JPH0257613A - Production of sintered metallic material and its raw powder - Google Patents

Production of sintered metallic material and its raw powder

Info

Publication number
JPH0257613A
JPH0257613A JP20672588A JP20672588A JPH0257613A JP H0257613 A JPH0257613 A JP H0257613A JP 20672588 A JP20672588 A JP 20672588A JP 20672588 A JP20672588 A JP 20672588A JP H0257613 A JPH0257613 A JP H0257613A
Authority
JP
Japan
Prior art keywords
powder
sintered
pressure
raw material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20672588A
Other languages
Japanese (ja)
Inventor
Sadakimi Kiyota
禎公 清田
Junichi Ota
純一 太田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20672588A priority Critical patent/JPH0257613A/en
Publication of JPH0257613A publication Critical patent/JPH0257613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title high-density sintered metallic material at a low cost by forming raw powder having specified particle size, degreasing the formed product, sintering the product, and then further pressure-sintering the sintered product at specified temp. and pressure in a nonoxidizing atmosphere. CONSTITUTION:The raw powder of stainless steel, etc., having 9-30mu mean particle diameter is formed. The spherical raw powder obtained by the atomization process is preferably used. The forming can be carried out by injection molding. The obtained formed product is degreased, and then sintered to obtain a primary sintered product. The primary sintering is preferably performed at a reduced pressure of <=0.1Torr or in a nonoxidizing atmosphere. The primary sintered product is then pressure-sintered at 1,000-1,400 deg.C and at 30-150atm pressure in a nonoxidizing atmosphere. By this method, a high- density sintered metallic material having >=97.0% density ratio can be obtained at a low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、焼結金属材料の製造方法と、その原料粉末に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a sintered metal material and a raw material powder thereof.

〈従来の技術〉 近年、粉末冶金法による焼結金属材料の製造は著しい伸
びを示し、焼結金属材料の適用範囲が広がりつつある。
<Prior Art> In recent years, the production of sintered metal materials by powder metallurgy has shown remarkable growth, and the range of applications of sintered metal materials is expanding.

 なかでも、ステンレス鋼を用いた自動車部品・電子・
電気部品、事務用部品等の金属材料は、形状の?3を雑
化に伴い、製造方法も切削加工法から粉末冶金法に置き
換えられつつある。
Among these, automotive parts, electronics, and
What is the shape of metal materials such as electrical parts and office parts? As manufacturing methods become more complex, the cutting method is being replaced by the powder metallurgy method.

しかし、粉末冶金法で製造された焼結金属材料には気孔
が存在し、そのために焼結金属材料の密度が低く、この
気孔の存在が耐食性や機械的特性を損ねる欠点があった
。 そして、このような焼結金属材料の特性は密度に比
例するため、焼結金属材料の高密度化の研究が種々行わ
れてぎだ。
However, the sintered metal material produced by the powder metallurgy method has pores, which has the disadvantage that the density of the sintered metal material is low, and the presence of the pores impairs corrosion resistance and mechanical properties. Since the properties of such sintered metal materials are proportional to their density, various studies are being conducted to increase the density of sintered metal materials.

高密度化へのアプローチ法には、大別すると2種類あり
、一つは原料粉末の焼結性改善によるもの、もう一つは
製造プロセスの改良によるものである。 種々のアプロ
ーチの中で、特に注目されるものとして、前者では金属
微粉末の利用(微粉末を用いた場合の圧縮性の劣化を射
出成形法の導入により解決)、後者ではHIP(熱間等
方圧加圧)の利用等をあげることができる。 さらに、
HIP技術に関しては、その設備コストを大幅に低減し
た加圧焼結法(US、Pat、No、4591482 
、特表昭63−500874)が開示されており、この
方法は工業的な価値が高い。
There are two main approaches to increasing density: one is by improving the sinterability of raw material powder, and the other is by improving the manufacturing process. Among the various approaches, the ones that are attracting particular attention are the former, which uses fine metal powder (the deterioration of compressibility when using fine powder is solved by introducing injection molding), and the latter, which uses HIP (hot, etc.). One example is the use of directional pressure. moreover,
Regarding HIP technology, the pressure sintering method (US, Pat, No. 4591482) has significantly reduced equipment costs.
, Japanese Patent Publication No. 63-500874), and this method has high industrial value.

〈発明が解決しようとする課題〉 上述の通り、焼結金属材料の製造方法として、加圧焼結
法は工業的価値の高い方法である。 ところが、この加
圧焼結法においては、原料粉末の粒径をなんら考慮して
いなかった。
<Problems to be Solved by the Invention> As mentioned above, the pressure sintering method is a method of high industrial value as a method for producing sintered metal materials. However, in this pressure sintering method, no consideration was given to the particle size of the raw material powder.

