity between aluminum and ceramic particles. On the other hand, when rapidly solidified aluminum powder is used, it is relatively easy to combine it with ceramic particles, but when using the manufactured material as a sliding member, the ceramic particles are extremely hard compared to metal materials. Since it is a material, there is a problem that it can damage the metal of the other material. Furthermore, when rapidly solidified aluminum powder is used, hot extrusion is generally employed as a means for densification, but the material yield is poor and the processing steps are complicated. Moreover, when a solid nm agent, especially graphite powder, etc. is added to an aluminum alloy and hot extrusion is performed, the solid lubricant flows thinly in the extrusion direction, resulting in a failure to obtain high lubrication properties or areas where the lubricant is present. There are problems such as peeling off from the surface. Furthermore, aluminum alloys in which ceramic particles are dispersed have poor machinability, making them unsuitable for molding into mechanical parts, etc., and thus having a drawback in that their uses are limited. The present invention was made in order to solve the problems of the prior art described above, and it is possible to produce an aluminum alloy with high material yield without damaging the mating material and having high wear resistance.
The purpose is to provide a method that can be manufactured at low cost. (Means for Solving the Problems) The present inventors have conducted extensive research and development in order to solve the problems of the prior art. As a result, a specific amount of solid lubricant or solid lubricant and ceramic particles was added to aluminum alloy powder to form a mixed powder, which was first filled into a mold close to the final shape to form a preform with a true density ratio of 70 to 95%. After creating the product, if it is sintered in an inert atmosphere and then immediately hot forged in a forging die that approximates the final shape, a shape that is close to the final product can be obtained, and most post-processing such as cutting is not required. It has been found that a highly wear-resistant aluminum alloy can be produced at a low cost with good material yield without the need for this process. Moreover, it has been revealed that an aluminum alloy molded body having high wear resistance without damaging the mating material can be obtained due to the action of the solid lubricant. Therefore, the process conditions for these processes were further studied in detail, and the present invention has been completed. That is, in the present invention, a mixed powder obtained by adding and mixing 2 to 20 wt % of a solid lubricant to an aluminum alloy powder and 2 to 20 wt % of an added acid or solid lubricant and 2 to 20 νt % of hard particles is heated at room temperature to 300 kW. A preform with a true density ratio of 70 to 95% is produced by molding at a temperature of 450 to 600 °C, and then sintered in a vacuum or inert gas atmosphere at a temperature of 200 to 550 °C. It is characterized in that it is forged to obtain a compact with a true density ratio of 95% or more. This makes it possible to obtain a structure in which the solid lubricant or the solid lubricant and hard particles are uniformly dispersed in the base. In particular, compared to the case where only hard particles are added, when a solid lubricant and hard particles are added together, wear resistance and strength can be further improved without damaging the mating material. The present invention will be explained in more detail below. Aluminum alloys are expected to be used in automobile parts such as pistons, connecting rods, and retainers due to their lightweight properties. In addition to strength, wear resistance is also required in these applications, and therefore, as mentioned above, many research and development efforts have been made to impart wear resistance to aluminum alloys. That is, as one method, an attempt has been made to improve wear resistance by combining an aluminum alloy and a solid lubricant to reduce the coefficient of friction between the mating material and the aluminum alloy. Due to the oxide film on the powder surface of aluminum alloy powder metallurgy, a strong bond between the powders cannot be obtained by normal powder compacting and sintering. Therefore, - quantitatively, hot extrusion methods are used for powder metallurgy of aluminum alloys. However, with this method, the solid lubricant is stretched by the large shearing force during hot extrusion and exists in the aluminum alloy, so the aluminum powder does not bond together sufficiently, and if the effect becomes large, it will The problem of cracking occurs. Therefore, in order to consider the application of the sinter forging method, the present inventors first conducted a basic experiment using Al-16,0% 5i-3 of less than 100 mesh obtained by the atmospheric atomization
,0%Cu-1,0%Mg alloy powder with 5w of solid lubricant
After adding t% and mixing, 35X95X by cold forming
A preform of 30 mm and a density ratio of 75% was created, and 50
Sintering was carried out in an N atmosphere under the conditions of 0'CX 30mln. Immediately after that, the surface pressure was 8 in a mold heated to 400℃.