そのため、原料粉末として粒径の大きい粉末を用い、射
出成形等の方法で成形を行った後に焼結して得られる一
次焼結体は閉空孔の焼結体ではないので、加圧焼結法で
再焼結しても密度が上昇せず、耐孔食性が悪かった。 
また、原料粉末として微粉末を用いれば、容易に閉空孔
の一次焼結体は得られるが、原料粉末はその平均粒径が
小さい程高価格になるので、コストの点で問題があった
。 さらに、微粉末を用いた場合、加圧焼結法で再焼結
しても、焼結体の密度の向上効果は小さかった。
Therefore, the primary sintered body obtained by using powder with a large particle size as the raw material powder, molding it by a method such as injection molding, and sintering it is not a closed-pore sintered body, so pressure sintering is used. Even after re-sintering, the density did not increase and the pitting corrosion resistance was poor.
Further, if a fine powder is used as the raw material powder, a closed-pore primary sintered body can be easily obtained, but the smaller the average particle size of the raw material powder, the higher the price, which poses a problem in terms of cost. Furthermore, when fine powder was used, the effect of improving the density of the sintered body was small even if it was re-sintered by the pressure sintering method.

本発明は、以上の実情に鑑みてなされたものであり、密
度比97.0%以上の焼結金属材料の低コストの製造方
法と、焼結金属材料製造時に用いる低コストの原料粉末
の提供を目的とすく課題を解決するための手段〉 本発明者らは、焼結金属材料の製造に際し、種々の粒径
を持つ原料粉末の焼結体の焼結密度に及ぼす加圧焼結条
件の影響を調べるために詳細な実験を行い、本発明を成
すに至ったものである。
The present invention has been made in view of the above circumstances, and provides a low-cost manufacturing method for a sintered metal material with a density ratio of 97.0% or more, and a low-cost raw material powder used in manufacturing the sintered metal material. Means for Solving the Problems> The present inventors have investigated the effect of pressure sintering conditions on the sintered density of raw material powders having various particle sizes during the production of sintered metal materials. Detailed experiments were conducted to examine the effects, and the present invention was completed.

本発明は、原料粉末として、平均粒径が9〜30μmの
粉末を用い、該粉末を成形し、得られた成形体に脱脂処
理を施し、続いて焼結を行って一次焼結体を得た後、非
酸化性7囲気中て温度1000〜1400℃、圧力30
〜150気圧で加圧焼結することを特徴とする焼結金属
材料の製造方法を提供するものである。
In the present invention, a powder having an average particle size of 9 to 30 μm is used as a raw material powder, the powder is molded, the obtained molded body is subjected to a degreasing treatment, and then sintered to obtain a primary sintered body. After that, the temperature was 1000-1400℃ and the pressure was 30℃ in a non-oxidizing atmosphere.
The present invention provides a method for producing a sintered metal material, characterized in that pressure sintering is performed at a pressure of ~150 atmospheres.

前記の成形は、射出成形であることが好ましい。Preferably, the molding is injection molding.

また、本発明は、原料粉末を成形し、得られた成形体に
脱脂処理を施し、続いて焼結を行って一次焼結体を得た
後、非酸化性τ囲気中で、温度1000〜1400℃、
圧力30〜150気圧で加圧焼結を行って焼結金属材料
を製造する際に用いる平均粒径9〜30μmであること
を特徴とする原料粉末を提供するものである。
Furthermore, the present invention involves molding the raw material powder, degreasing the resulting molded body, and then sintering it to obtain a primary sintered body. 1400℃,
The present invention provides a raw material powder characterized by having an average particle size of 9 to 30 μm and used when producing a sintered metal material by performing pressure sintering at a pressure of 30 to 150 atmospheres.

上記の各発明において、原料粉末は、アトマイズ法で得
られる粉末であることが好ましい。
In each of the above inventions, the raw material powder is preferably a powder obtained by an atomization method.

同じく上記の各発明において、好ましい原料粉末として
、ステンレス粉末が適用できる。
Similarly, in each of the above inventions, stainless steel powder can be used as a preferable raw material powder.

以下に、本発明について詳述する。The present invention will be explained in detail below.

本発明の原料粉末は、その平均粒径が9〜30μmであ
る。
The raw material powder of the present invention has an average particle size of 9 to 30 μm.

平均粒径が30μm超であると、閉空孔の一次焼結体(
本発明の粒度域では焼結密度比90%以上)が得られな
い。 これらの閉空孔でない一次焼結体は、特別な容器
づめ工程(一般にキャンニングと°呼ばれる)あるいは
特別な封孔処理なしに加圧によって高密度化することは
できない。 一方、平均粒径が小さくなるに従い、粉末
自体の焼結性が向上するため、容易に閉空孔のみをもつ
焼結密度比90%以上の一次焼結体が得られるが、平均
粒径9μmを境に、粉末価格が高騰するにもかかわらず
、−次焼結体を加圧焼結することによる密度比の向上効
果は小さくなる。 従って、原料粉末の平均ね径は9〜
30μmとする。
When the average particle size is more than 30 μm, the primary sintered body with closed pores (
In the particle size range of the present invention, a sintered density ratio of 90% or more cannot be obtained. These non-closed pore primary sintered bodies cannot be densified by pressure without a special container filling process (generally called canning) or a special pore sealing process. On the other hand, as the average particle size decreases, the sinterability of the powder itself improves, so it is easy to obtain a primary sintered body with a sintered density ratio of 90% or more, which has only closed pores. On the other hand, despite the rise in powder prices, the effect of improving the density ratio by pressure sintering the secondary sintered body becomes smaller. Therefore, the average diameter of the raw material powder is 9~
It is set to 30 μm.

本発明の原料粉末は、どのような方法で製造されるもの
でもよいが、例えば、高圧水アトマイズ法、水アトマイ
ズ法、還元法、カルボニル法、粉砕および分級によって
製造される金属微粉末およびそれらの混合粉末が使用で
きる。
The raw material powder of the present invention may be manufactured by any method, but for example, metal fine powders manufactured by high-pressure water atomization method, water atomization method, reduction method, carbonyl method, crushing and classification, and fine metal powders thereof. Mixed powder can be used.

これらの中では、合金組成が容易に得られて、球形に近
いに形状が得られることからアトマイズ法で製造される
粉末が好ましいが、平均粒径30μm以下の粉末が容易
に得られる高圧水アトマイズ法がざらに好ましい。
Among these, powder produced by the atomization method is preferable because the alloy composition can be easily obtained and a shape close to a spherical shape can be obtained, but high-pressure water atomization is preferable because powder with an average particle size of 30 μm or less can be easily obtained. Law is most preferred.

また、本発明の原料粉末は、どのような金属からなるも
のであってもよいが、例えば、ステンレスや、Ni、C
r、Mo、V、Mn。
Further, the raw material powder of the present invention may be made of any metal, such as stainless steel, Ni, C
r, Mo, V, Mn.

St、Co等を含有する鉄合金等があげられる。Examples include iron alloys containing St, Co, etc.

また、本発明では、原料粉末を成形し、脱脂し、焼結を
行って一次焼結体を得る。
Further, in the present invention, the raw material powder is molded, degreased, and sintered to obtain a primary sintered body.

成形は、公知のいかなる成形法で行ってもよく、従来の
金型ブレス成形をはじめとして、押し出し成形、粉末圧
延成形、射出成形等の方法で行うことができる。 特に
、複雑な形状の金属材料に成形する場合は、射出成形が
好ましい。
The molding may be performed by any known molding method, including conventional mold press molding, extrusion molding, powder rolling molding, injection molding, and the like. Injection molding is particularly preferred when molding a metal material into a complicated shape.

粉末の射出成形は、粉末だけで行うと公知のごとく射出
流動性および成形体強度を付与するために、結合剤を添
加混合した後に成形を行う。 射出成形用結合剤は、熱
可塑性樹脂および/またはワックスを主体とするものを
使用し、必要に応じて可塑剤、潤滑剤および脱脂促進剤
などを添加する。
Injection molding of powder is carried out after adding and mixing a binder in order to impart injection fluidity and strength to the molded body, as is known when performing injection molding using only powder. The binder for injection molding is mainly composed of thermoplastic resin and/or wax, and if necessary, a plasticizer, lubricant, degreasing accelerator, etc. are added thereto.

熱可塑性樹脂としては、アクリル系、ポリエチレン系、
ポリプロピレン系およびポリスチレン系等があり、ワッ
クス類としては、密ろう、木ろう、モンタンワックス等
に代表されるような天然ろう、および低分子ポリエチレ
ン、マイロクロスタリンワックス、パラフィンワックス
等に代表されるような合成ろうがあるが、これらから選
ばれる1稲あるいは2種以上を用いる。
Thermoplastic resins include acrylic, polyethylene,
There are polypropylene-based and polystyrene-based waxes, and waxes include natural waxes such as beeswax, Japanese wax, and montan wax, and low-molecular polyethylene, microclostalin wax, paraffin wax, etc. There are many synthetic waxes, and one or more types selected from these are used.

可塑剤は、主体と成る樹脂あるいはワックスとの組合せ
によって選択するが、具体的には、フタル酸ジー2−エ
チルヘキシル(DOP)、フタル酸ジエチル(DEP)
  フタル酸ジ−n−ブチル(DHP)等があげられる
The plasticizer is selected depending on the combination with the main resin or wax, but specifically, di-2-ethylhexyl phthalate (DOP), diethyl phthalate (DEP)
Examples include di-n-butyl phthalate (DHP).

潤滑剤としては、高級脂肪酸、脂肪酸アミド、脂肪酸エ
ステル等があげられ、場合によっては、ワックス類を潤
滑剤として兼用する。
Examples of the lubricant include higher fatty acids, fatty acid amides, fatty acid esters, etc. In some cases, waxes are also used as the lubricant.

また、脱脂促進剤として、樟脳等の昇華性物質を添加す
ることもできる。
Moreover, a sublimable substance such as camphor can also be added as a degreasing accelerator.

なお、射出成形用結合剤の量は、通常10重量%程度で
ある。
The amount of the injection molding binder is usually about 10% by weight.