It was forged in the atmosphere at ton/cm2. Abrasion test pieces were cut from these sintered forged materials and their wear characteristics were examined using an Odate type abrasion tester. The results are shown in FIG. From the figure, it is clear that the specific wear amount is on the order of 10-'mm/kg at any wear rate, showing extremely high wear resistance properties. Based on the positive results of the above basic experiments, and as a result of further detailed research on various conditions, we have discovered a method for processing wear-resistant aluminum alloys by adding a solid lubricant to aluminum alloy powder. Furthermore, since another method for improving wear resistance is compositing with ceramic particles, the present inventors have also conducted extensive research on techniques to apply this to the above method. In other words, the powder metallurgy method is more advantageous than the casting method in terms of uniform dispersion, but since ceramic particles are very hard, when used as a sliding member, There is a problem in that a phenomenon occurs in which the material is damaged and scraped off. Therefore, it has been found that in the above processing method, if a solid lubricant is used in combination, the mating material can be protected by lowering the wear coefficient. However, in this case as well, it is unavoidable that simply hot extrusion does not lead to sufficient bonding due to the same reason as in Ichiki, and cracks are likely to occur.Furthermore, cracks may also occur during cutting after forming. easy. Therefore, as explained below, in the present invention, a mixed powder obtained by mixing an appropriate amount of an aluminum alloy powder with a solid lubricant or a solid lubricant and hard particles is preformed at a relatively high temperature, sintered, and then heated. By forging, it has become possible to obtain a molded product with a high yield without the occurrence of cracks and without cutting. Next, the reasons for the limitations of the present invention will be explained. The aluminum alloy powder used in the present invention is not particularly limited in terms of composition, but generally has high strength (room temperature strength,
Compositions that are used for members that require at least one of the following properties are often used: high temperature strength), high abrasion resistance, high rigidity, low thermal expansion, etc. For example, Al-high Si type, An-
Fe-Mo system, Al-Cu system, Al2-31-Mg system,
Examples include Al2 to Zn-Mg systems. To give a specific example, Al-10 to 30% Si or Cu: 0.5 to 5.0% and/or Mg: 0.
In the case of a composition containing 2 to 3.0%, it has excellent high-temperature strength, especially up to about 150°C, as well as excellent wear resistance, high rigidity, and low thermal expansion, so it can be used in automobiles such as connecting rods and rocker arms. Suitable for parts. Also AΩ-10~30
%5i-1 to 15% (at least one of Fe, Mn, and Ni) systems have excellent high-temperature strength, especially up to about 200°C, as well as excellent wear resistance, high rigidity, and low thermal expansion. Therefore, it is suitable for automobile parts such as pistons, connecting rods, and valve retainers. In addition, in the case of Al-6~10%Fe-1~4%Mo, it has excellent high temperature strength especially in the range of 200~350℃, high rigidity, and low thermal expansion, so it can be used for connecting rods, etc. Suitable for mechanical structural parts. In addition, A Q-1, 5-6.0% Cu 2000 series (
The AA standard alloy name (hereinafter the same) has excellent high rigidity and high strength at room temperature, so it is suitable for mechanical parts such as screws. Furthermore, Al-0,3-1.8%5i-0,4-1.
6% Mg (7) 6000 series has excellent high rigidity and high strength, so it is suitable for mechanical parts, vehicle parts, etc. Similarly, Al-3゜5~8.0%Zn-0,5
In the case of the 7000 series with ~3.5% Mg, it has excellent high rigidity and high strength, so it is suitable for mechanical parts, vehicle parts, aircraft materials, high-speed rotating bodies, etc. Note that the aluminum alloy powder preferably has a size of 100 mesh or less. In the present invention, a mixed powder in which 0.5 to 20 wt% of a solid lubricant is mixed with such aluminum alloy powder, or a mixed powder in which 2 to 20 wt% of hard particles are further mixed in addition to this solid lubricant is prepared, By subjecting this to subsequent processing, the solid lubricant or the solid lubricant and the highly hard hard particles are uniformly dispersed in the aluminum alloy base. The appropriate amount of solid lubricant added is 0.5 to 20 wt%. If the amount added is less than 0.5 wt%, wear resistance will not be improved and there will be no benefit to adding a solid lubricant.