粉末と結合剤との混合・混練には、バッチ式あるいは、
連続式のニーダが使用でき、バッチ式ニーダの中では加
圧ニーダやバンバリーミキサ−等が、また、連続式ニー
ダの中では2IjiIII押出し機等がそれぞれ有利に
適合する。 そして、混練後、必要に応じてペレタイザ
ーあるいは粉砕機等を使用して造粒を行い、成形用コン
バウンドを得る。
For mixing and kneading powder and binder, batch method or
A continuous type kneader can be used, and among the batch type kneaders, a pressure kneader, a Banbury mixer, etc. are advantageously suited, and among the continuous type kneaders, a 2IjiIII extruder and the like are advantageously suited. After kneading, granulation is performed using a pelletizer or a pulverizer as needed to obtain a compound for molding.

射出成形は、通常のプラスチック用射出成形機等を用い
て行えばよい。 この際において、射出圧力は、通常0
.3〜3t/cm2程度である。
Injection molding may be performed using a normal plastic injection molding machine or the like. At this time, the injection pressure is usually 0.
.. It is about 3 to 3 t/cm2.

射出成形後、結合剤を除去するために加熱を行う。 こ
のときの昇温速度は、5〜bhrとし、−数的には、4
50〜700℃に、O〜4時間程度保持する。 なお、
この時の昇温速度を速くしすぎると、得られた成形体に
割れや膨わが生じるので好ましくない。 また、結合剤
の除去は、粉末の酸化を抑制し、結合剤の分解反応に寄
与しない非酸化性雰囲気中で行うことが好ましい。
After injection molding, heating is performed to remove the binder. The temperature increase rate at this time is 5 to bhr, -numerically, 4
Maintain at 50 to 700°C for about 0 to 4 hours. In addition,
If the temperature increase rate at this time is too high, cracks or swelling will occur in the obtained molded product, which is not preferable. Further, the removal of the binder is preferably carried out in a non-oxidizing atmosphere that suppresses oxidation of the powder and does not contribute to the decomposition reaction of the binder.

結合剤を除去した後、−次焼結を行う。 前工程の加熱
処理終了時、結合剤の一部が残留しているが、−次焼結
により、残留結合剤中の炭素と金属粉末の表面に存在す
る酸化被膜中の酸素との反応させ、−次焼結体中のCお
よびOiを減少させる。 従って、結合剤の除去程度を
加減するか、あるいは除去後に酸化処理を行い、C10
モル比を最適値に、好ましくは0.3〜3.0に調節し
てから一次焼結を行う。
After removing the binder, a second sintering is performed. At the end of the heat treatment in the previous step, some of the binder remains, but in the next sintering, the carbon in the residual binder reacts with the oxygen in the oxide film on the surface of the metal powder, - Decrease C and Oi in the secondary sintered body. Therefore, it is necessary to adjust the degree of removal of the binder, or perform oxidation treatment after removal, and C10
Primary sintering is performed after adjusting the molar ratio to an optimum value, preferably 0.3 to 3.0.

一次焼結で閉空孔の焼結体を得なければならないが、本
発明の原料粉末を用いれば、一般の焼結方法を適用でき
る。
Although it is necessary to obtain a sintered body with closed pores through primary sintering, if the raw material powder of the present invention is used, a general sintering method can be applied.

一次焼結は、0.ITorr以下の減圧下および/また
は非酸化性雰囲気中で行う。
Primary sintering is 0. It is carried out under reduced pressure of ITorr or less and/or in a non-oxidizing atmosphere.

例えば原料粉末がステンレス鋼である場合は、0、IT
orr、1050〜1300℃で2時間程度の一般焼結
を行った後、Ar中で1250〜1370℃で1時間程
度の二段焼結を行う。 また、原料粉末がCr、Mo、
V。
For example, if the raw material powder is stainless steel, 0, IT
After general sintering is performed at 1050 to 1300°C for about 2 hours, two-stage sintering is performed in Ar at 1250 to 1370°C for about 1 hour. In addition, the raw material powder is Cr, Mo,
V.

Mn、Si等の還元性元素を含む合金である場゛合も、
ステンレス鋼と同様に焼結できる。 なお、焼結条件は
上記の範囲より試行実験にて容易に定めることができる
。 さらに、原料粉末がFe、Ni、Co、Cu、Mo
、Snなどの易還元性元素のみを含む場合は、水素など
の還元性ガス中で、800〜1400℃で、2時間程度
焼結を行う。
In the case of alloys containing reducing elements such as Mn and Si,
Can be sintered like stainless steel. Note that the sintering conditions can be easily determined from the above range through trial experiments. Furthermore, the raw material powder is Fe, Ni, Co, Cu, Mo.
, Sn, and other easily reducible elements, sintering is performed at 800 to 1400° C. for about 2 hours in a reducing gas such as hydrogen.

本発明では、上記の方法で得られた一次焼結体を、非酸
化性雰囲気中で、温度1000〜1400t、圧力30
〜150気圧で加圧焼結を行う。
In the present invention, the primary sintered body obtained by the above method is heated at a temperature of 1000 to 1400 t and a pressure of 30 t in a non-oxidizing atmosphere.
Pressure sintering is performed at ~150 atmospheres.