If added in excess of wt%, powder molding becomes difficult, which is undesirable.As solid lubricants, those that do not decompose at high temperatures, such as BN, graphite powder, graphite chop, Mo82, etc., can be used, and one or two of these can be used. Use the above. In addition, 2
When more than one species is added, the total amount is preferably 2 to 20 νt%. The size may be powder of 5 to 50μ■, or 50μ■.
There is no problem even if it is a chop of about 500 μm. In addition, when adding hard particles together with a solid lubricant,
The appropriate amount of hard particles added is 2 to 20 wt%. If the amount added is less than 2 wt%, only the effect of a solid lubricant can be obtained, and there is no merit in adding it. Moreover, if it exceeds 20 wt%, molding is possible if only the hard particles are added, but if a solid lubricant is added at the same time, this causes problems in moldability, which is not preferable. The particle diameter of the hard particles is preferably in the range of 5 to 50 μm, and
~30 μm is preferable; if it is less than 5 μm, the activation energy on the particle surface will increase, particles will aggregate and become difficult to disperse in the base, and a high-cost method such as a high-energy ball mill will be required as a mixing means. , undesirable. Moreover, if it exceeds 50 μι, not only can no dispersion strengthening be expected, but also the hard particles will interfere with the contact of the Al alloy powder, resulting in poor moldability of the preform. Such hard particles include S x C, 313N
Particles of various high-strength carbides, nitrides, and oxides such as 4, Ajl, O, etc. can be used, and one or more of them can be added in the above-mentioned amounts. In addition, when adding two or more types, the total amount is 2 to 20wt.
In order to uniformly disperse the hard particles, which is desirably within the range of 1.5%, sufficient stirring may be performed using a V-type mixer or the like. Next, the mixed powder prepared as above was heated to room temperature to 300℃.
A preform having a true density ratio of 70 to 95% is produced by preforming at a temperature of .degree. If the true density ratio is less than 70%, handling problems such as chipping of a part of the corner of the preform will occur. If the true density ratio is 70% or more, such handling problems will not occur. However, in order to increase the true density ratio to 95% or more, it is necessary to increase the molding pressure and a large press is required, resulting in high equipment costs. This tendency is remarkable in the case of hard powders such as high alloy powders. Furthermore, setting the true density ratio after compaction to 95% or more has the problem of inhibiting degassing in the subsequent sintering process. When the true density ratio is 95% or more, many of the pores existing in the molded product are closed pores (C1osed P
ore), the oxide film formed on the surface of the Af1 alloy powder AI2.0.・Crystal water or adhering or adsorbed water of 3H and O is decomposed by heating, and gas mainly composed of hydrogen is prevented from escaping out of the molded body, and the molded body after sintering may contain a large amount of gas. Alternatively, there is a problem in that the surface of the molded product bulges, which is called a blister. To prevent this, it is effective to perform vacuum deaeration treatment or the like at a true density ratio of 95% or less to remove adsorbed water and crystal water. Mold molding, cold or hot isostatic pressing is used to mold the preform, but depending on the material, it is possible to mold at room temperature or at high temperatures up to 300°C.In particular, high-temperature molding allows for low molding. A high true density ratio is achieved at a pressure of 0, for example, 2
When hard particles are mixed with solid lubricant or solid lubricant together with aluminum alloy powder of No. 000 series to No. 7000 series, it can be molded at room temperature and the molding pressure is 3 tons.
On the other hand, when AM-high Si aluminum alloy powder is mixed with solid lubricant or hard particles together with solid lubricant, it is 6 t when molded at room temperature.