この工程は、前工程で閉空孔化した一次焼結体を高密度
化(密度比97.0%以上)する工程であるため、反応
性のガスを使用する必要はない。 従って、非酸化性雰
囲気中で焼結を行う。 但し、加圧を施しても爆発等の
危険性の低い不活性ガスが取扱い上好ましい。
Since this step is a step of densifying the primary sintered body whose pores were closed in the previous step (density ratio of 97.0% or more), there is no need to use a reactive gas. Therefore, sintering is performed in a non-oxidizing atmosphere. However, inert gas is preferable for handling because it has low risk of explosion even when pressurized.

温度は、高いほど加圧焼結による密度比の向上効果は大
きいが、1400℃超であると、必要以上に結晶粒径が
粗大化したり、金属が溶融を開始し、また、1000℃
未満では、加圧焼結による密度比の向上効果がなく、密
度比97.0%以上の焼結金属材料が得られないので好
ましくない。
The higher the temperature, the greater the effect of improving the density ratio by pressure sintering, but if the temperature exceeds 1400°C, the crystal grain size may become coarser than necessary, and the metal may start to melt.
If it is less than this, there is no effect of improving the density ratio by pressure sintering, and a sintered metal material with a density ratio of 97.0% or more cannot be obtained, which is not preferable.

さらに、−次焼結を減圧下で行った場合、構成元素の蒸
気圧の差により、焼結体表面に組成分布ができ、また、
還元性ガス雰囲気で行った場合も、ガスに触れている焼
結体もしくは粉末表面とそれらの内部との間に組成分布
が生じることがある。 この組成分布は、焼結体中の特
性を劣化するものであり、好ましくない。
Furthermore, when secondary sintering is performed under reduced pressure, a compositional distribution occurs on the surface of the sintered body due to the difference in vapor pressure of the constituent elements, and
Even when the process is carried out in a reducing gas atmosphere, a compositional distribution may occur between the surface of the sintered body or powder that is in contact with the gas and the inside thereof. This compositional distribution deteriorates the properties of the sintered body and is not preferable.

そこで、−次焼結の後に、大気圧以上の圧力下で、構成
元素の蒸発しない雰囲気中で、あ囲いは、化学反応の全
く起こることのない雰囲気中で、原子の拡散速度のより
高い温度領域にて焼結を行い、組成の均一化を速やかに
進行させる必要があり、そのためには、温度を1000
℃以上とする必要がある。
Therefore, after the second sintering, under pressure above atmospheric pressure, in an atmosphere in which the constituent elements do not evaporate, the sintering is carried out at a temperature higher than that at which the diffusion rate of atoms is higher, in an atmosphere in which no chemical reactions occur. It is necessary to sinter the area and uniformize the composition quickly.
It needs to be at least ℃.

また、圧力は、30気圧未満の場合は、加圧焼結による
密度比の向上効果が、圧力を加えない場合と有意差がで
ず、密度比97.0%以上の焼結金属材料が得られない
。 一方、150気圧を超えるガス媒体を用いるには、
設備コストが急騰し、本発明の目的とそぐわないため、
30〜150気圧とする。
In addition, when the pressure is less than 30 atm, the effect of improving the density ratio by pressure sintering is not significantly different from that when no pressure is applied, and a sintered metal material with a density ratio of 97.0% or more is obtained. I can't. On the other hand, in order to use a gas medium exceeding 150 atmospheres,
Because equipment costs have skyrocketed and are inconsistent with the purpose of the present invention,
The pressure shall be 30 to 150 atmospheres.

なお、ここまでの工程において、非酸化性雰囲気を作る
ために用いるガスは、Ar、He’等の不活性ガスのほ
か、CHa 、Cs Ha等の還元ガス、N2または燃
焼排ガス等である。
In the steps up to this point, gases used to create a non-oxidizing atmosphere include inert gases such as Ar and He', reducing gases such as CHa, CsHa, N2, combustion exhaust gas, and the like.

〈実施例〉 本発明を、実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained based on examples.

(実施例I) 原料粉末として、5US316組成の平均粒径7.5〜
35.0μmの水アトマイズ粉末と、5US304組成
の平均粒径7.5〜“16.5μmの水アトマイズ粉末
とを用意した。 これらの粉末に、それぞれ10重量%
のアクリルを主体とする熱可塑性バインダーを添加し、
加圧ニーダ−によって混練したのち、粉砕して射出成形
用コンパウンドとした。
(Example I) As raw material powder, average particle size of 5US316 composition is 7.5~
A water atomized powder of 35.0 μm and a water atomized powder of 5US304 composition with an average particle size of 7.5 to 16.5 μm were prepared.
Adding a thermoplastic binder mainly made of acrylic,
After kneading with a pressure kneader, the mixture was pulverized to obtain an injection molding compound.

これを、160℃、It/cm2で射出成形を行い、4
0mmxl lmmX5mmの成形体とした。
This was injection molded at 160°C and It/cm2.
It was made into a molded body of 0 mm x l l mm x 5 mm.

つぎに、N2雰囲気中で、15℃/hの昇温速度で60
0℃まで昇温し、0.5時間保持して結合剤を除去した
。 さらに、1160℃まで昇温し、圧力1xlO−3
Torrで2時間保持した後、温度を1365℃まで昇
温し、Ar7囲気(圧力1atm)中で2時間保持し、
次焼結体を得た。
Next, in a N2 atmosphere, the heating rate was 15°C/h.
The temperature was raised to 0°C and held for 0.5 hours to remove the binder. Furthermore, the temperature was raised to 1160°C and the pressure was 1xlO-3
After holding at Torr for 2 hours, the temperature was raised to 1365°C and held in Ar7 atmosphere (pressure 1 atm) for 2 hours,
A next sintered body was obtained.

これらの−次焼結体を、第1表に示す用にAr雰囲気中
で、温度1300℃、圧力150atmに1時間保持し
、または、Ar雰囲気中で、温度1300℃、1100
atに2時間保持し、二次焼結体を得た。
These secondary sintered bodies were maintained at a temperature of 1300°C and a pressure of 150 atm for 1 hour in an Ar atmosphere as shown in Table 1, or were heated at a temperature of 1300°C and a pressure of 1100°C in an Ar atmosphere.
A secondary sintered body was obtained by holding at at for 2 hours.

一次焼結体、二次焼結体各々について、アルキメデス法
による密度および真密度より密度比を求めた。
For each of the primary sintered body and the secondary sintered body, the density ratio was determined from the density and true density by the Archimedes method.

結果は第1表に示した。The results are shown in Table 1.

(実施例I+ ) 原料粉末として、5O5316組成の平均粒径12.5
μmの水アトマイズ粉末を用意し、実施例■と同様の方
法で一次焼結体を得た。
(Example I+) As a raw material powder, the average particle size of 5O5316 composition was 12.5
A water atomized powder of .mu.m was prepared and a primary sintered body was obtained in the same manner as in Example (2).

これを、Ar雰囲気中で、第2表に示す温度、圧力15
0atmに1時間保持し、二次焼結体を得た。
This was carried out in an Ar atmosphere at a temperature and pressure of 15% as shown in Table 2.
A secondary sintered body was obtained by maintaining the temperature at 0 atm for 1 hour.

実施例rと同様に密度比を求め、結果は第2表に示した
The density ratio was determined in the same manner as in Example r, and the results are shown in Table 2.

(実施例I11 ) 原料粉末として、5US316組成の平均粒径12,5
μmの水アトマイズ粉末を用意し、実施例■と同様の方
法で一次焼結体を得た。
(Example I11) As a raw material powder, the average particle size of 5US316 composition was 12.5
A water atomized powder of .mu.m was prepared and a primary sintered body was obtained in the same manner as in Example (2).

これをAr雰囲気中で、温度1350℃、第3表に示す
圧力に1時間保持し、二次焼結体を得た。
This was maintained in an Ar atmosphere at a temperature of 1350°C and a pressure shown in Table 3 for 1 hour to obtain a secondary sintered body.

実施例Iと同様に密度比を求め、結果は第3表に示した
The density ratio was determined in the same manner as in Example I, and the results are shown in Table 3.

実施例Iと同様の方法で一次焼結体を得た。A primary sintered body was obtained in the same manner as in Example I.

また、同様の原料粉末を用い、3重量%の樟脳をアセト
ン中に溶解し、乳鉢中でアセトンを乾燥除去しながら原
料粉末を混合し、金型成形用原料を得た。 これを、3
 t / c m 2の圧力で金型成形を行い、40m
mX 10mmX5mmの成形体とした。
Further, using the same raw material powder, 3% by weight of camphor was dissolved in acetone, and the raw material powder was mixed while drying and removing the acetone in a mortar to obtain a raw material for mold forming. This is 3
Mold forming is performed at a pressure of t/cm2, and the length of 40m
It was made into a molded body of mX 10mmX5mm.

つぎに、乾燥水素中で、5℃/ m t nの昇温速度
で600℃まで昇温し、0.5時間保持して樟脳を除去
した。
Next, the temperature was raised to 600°C at a temperature increase rate of 5°C/m t n in dry hydrogen and maintained for 0.5 hours to remove camphor.

これを、実施例■と同様の方法で焼結し、次焼結体を得
た。
This was sintered in the same manner as in Example (2) to obtain a subsequent sintered body.

これらを、第4表に示す条件に1時間保持し、二次焼結
体を得た。
These were maintained under the conditions shown in Table 4 for 1 hour to obtain secondary sintered bodies.

実施例■と同様に密度比を求め、結果は第4表に示した
The density ratio was determined in the same manner as in Example 2, and the results are shown in Table 4.