The molding pressure is about 2 tonf/cm", but when molding at a high temperature of about 200℃, it is 2 tonf/c+a2
High-temperature molding is preferred because it can be easily preformed at a molding pressure of about 100 ml. After preforming, the preform is sintered in a vacuum or inert atmosphere at 450-600°C. When sintered in the atmosphere, degassing does not proceed sufficiently. The amount of gas in the molded body is preferably 5 cc/100 g-A n mixture or less. For this reason, it is necessary to sinter in a vacuum or in an inert atmosphere. In the case of vacuum, the degree of vacuum is 0. I
It is preferable to set it to below Torr, preferably below 0.0 I Torr. In an inert atmosphere such as Ar or N2, it is preferable to control the inert atmosphere so that the dew point is below 110°C, preferably below 120°C. Sintering temperature is 45
If it is lower than 0℃, sintering progresses slowly, and moisture and crystal water adsorbed on the aluminum oxide surface cannot be completely removed.If it is higher than 600℃, sintering progresses, but the structure becomes coarse. The sintering temperature can be determined depending on the material, and when an Al-high Si aluminum alloy is used, it may be 450 to 550°C, but sintering temperature of 2000 to When a No. 7000 series aluminum alloy is used, the melting point of the matrix is high, so sintering is performed in the range of 450 to 600°C. Note that the sintering time is appropriately determined depending on the size of the preform to ensure uniform heating. Forging is performed at a temperature of 200 to 550°C, and the true density ratio of the hot-forged compact is 95% or more. In order to give sufficient plastic deformation to the A2 alloy powder by forging and destroy the oxide film formed on its surface to reveal a new active surface, the Al alloy powder must be heated at 200°C.
It is preferable to soften the preform by heating it to a temperature higher than If the temperature exceeds 550°C, the structure will coarsen and the mechanical properties will deteriorate, which is undesirable.The forging temperature should be determined according to the material, and A2
For those using alloy powder, a lower temperature may be used, but for those using Al-high Si type A2 alloy powder, it is better to select a higher temperature. In addition, it is desirable to heat the preform at the same time as heating during sintering.In order to reduce the temperature drop of the preform and the increase in gas amount due to exposure to the atmosphere, the forging should be performed immediately after taking it out of the sintering furnace. If the heating of the preform before forging is performed separately from the heating during sintering, it is necessary to heat the preform to 450 to 550 ° C in a vacuum or inert atmosphere. The considerations after removal from the furnace are the same as above. If the true density ratio of the compact after forging is lower than 95%, the mechanical properties will be poor, which is not preferable. Note that after forging, re-sintering (refining annealing) can be performed as necessary. It is preferable to perform resintering at 450 to 550°C. The purpose of resintering is to sufficiently sinter the new active surface generated during forging, and for this purpose, it is necessary to perform resintering at a temperature of 450°C or higher. There is. If the temperature is higher than 550° C., the structure will become coarser and mechanical properties such as tensile strength will deteriorate, which is not preferable. There is no problem in resintering in the air, but preferably in a vacuum or inert atmosphere.When resintering, the amount of gas in the forged compact is greater than 5 cc/ (100g/Al mixture) If this occurs, blisters may occur or mechanical properties may deteriorate, making it difficult to achieve the original purpose of resintering.

【以下余白】[Left below]

(実施例) 次に本発明の実施例を示す。 実施例1 大気アトマイズ法によって製造したAl−3i系合金粉
末及びAl−8i系にFeを添加したAl合金粉末に、
第1表及び第2表に示す材料組合せ及び添加量にて、固
体潤滑剤としてBN、黒鉛粉末、黒鉛チョップ及びMo
S2を、また硬質粒子としてSIC、Si、Nい及びA
fl、03のセラミックス粉を使用し、固体潤滑剤の単
独添加の場合は0゜5〜10wt%、固体潤滑剤及びセ
ラミックス粉の複合添加の場合はそれぞれ2wt%又は
5wt%添加し、面圧6ton/cm”で35X95X
30mmのプリフォームを冷間成形にて作成した。得ら
れたプリフォームの真密度比は73〜78%であった。 次いで、これらのプリフォームを露点−20℃以下のN
2雰囲気中で500’C13C13Oの条件で焼結した
。焼結後便内からプリフォームを取出し、400℃に加
熱した金型にて大気中、8 ton / cts”で鍛
造した。得られた焼結鍛造材の真密度比はいずれも99
%以上であった。 このようにして得られた焼結鍛造材から摩耗試験片を切
り出し、大館式摩耗試験機により摩耗試験を実施して比
摩耗量を測定し、耐摩耗性を評価した。その結果を第1
図〜第9図に示す、なお、試験条件としては、相手材に
Fe12を用い、摩耗距離600m、最終荷重2 、1
 kgとした。各図中、Naは第1表中の試料恥に対応
している。 また、焼結鍛造材について機械的性質(引張強さ、伸び
)、硬さ及びガス量を調べた。その結果を第3表〜第1
1表に示す、なお、ガス分析は真空溶融抽出法(ステン
レスパイプ使用)により行なった・ 第1図〜第9図より、本発明によれば、アルミニウム合
金単独の場合(Nα1、Nα18)に比べ、高耐摩耗性
のアルミニウム合金焼結鍛造材が得られることが明らか
である。また機械的性質、硬さとも良好である。
(Example) Next, an example of the present invention will be shown. Example 1 Al-3i alloy powder and Al-8i alloy powder prepared by adding Fe to Al-3i alloy powder and Al-8i alloy powder produced by atmospheric atomization method,
With the material combinations and addition amounts shown in Tables 1 and 2, BN, graphite powder, graphite chop and Mo were used as solid lubricants.