(実施例IV ) 原料粉末として、5US316組成の平均粒径12.5
μmの水アトマイズ粉末を用意し、弔 表 第 表 第 表 第 表 実施例■は、原料粉末の平均粒径と焼結金属材料の密度
比との関係を検討したものである。
(Example IV) As a raw material powder, the average particle size of 5US316 composition was 12.5
Example 2 of Table 1 examines the relationship between the average particle diameter of the raw material powder and the density ratio of the sintered metal material by preparing water atomized powder of .mu.m.

一次焼結体の密度比は、平均粒径が大きくなるほど小さ
い値となり、平均粒径が30μmを超える(比較例2)
と、焼結体が閉空孔化する密度比90%が達成できず、
そのため、二次(加圧)焼結による密度上昇がみられな
かった。
The density ratio of the primary sintered body becomes smaller as the average grain size increases, and the average grain size exceeds 30 μm (Comparative Example 2)
Therefore, the density ratio of 90% at which the sintered body becomes closed pores cannot be achieved,
Therefore, no increase in density was observed due to secondary (pressure) sintering.

一方、平均粒径が相対的に小さい原料粉末(比較例1.
3)を用いると、−次焼結体は高い密度比を持つにもか
かわらず、二次焼結後の最終密度比はあまり上昇しなか
ワた。 これは粉末の表面積が大きいため、加圧時の粉
末同士の接触抵抗が大きく、加圧の効果が上がらなかっ
てものと推定できる。
On the other hand, raw material powder with a relatively small average particle size (Comparative Example 1.
When 3) was used, the final density ratio after secondary sintering did not increase much, although the secondary sintered body had a high density ratio. It can be assumed that this is because the surface area of the powder is large, so the contact resistance between the powders during pressurization is large, and the effect of pressurization is not improved.

本発明の粉末(発明例1〜8)を用いると、平均粒径の
増大に起因し、−次焼結体の密度比はある程度減少する
が、二次焼結時の粉末同士の接触抵抗の減少があり、二
次焼結後の最終焼結体の密度比上昇に対する効果のバラ
ンスがよく、高密度比(密度比97.0%以上)の焼結
金属材料が得られた。
When the powder of the present invention (Invention Examples 1 to 8) is used, the density ratio of the secondary sintered body decreases to some extent due to the increase in the average particle size, but the contact resistance between the powders during secondary sintering decreases. The effect on the increase in density ratio of the final sintered body after secondary sintering was well balanced, and a sintered metal material with a high density ratio (density ratio of 97.0% or more) was obtained.

実施例11は、二次焼結時の温度と焼結金属材料の密度
比との関係を検討したものである。
Example 11 examines the relationship between the temperature during secondary sintering and the density ratio of the sintered metal material.

温度が1000℃未満である場合(比較例4) 密度比
向上効果は小さく、1000〜1300℃(発明例3.
9)で処理して初めて、効果的に密度比を向上させるこ
とかでき、密度比97.0%以上の焼結金属材料が得ら
れた。
When the temperature is less than 1000°C (Comparative Example 4), the density ratio improvement effect is small, and when the temperature is less than 1000°C to 1300°C (Invention Example 3.
9), the density ratio could be effectively improved, and a sintered metal material with a density ratio of 97.0% or more was obtained.

実施例■は、二次焼結時の圧力と焼結金属材料の密度比
との関係を検討したものである。
Example (2) examines the relationship between the pressure during secondary sintering and the density ratio of the sintered metal material.

圧力が30気圧未満の場合(比較例5)、密度比の向上
効果が小さく、30〜100気圧(発明例t o、  
t t )で処理して初めて、密度比97.0%以上の
焼結金属材料が得られた。
When the pressure is less than 30 atm (Comparative Example 5), the effect of improving the density ratio is small;
t t ), a sintered metal material with a density ratio of 97.0% or more was obtained.

実施例IVは、−次焼結体製造時における原料粉末の成
形法と、二次焼結時の雰囲気ガスについて検討したもの
である。
Example IV examines the method of forming the raw material powder during the production of the secondary sintered body and the atmospheric gas during the secondary sintering.

本発明の原料粉末を用い、本発明の方法で焼結金属材料
を製造する場合、原料粉末の成形は、射出成形(発明例
3.11)のみならず、金型成形(発明例13)も適用
できることが明らかとなった。
When producing a sintered metal material using the raw material powder of the present invention by the method of the present invention, the raw material powder may be molded not only by injection molding (Invention Example 3.11) but also by mold molding (Invention Example 13). It has become clear that it can be applied.

また、二次焼結時の雰囲気は非酸化性であり、非酸化性
雰囲気を作るガスとして、Ar(発明例3,11.13
)のみならず、N2(発明例12)も適用できることが
明らかとなフた。
In addition, the atmosphere during secondary sintering is non-oxidizing, and Ar (Invention Example 3, 11.13
) It is clear that not only N2 (Invention Example 12) can also be applied.

〈発明の効果〉 本発明により、密度比97.0%以上の焼結金属材料の
低コストの製造方法と、この方法で密度比97,0%以
上の焼結金属材料を製造するに際して用いる、低コスト
の原料粉末が提供される。
<Effects of the Invention> The present invention provides a low-cost manufacturing method for a sintered metal material with a density ratio of 97.0% or more, and a method for manufacturing a sintered metal material with a density ratio of 97.0% or more using this method. A low cost raw material powder is provided.