S2 and SIC, Si, N and A as hard particles.
Fl, 03 ceramic powder is used, and when adding solid lubricant alone, add 0°5 to 10 wt%, and when adding solid lubricant and ceramic powder in combination, add 2 wt% or 5 wt%, respectively, and the surface pressure is 6 tons. /cm” 35X95X
A 30 mm preform was created by cold forming. The true density ratio of the obtained preform was 73 to 78%. These preforms were then heated with N at a dew point of -20°C or lower.
Sintering was carried out under the conditions of 500'C13C13O in a 2 atmosphere. After sintering, the preform was taken out from the stool and forged in the air at 8 tons/cts in a mold heated to 400°C.The true density ratio of the obtained sintered forged materials was 99.
% or more. A wear test piece was cut out from the sintered forged material thus obtained, and a wear test was performed using an Odate type wear tester to measure the specific wear amount and evaluate the wear resistance. The result is the first
The test conditions shown in Figures 9 to 9 were as follows: Fe12 was used as the mating material, wear distance was 600 m, and the final load was 2,1
kg. In each figure, Na corresponds to the sample value in Table 1. In addition, the mechanical properties (tensile strength, elongation), hardness, and gas amount of the sintered forged materials were investigated. The results are shown in Tables 3 to 1.
As shown in Table 1, the gas analysis was performed by the vacuum melt extraction method (using stainless steel pipes). From Figures 1 to 9, according to the present invention, compared to the case of aluminum alloy alone (Nα1, Nα18), It is clear that a highly wear-resistant sintered forged aluminum alloy can be obtained. It also has good mechanical properties and hardness.

【以下余白】[Left below]

去】1」炎 大気アトマイズ法によって製造したAl−12%5i−
3%Cu−15%Mg−3%Fe合金粉末に黒鉛チョッ
プを10wt%、15wt%、20wt%添加した混合
粉末、並びに上記Al合金粉末に黒鉛チョップ20wt
%とセラミックス粉(Si、NいAl203.5iC)
を3tit%添加した混合粉末を、それぞれ面圧6 t
on / cy+”で冷間成形して35×95X30m
mのプリフォームを作成した。得られたプリフォームの
真密度比は75〜80%であった。 次いで、これらのプリフォームを実施例1の場合と同様
の条件にて焼結し、鍛造した。得られた焼結鍛造材の真
密度比はいずれも99%以上であった・ このようにして得られた焼結鍛造材について、実施例1
の場合と同様に摩耗試験を実施して耐摩耗性を評価した
。その結果を第10図及び第11図に示す。 第10図より、固体潤滑剤(黒鉛チョップ)を添加しな
い場合に比べ、15wt%、20νt%と多く添加する
ことにより耐摩耗性が更に改善されることがわかる。ま
た、第11図より、固体潤滑剤を2Qwt%添加しても
セラミックス粉を添加することにより特に摩耗速度が大
きいときの耐摩耗性が改善されることがわかる。 (発明の効果) 以上詳述したように、本発明によれば、アルミニウム合
金粉末に固体潤滑剤又は固体潤滑剤と硬質粒子を適量で
添加混合した混合粉末につき、特定のプロセス条件で焼
結鍛造法を適用するので、耐摩耗性に優れたアルミニウ
ム合金を歩留よく製造できる。特に固体潤滑剤の作用に
より相手材をも摩耗させることがない。したがって、高
耐摩耗性を必要とする各種の部材に高品質で安価に提供
することができ、その効果は非常に大きい。
[1] Al-12%5i- produced by flame atmosphere atomization method
Mixed powders in which 10wt%, 15wt%, and 20wt% of graphite chops were added to 3%Cu-15%Mg-3%Fe alloy powder, and 20wt of graphite chops to the above Al alloy powder.
% and ceramic powder (Si, NiAl203.5iC)
The mixed powder containing 3 tit% of
cold-formed with "on/cy+" to 35 x 95 x 30 m
m preforms were created. The true density ratio of the obtained preform was 75 to 80%. These preforms were then sintered and forged under the same conditions as in Example 1. The true density ratio of the obtained sintered forged materials was all 99% or more. Regarding the sintered forged materials obtained in this way, Example 1
A wear test was conducted in the same manner as in the case of , and the wear resistance was evaluated. The results are shown in FIGS. 10 and 11. From FIG. 10, it can be seen that the wear resistance is further improved by adding large amounts of solid lubricant (graphite chop), such as 15 wt% and 20 νt%, compared to the case where no solid lubricant (graphite chop) is added. Moreover, from FIG. 11, it can be seen that even if 2Qwt% of solid lubricant is added, the wear resistance is improved by adding ceramic powder, especially when the wear rate is high. (Effects of the Invention) As detailed above, according to the present invention, a mixed powder obtained by adding and mixing an appropriate amount of a solid lubricant or a solid lubricant and hard particles to an aluminum alloy powder is sintered and forged under specific process conditions. Since this method is applied, aluminum alloys with excellent wear resistance can be manufactured with a high yield. In particular, the action of the solid lubricant prevents the mating material from being worn out. Therefore, it can be provided with high quality and at low cost for various members requiring high wear resistance, and the effect is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第11図は各種添加材質、添加量のもとでの比
摩耗量と摩耗速度の関係(耐摩耗性)を示す図であって
、 第1図は黒鉛チョップ添加のAl−16%5i−3%C
u−1%Mg合金の場合であり、第2図は黒鉛粉末添加
のAl−16%5i−3%Cu−1%Mg合金の場合で
あり、 第3図はBN添加のAl−16%5i−3%Cu−1%
Mg合金の場合であり、 第4図はMoS2添加のAn−16%5i−3%Cu−
1%Mg合金の場合であり、 第5図は5wt%固体潤滑剤添加のA11l−16%5
i−3%Cu−1%Mg−6%Fe合金の場合であり、 第6図は2wt%固体潤滑剤+5wt%Af1.O,添
加のAfl−16%5i−3%Cu−1%Mg合金の場
合であり、 第7図は2wt%固体潤滑剤+5wt%SiC添加のA
l−16%5i−3%Cu−1%Mg合金の場合であり
、 第8図は2νt%固体潤滑剤+5%+1%Si、N4添
加のAl2〜16%5i−3%Cu−1%Mg合金の場
合であり、 第9図は2wt%黒鉛チョップ+5wt%セラミックス
添加のAfl−16%5i−3%Cu−1%Mg−6%
Fe合金の場合であり、 第10図は10〜20wt%黒鉛チョップ添加のAl−
12%5i−3%Cu−1%Mg−3%Fe合金の場合
であり、 第11図は20wt%黒鉛チョップ+3wt%セラミッ
クス粉添加のAl2〜12%5i−3%Cu−1%Mg
−3%Fe合金の場合である。 特許出願人   昭和電工株式会社 代理人弁理士  中  村   尚 第1図 17攪遺&(鵬15) 第2図 厚攪L/i<−/s) 第3図 4攪Ii及う/s) 第4図 fI拷iL及(m/s) 第5図 摩挽還展(づ幻 第6図 R??  L /l  (側/S〕 第7図 摩挽it屋(網/s) 第8図 、f   1緊   d−展  (網/S)第9図 、!iF i’!!、 Lti’L I#/s)第10
図 摩捏it濱C→ン
Figures 1 to 11 are diagrams showing the relationship between specific wear amount and wear rate (wear resistance) for various additive materials and amounts; Figure 1 shows Al-16 with graphite chopped added. %5i-3%C
Figure 2 shows the case of the u-1%Mg alloy, Figure 2 shows the case of the Al-16%5i-3%Cu-1%Mg alloy with the addition of graphite powder, and Figure 3 shows the case of the Al-16%5i with the addition of BN. -3%Cu-1%
This is the case of Mg alloy, and Fig. 4 shows the case of MoS2-added An-16%5i-3%Cu-
This is the case of 1%Mg alloy, and Figure 5 shows A11l-16%5 with 5wt% solid lubricant added.