従って、より広い分野において、焼結金属材料を用いる
ことができるようになる。
Therefore, the sintered metal material can be used in a wider range of fields.

Claims (7)

【特許請求の範囲】[Claims] (1)原料粉末として、平均粒径が9〜30μmの粉末
を用い、該粉末を成形し、得られた成形体に脱脂処理を
施し、続いて焼結を行つて一次焼結体を得た後、非酸化
性雰囲気中で温度1000〜1400℃、圧力30〜1
50気圧で加圧焼結することを特徴とする焼結金属材料
の製造方法。
(1) Powder with an average particle size of 9 to 30 μm was used as the raw material powder, the powder was molded, the resulting molded body was subjected to degreasing treatment, and then sintered to obtain a primary sintered body. After that, in a non-oxidizing atmosphere at a temperature of 1000~1400℃ and a pressure of 30~1
A method for producing a sintered metal material, characterized by pressure sintering at 50 atmospheres.
(2)前記原料粉末がアトマイズ法で得られる粉末であ
る請求項1に記載の焼結金属材料の製造方法。
(2) The method for producing a sintered metal material according to claim 1, wherein the raw material powder is a powder obtained by an atomization method.
(3)前記原料粉末がステンレス粉末である請求項1ま
たは2に記載の焼結金属材料の製造方法。
(3) The method for producing a sintered metal material according to claim 1 or 2, wherein the raw material powder is stainless steel powder.
(4)前記成形が射出成形である請求項1〜3のいずれ
かに記載の焼結金属材料の製造方法。
(4) The method for manufacturing a sintered metal material according to any one of claims 1 to 3, wherein the molding is injection molding.
(5)原料粉末を成形し、得られた成形体に脱脂処理を
施し、続いて焼結を行って一次焼結体を得た後、非酸化
性雰囲気中で、温度1000〜1400℃、圧力30〜
150気圧で加圧焼結を行って焼結金属材料を製造する
際に用いる平均粒径9〜30μmであることを特徴とす
る原料粉末。
(5) After molding the raw material powder, degreasing the obtained molded body, and then sintering it to obtain a primary sintered body, in a non-oxidizing atmosphere at a temperature of 1000 to 1400°C and a pressure of 30~
A raw material powder characterized in that it has an average particle size of 9 to 30 μm and is used when producing a sintered metal material by performing pressure sintering at 150 atmospheres.
(6)前記原料粉末がアトマイズ法で得られる粉末であ
る請求項5に記載の原料粉末。
(6) The raw material powder according to claim 5, wherein the raw material powder is a powder obtained by an atomization method.
(7)前記原料粉末がステンレス粉末である請求項5ま
たは6に記載の原料粉末。
(7) The raw material powder according to claim 5 or 6, wherein the raw material powder is stainless steel powder.
JP20672588A 1988-08-20 1988-08-20 Production of sintered metallic material and its raw powder Pending JPH0257613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20672588A JPH0257613A (en) 1988-08-20 1988-08-20 Production of sintered metallic material and its raw powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20672588A JPH0257613A (en) 1988-08-20 1988-08-20 Production of sintered metallic material and its raw powder

Publications (1)

Publication Number Publication Date
JPH0257613A true JPH0257613A (en) 1990-02-27

Family

ID=16528074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20672588A Pending JPH0257613A (en) 1988-08-20 1988-08-20 Production of sintered metallic material and its raw powder

Country Status (1)

Country Link
JP (1) JPH0257613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056898A1 (en) * 1998-05-07 1999-11-11 Injex Corporation Process for producing sintered product
JPH11315305A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body
JPH11315304A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body
JPH11315306A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056898A1 (en) * 1998-05-07 1999-11-11 Injex Corporation Process for producing sintered product
JPH11315305A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body
JPH11315304A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body
JPH11315306A (en) * 1998-05-07 1999-11-16 Injex:Kk Manufacture of sintered body
KR100503402B1 (en) * 1998-05-07 2005-07-26 세이코 엡슨 가부시키가이샤 Process for producing sintered product

Similar Documents

Publication Publication Date Title
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JPH0254733A (en) Manufacture of ti sintered material
JPH02294405A (en) Method for removing wax from injection molded metallic part
JPH0257613A (en) Production of sintered metallic material and its raw powder
JP2703939B2 (en) Method for producing Fe-Si soft magnetic sintered material
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JP2790289B2 (en) Manufacturing method of sintered stainless steel by injection molding
JPH0257607A (en) Injection-molding powder and production of metallic sintered body
JPH0257660A (en) Manufacture of sintered alloy steel having excellent corrosion resistance
JPH03173702A (en) Production of sintered body
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH06136405A (en) Production of high-density pure iron sintered compact
JPH0257612A (en) Pressure sintering method
JPH02298204A (en) Method for sintering ferrous powder
JPH02290904A (en) Method for sintering iron series powder