This is the case of i-3%Cu-1%Mg-6%Fe alloy, and FIG. 6 shows the case of 2wt% solid lubricant + 5wt% Af1. Figure 7 shows the case of Afl-16%5i-3%Cu-1%Mg alloy with 2wt% solid lubricant + 5wt% SiC added.
This is the case of l-16%5i-3%Cu-1%Mg alloy, and Figure 8 shows 2νt% solid lubricant +5%+1%Si, Al2-16%5i-3%Cu-1%Mg with N4 added. The case of alloy is shown in Figure 9: Afl-16%5i-3%Cu-1%Mg-6% with 2wt% graphite chop + 5wt% ceramics added.
This is the case of Fe alloy, and Fig. 10 shows the case of Al-
This is the case of 12%5i-3%Cu-1%Mg-3%Fe alloy, and Figure 11 shows the case of Al2 to 12%5i-3%Cu-1%Mg with 20wt% graphite chop + 3wt% ceramic powder added.
-3% Fe alloy. Patent Applicant Showa Denko K.K. Representative Patent Attorney Takashi Nakamura Figure 1 17 Shift & (Peng 15) Figure 2 Thickness L/i<-/s) Figure 3 4 Shift Ii/s) Figure 4 fI Torture iL and (m/s) Figure 5 Figure 6 R?? , f 1 tense d-ten (Net/S) Fig. 9, !iF i'!!, Lti'L I#/s) Fig. 10
Zumasa it Hama C→n

Claims (6)

【特許請求の範囲】[Claims] (1) アルミニウム合金粉末に固体潤滑剤を0.5〜
20wt%添加した混合粉末を、常温〜300℃の温度
で成形して真密度比70〜95%のプリフォームを製造
し、次いで該プリフォームを450〜600℃の真空又
は不活性雰囲気中で焼結した後、200〜550℃の温
度で鍛造して真密度比95%以上の成形体を得ることを
特徴とする耐摩耗性アルミニウム合金の加工方法。
(1) Add solid lubricant to aluminum alloy powder from 0.5 to 0.5
The mixed powder containing 20 wt% is molded at a temperature of room temperature to 300°C to produce a preform with a true density ratio of 70 to 95%, and then the preform is sintered at 450 to 600°C in a vacuum or an inert atmosphere. A method for processing a wear-resistant aluminum alloy, which comprises curing and then forging at a temperature of 200 to 550°C to obtain a compact having a true density ratio of 95% or more.
(2) アルミニウム合金粉末に固体潤滑剤を0.5〜
20wt%、更に硬質粒子を2〜20wt%添加した混
合粉末を、常温〜300℃の温度で成形して真密度比7
0〜95%のプリフォームを製造し、次いで該プリフォ
ームを450〜600℃の真空又は不活性雰囲気中で焼
結した後、200〜550℃の温度で鍛造して真密度比
95%以上の成形体を得ることを特徴とする耐摩耗性ア
ルミニウム合金の加工方法。
(2) Add solid lubricant to aluminum alloy powder from 0.5 to 0.5
A mixed powder containing 20 wt% and 2 to 20 wt% of hard particles is molded at a temperature of room temperature to 300°C to obtain a true density ratio of 7.
A preform with a true density ratio of 0 to 95% is manufactured, and then the preform is sintered in a vacuum or inert atmosphere at 450 to 600°C, and then forged at a temperature of 200 to 550°C to achieve a true density ratio of 95% or more. A method for processing a wear-resistant aluminum alloy, characterized by obtaining a compact.
(3) 前記アルミニウム合金粉末は、重量%で(以下
、同じ)、Si:10〜30%を含み、更に必要に応じ
てCu:0.5〜5.0%及びMg:0.2〜3.0%
の1種又は2種を含み、残部が実質的にAlからなる組
成の合金溶湯をアトマイズしたものである請求項1又は
2に記載の方法。
(3) The aluminum alloy powder contains Si: 10 to 30% in weight% (the same applies hereinafter), and further contains Cu: 0.5 to 5.0% and Mg: 0.2 to 3 as necessary. .0%
3. The method according to claim 1 or 2, wherein a molten alloy is atomized having a composition containing one or two of the above, and the remainder substantially consisting of Al.
(4) 前記アルミニウム合金粉末は、Si:10〜3
0%と、Fe、Mn及びNiのうちの少なくとも1種を
1〜15%含み、更に必要に応じてCu:0.5〜5.
0%及びMg:0.2〜3.0%の1種又は2種を含み
、残部が実質的にAlからなる組成の合金溶湯をアトマ
イズしたものである請求項1又は2に記載の方法。
(4) The aluminum alloy powder has Si: 10 to 3.
0%, and 1 to 15% of at least one of Fe, Mn, and Ni, and further Cu: 0.5 to 5% as necessary.
3. The method according to claim 1 or 2, wherein a molten alloy is atomized having a composition of 0.0% Mg and 0.2 to 3.0% Mg, with the remainder substantially consisting of Al.
(5) 前記固体潤滑剤は、BN、黒鉛粉末、黒鉛チョ
ップ及びMoS_2のうちの1種又は2種以上の粒子又
はチョップからなる請求項1又は2に記載の方法。
(5) The method according to claim 1 or 2, wherein the solid lubricant comprises particles or chops of one or more of BN, graphite powder, graphite chops, and MoS_2.
(6) 前記硬質粒子は、SIC、Si_3N_4及び
Al_2O_3のうちの1種又は2種以上の粒子からな
り、かつ粒径が5〜50μmのものである請求項2に記
載の方法。
(6) The method according to claim 2, wherein the hard particles are made of one or more particles of SIC, Si_3N_4, and Al_2O_3, and have a particle size of 5 to 50 μm.
JP63130543A 1987-10-28 1988-05-27 Processing method of wear resistant aluminum alloy Expired - Fee Related JP2584488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130543A JP2584488B2 (en) 1987-10-28 1988-05-27 Processing method of wear resistant aluminum alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27400287 1987-10-28
JP62-274002 1987-10-28
JP63130543A JP2584488B2 (en) 1987-10-28 1988-05-27 Processing method of wear resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPH01201450A true JPH01201450A (en) 1989-08-14
JP2584488B2 JP2584488B2 (en) 1997-02-26

Family

ID=26465653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130543A Expired - Fee Related JP2584488B2 (en) 1987-10-28 1988-05-27 Processing method of wear resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JP2584488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323342A (en) * 1991-04-24 1992-11-12 Sumitomo Electric Ind Ltd Transition element added powdery aluminum alloy and its production
US5466277A (en) * 1990-07-10 1995-11-14 Showa Denko K.K. Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186457A (en) * 1985-02-15 1986-08-20 Honda Motor Co Ltd Production of high-strength aluminum alloy member
JPS62224602A (en) * 1986-03-26 1987-10-02 Showa Denko Kk Production of sintered aluminum alloy forging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186457A (en) * 1985-02-15 1986-08-20 Honda Motor Co Ltd Production of high-strength aluminum alloy member
JPS62224602A (en) * 1986-03-26 1987-10-02 Showa Denko Kk Production of sintered aluminum alloy forging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466277A (en) * 1990-07-10 1995-11-14 Showa Denko K.K. Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
JPH04323342A (en) * 1991-04-24 1992-11-12 Sumitomo Electric Ind Ltd Transition element added powdery aluminum alloy and its production

Also Published As

Publication number Publication date
JP2584488B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
Liu et al. Design of powder metallurgy titanium alloys and composites
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US4946500A (en) Aluminum based metal matrix composites
US5372775A (en) Method of preparing particle composite alloy having an aluminum matrix
EP2376248B1 (en) Method for the manufacture of a metal part
US4888054A (en) Metal composites with fly ash incorporated therein and a process for producing the same
US6635098B2 (en) Low cost feedstock for titanium casting, extrusion and forging
US5466277A (en) Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
EP0577436B1 (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
CN100371483C (en) Aluminum alloy for plastic working and manufacture thereof
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
EP0500531A1 (en) Dual processing of aluminum base metal matrix composites
US4587096A (en) Canless method for hot working gas atomized powders
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JP3419582B2 (en) Method for producing high-strength aluminum-based composite material
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
JPS60131944A (en) Superheat-and wear-resistant aluminum alloy and its manufacture
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH01201450A (en) Method for working wear-resistant aluminum alloy
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP3128041B2 (en) Cylinder block and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees