JPH02290904A - Method for sintering iron series powder - Google Patents

Method for sintering iron series powder

Info

Publication number
JPH02290904A
JPH02290904A JP11136689A JP11136689A JPH02290904A JP H02290904 A JPH02290904 A JP H02290904A JP 11136689 A JP11136689 A JP 11136689A JP 11136689 A JP11136689 A JP 11136689A JP H02290904 A JPH02290904 A JP H02290904A
Authority
JP
Japan
Prior art keywords
sintering
powder
iron
pressure
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11136689A
Other languages
Japanese (ja)
Inventor
Ritsuo Okabe
岡部 律男
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11136689A priority Critical patent/JPH02290904A/en
Publication of JPH02290904A publication Critical patent/JPH02290904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high density and high strength material even if raw material powder is coarse by executing sintering under non-pressurizing, sintering under pressurized gas atmosphere of specific pressure and sintering under non- pressurizing at each specific temp. to a green compact of iron series powder after degreasing, in order. CONSTITUTION:After adding and mixing lubricant and binder to iron-series powder, this is compacted to obtain the green compact of iron-series powder. After degreasing this green compact, this is sintered at 1350-1450 deg.C under non- pressurizing and sintered at 1350-1450 deg.C under pressurizing gas atmosphere of >=20kg/cm<2> pressure and further, sintered at 1100-1350 deg.C under non- pressurizing. By this method, after making the void in the sintered body closed, as the void is eliminated with the pressurized sintering and coarsening of crystal grain of metal can be prevented, the high density and high strength iron-series powder metallurgical material is obtd.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、高密度(95%以上)の鉄系粉末冶金材料を
製造する方法に関し、さらに詳しくく従来の技術〉 鉄系粉末冶金は、最終部品形状またはそれに近い形状の
部材を、歩留りよく、高効率に生産でき、しかも形状の
寸法精度に優れているため、主に複雑形状部品の製法と
して発展してきた。 しかし、焼結材料の各種特性に対
して極めて重要な影響を与える焼結密度は、通常の11
00〜1350℃での焼結では、真密度の90%(すな
わち密度比90%)どまりであり、機械的特性や耐食性
、磁気特性などの機能性において、問題が残ることが多
かった。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for producing high-density (95% or more) iron-based powder metallurgy materials. This method has been developed mainly as a manufacturing method for parts with complex shapes because it can produce members with a final part shape or a shape close to it with high yield and high efficiency, and has excellent dimensional accuracy. However, the sintered density, which has a very important influence on various properties of the sintered material, is
Sintering at a temperature of 00 to 1350°C results in only 90% of the true density (that is, a density ratio of 90%), and problems often remain in functionality such as mechanical properties, corrosion resistance, and magnetic properties.

これを解決するには、焼結時に十分な寸法収縮、緻密化
をおこさせ、高密度とする手段が有効である。 そのた
め、通常の数十μmの平均粒径をもつ鉄系粉末にかわり
、平均粒径25μm以下の微粒粉末を用い、焼結時の焼
結性を向上させる必要がある。
To solve this problem, it is effective to cause sufficient dimensional shrinkage and densification during sintering to achieve high density. Therefore, instead of the usual iron-based powder having an average particle size of several tens of μm, it is necessary to use fine powder with an average particle size of 25 μm or less to improve the sinterability during sintering.

しかし、通常の焼結パターンでは、どうしても十分な緻
密化がおこらず、密度が期待されるほど上がらないとい
う問題がある。 そして、諸特性に優れる材料は、密度
比が90〜95%(Feの場合、密度7.07〜7.4
7g/cm’)あるいはそれより上であり、原料粉末だ
けでなく、焼結方法の改善もきわめて重要な鍵になって
いる. これらの高密度化へのアプローチ法には、大別すると2
種のものがあり、一つは原料粉末の焼結性改善によるも
の、もう一つは製造プロセスの改良によるものである。
However, with normal sintering patterns, there is a problem that sufficient densification does not occur and the density does not increase as expected. Materials with excellent properties have a density ratio of 90 to 95% (in the case of Fe, the density is 7.07 to 7.4%).
7g/cm') or higher, and improving not only the raw material powder but also the sintering method is an extremely important key. These approaches to densification can be roughly divided into two types.
There are two types of methods: one is due to improved sinterability of the raw material powder, and the other is due to improvements in the manufacturing process.

 特に注目されるものとして、前者には金属微粉末の利
用(微粉末の圧縮性の劣悪さを、射出成形法の導入によ
り解決した) 後者にはHIP(熱間静水圧プレス)の
利用などをあげられる. さらに、HIP技術に関して
は、その設備コストを大幅に改善した加圧焼結法(米国
特許US8[i/00853、特表昭83−50087
4 )も提案されている。
Particularly notable are the use of fine metal powder for the former (the poor compressibility of fine powder was solved by the introduction of injection molding), and the use of HIP (hot isostatic pressing) for the latter. can give. Furthermore, regarding HIP technology, the pressure sintering method (US Patent No. 8 [i/00853, Japanese Patent Publication No. 83-50087
4) has also been proposed.

しかし、この加圧焼結法も、コストの点や、工業的規模
で実施するにあたり、改良が必要である。 すなわち、
この加圧焼結法においては、原料粉末の粒径をなんら考
慮していなかった。 そのため、焼結金属材料の製造に
あたり、特に、射出成形など、微粉末(粒径44μm以
下程度、好ましくは10μm以下)を原料とするものに
おいては、その経済性(原料粉末価格は、平均粒径が小
さいほど高価格である)に問題があった。
However, this pressure sintering method also requires improvement in terms of cost and implementation on an industrial scale. That is,
In this pressure sintering method, no consideration was given to the particle size of the raw material powder. Therefore, when manufacturing sintered metal materials, especially those using fine powder (particle size of about 44 μm or less, preferably 10 μm or less) as a raw material, such as injection molding, its economic efficiency (the raw material powder price is based on the average particle size The problem was that the smaller the price, the higher the price.

また、上記先行技術(米国特許US86/00853)
で開示された短時間の温度上昇(温度スパイク)を伴う
加圧焼結法においては、焼結体を高温に保持する時間を
短時間に限定する必要があり、これは、工業的な困難さ
を伴う。 さらに、炉内全体にわたり、等しい温度スパ
イクの効果を及ぼすことは、工業的規模の炉では困難で
あり、その結果、炉内に配置された焼結体の位置により
、密度に大きなバラツキを生じる。
In addition, the above prior art (US patent US86/00853)
In the pressure sintering method that involves a short-term temperature rise (temperature spike) disclosed in accompanied by. Furthermore, it is difficult in industrial-scale furnaces to produce uniform temperature spikes throughout the furnace, resulting in large variations in density depending on the position of the sintered body within the furnace.

く発明が解決しようとする課題〉 上記の如く、焼結体の密度を高くする方法が提案されて
いるが、コストや工業的規模へのスケールアップの点な
どで、改良の余地がある。
Problems to be Solved by the Invention> As described above, methods for increasing the density of sintered bodies have been proposed, but there is still room for improvement in terms of cost and scale-up to an industrial scale.

本発明は、このような事実に鑑みてなされたものであり
、射出成形などの従来は微粉末を原料とした焼結金属材
料の製造方法であフて、焼結金属材料特性(密度)およ
びその経済性(原料価格)に優れる鉄系粉末の焼結方法
の提供を目的とする。 すなわち、原料粉末が粗粒であ
っても、高密度で、しかも高強度の鉄系粉末冶金材料を
工業的に容易に製造する方法の提供を目的とする。
The present invention has been made in view of these facts, and conventional methods such as injection molding for producing sintered metal materials using fine powder as raw materials have improved the properties (density) and sintered metal materials. The purpose of this invention is to provide a method for sintering iron-based powder that is highly economical (raw material cost). That is, the object of the present invention is to provide a method for industrially easily producing a high-density and high-strength iron-based powder metallurgical material even if the raw material powder is coarse particles.

〈課題を解決するための手段〉 本発明者らは、高密度、高強度の鉄系粉末冶金材料を得
るためには、焼結体の空孔を閉空孔とした後、加圧焼結
によって空孔を消滅させることと、金属の結晶粒粗大化
を防止できることとを満足する条件下で焼結を行えばよ
いと考え、その条件について鋭意検討し、本発明に到達
した。
<Means for Solving the Problem> The present inventors have discovered that in order to obtain a high-density, high-strength iron-based powder metallurgy material, the pores of the sintered body are closed and then pressure sintered. We thought that sintering should be performed under conditions that satisfy the requirements of eliminating pores and preventing coarsening of metal crystal grains, and after intensive study of these conditions, we arrived at the present invention.

すなわち、本発明は、鉄系粉末を成形、焼結してなる粉
末冶金材料の製造において、鉄系粉末の成形体を脱ろう
後、温度1350〜1450℃、無加圧下で焼結し、温
度1350〜1450℃、圧力2 0 kg/cm2以
上の加圧ガス雰囲気中で焼結し、さらに、温度1100
〜1350℃、無加圧下で焼結することを特徴とする鉄
系粉末の焼結方法である。
That is, in the production of a powder metallurgy material formed by molding and sintering iron-based powder, the present invention involves dewaxing the molded body of iron-based powder, sintering it at a temperature of 1350 to 1450°C without pressure, and reducing the temperature. Sintered in a pressurized gas atmosphere at 1350 to 1450°C and a pressure of 20 kg/cm2 or more, and further at a temperature of 1100°C.
This is a method for sintering iron-based powder, characterized by sintering at ~1350°C under no pressure.

以下に、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の対象となる鉄系粉末としては、純鉄系の鉄粉、
すなわち、主成分がFeで、不可避的不純物および鉄粉
製造上、必要に応じて少量添加されるSi,Mn,Aj
!などを含有する鉄粉と、いわゆる低合金鋼粉として知
られる、室温から1400℃の範囲内にα#γの変態が
ある粉末等をあげられる。
The iron-based powder to which the present invention is applied includes pure iron-based iron powder,
That is, the main component is Fe, and unavoidable impurities and Si, Mn, Aj, which are added in small amounts as necessary in the production of iron powder.
! Examples include iron powder containing .

使用する粉末は、高圧水アトマイズ法、還元法、カルボ
ニル法等のいずれによって製造されたものでもよく、ま
た、それらの後に粉砕や分級を行って得た金属微粉末で
もよい。 あるいは、それらの混合粉末であってもよい
The powder used may be produced by any of the high-pressure water atomization method, the reduction method, the carbonyl method, etc., or may be a fine metal powder obtained by pulverization or classification after these methods. Alternatively, a mixed powder thereof may be used.

粉末の成形体は、公知のいかなる成形法を用いて成形さ
れたものでもよく、例えば、粉末に有機物潤滑材を添加
して行う公知の金型成形法や、有機バインダと混練して
コンパウンドとして成形を行う公知の射出成形法で成形
されたものが利用できる。 複雑形状部品の場合は、射
出成形法で成形されたものが好ましい。
The powder molded body may be molded using any known molding method, such as a known mold molding method in which an organic lubricant is added to the powder, or a compound formed by kneading it with an organic binder. Those molded by a known injection molding method can be used. In the case of complex-shaped parts, those molded by injection molding are preferred.

ここで、粉末の成形について述べる。Here, powder compaction will be described.

粉末の成形は、潤滑剤やバインダを添加混合した後に行
われる。
The powder is compacted after adding and mixing the lubricant and binder.

金型成形の場合のバインダとしては、潤滑剤である高級
脂肪酸、脂肪酸アミド、脂肪酸エステル等があげられる
Examples of binders for molding include higher fatty acids, fatty acid amides, fatty acid esters, etc., which are lubricants.

射出成形の場合のバインダは、熱可塑性樹脂および/ま
たはワックスを主体とするものを使用し、必要に応じて
可望剤、潤滑剤および脱脂促進剤などを添加する。
In the case of injection molding, a binder mainly consisting of a thermoplastic resin and/or wax is used, and a desensitizer, a lubricant, a degreasing accelerator, etc. are added as necessary.

熱可塑性樹脂としては、アクリル系、ポリエチレン系、
ポリプロピレン系およびボリスチレン系等があり、ワッ
クス類としては、みつろう、木ろう、モンタンワックス
等に代表されるような天然ろう、および低分子ポリエチ
レン、マイクロクリスタリンワックス、パラフィンワッ
クス等に代表されるような合成ろうがあるが、これらか
ら選ばれる1f!!あるいは2 fffl以上を用いる
Thermoplastic resins include acrylic, polyethylene,
There are polypropylene-based and polystyrene-based waxes, and waxes include natural waxes such as beeswax, Japanese wax, and montan wax, and synthetic waxes such as low-molecular polyethylene, microcrystalline wax, paraffin wax, etc. There is wax, but 1f selected from these! ! Alternatively, use 2 fffl or more.

可望剤は、主体と成る樹脂あるいはワックスとの組合せ
によって選択するが、具体的には、フタル酸ジー2−エ
チルヘキシル(DOP)、フタル酸ジエチル(DEP)
  フタル酸ジーn−ブチル(DHP)等があげられる
The desensitizing agent is selected depending on the combination with the main resin or wax, and specifically, di-2-ethylhexyl phthalate (DOP), diethyl phthalate (DEP), etc.
Examples include di-n-butyl phthalate (DHP).

尚、バインダの量は、後工程の成形法によって異なり、
通常の金型ブレス成形では0.5〜3,0重量%、射出
成形では10重量%程度である。
The amount of binder varies depending on the molding method in the post-process.
In normal mold press molding, the amount is 0.5 to 3.0% by weight, and in injection molding, it is about 10% by weight.

射出成形の場合の鉄系粉末とバインダとの混合・混練に
は、バッチ式あるいは連続式のニダが使用でき、バッチ
式二−ダの中では加圧ニーダやバンバリーミキサー等が
、また、連続式二−ダの中では2軸押出し機等がそれぞ
れ有利に適合する。 そして、混練後、必要に応じてベ
レタイザーあるいは粉砕機等を使用して造粒を行い、成
形用コンバウドを得る. 射出成形は、プラスチック用射出成形機、金属粉末用射
出成形機等、通常の射出成形に用いられる射出成形機を
用いて行なえばよい。 射出圧力は、通常500〜20
00atm程度である。
Batch-type or continuous-type kneaders can be used to mix and knead iron-based powder and binder in the case of injection molding. Among batch-type kneaders, pressure kneaders, Banbury mixers, etc. Among the secondary machines, a twin-screw extruder or the like is advantageously suited. After kneading, granulation is performed using a beletizer or a crusher as necessary to obtain a composite for molding. Injection molding may be performed using an injection molding machine used for normal injection molding, such as an injection molding machine for plastics or an injection molding machine for metal powder. Injection pressure is usually 500 to 20
It is about 00 atm.

成形後、バインダを除去する(脱ろう)ために加熱を行
う。 このときの昇温速度は、5〜30℃/ h rと
し、一般的には、600℃まで加熱し、直ちに冷却する
。 なお、このときの昇温速度を速くしすぎると、得ら
れた成形体に割れや膨れが生じるので好ましくない。
After molding, heating is performed to remove the binder (dewaxing). The temperature increase rate at this time is 5 to 30° C./hr, and generally, it is heated to 600° C. and immediately cooled. Note that if the temperature increase rate at this time is too high, cracks or blisters will occur in the obtained molded product, which is not preferable.

本発明では、鉄系粉末を含む成形用コンパウンドを用い
て作られた上記鉄系粉末の成形体を例えば上記条件で脱
ろう後、以下の条件で焼結する。
In the present invention, a molded body of iron-based powder made using a molding compound containing iron-based powder is dewaxed, for example, under the above conditions, and then sintered under the following conditions.

一次焼結は、温度1350〜1450t:、無加圧の条
件下で行う。 すなわち、高温で無加圧焼結することに
より、焼結体の空孔を閉空孔とする。
The primary sintering is performed at a temperature of 1350 to 1450 t without pressure. That is, by performing pressureless sintering at high temperature, the pores of the sintered body are closed.

無加圧焼結の温度は1350〜1450℃であるが、1
350℃未満では、空孔が閉空孔にならず、その後の加
圧により、高密度化を達成できない。 一方、1450
tをこえると、結晶粒が粗大化し、強度が劣化する。
The temperature of pressureless sintering is 1350 to 1450°C, but 1
If the temperature is lower than 350°C, the pores will not become closed, and high density cannot be achieved by subsequent pressurization. On the other hand, 1450
If it exceeds t, the crystal grains will become coarser and the strength will deteriorate.

無加圧とは、常圧〜真空を指す。 また、無加圧焼結の
雰囲気は、真空、あるいは還元性または中性(不活性)
雰囲気のいずれでもよいが、C、0の低減の観点からは
、真空:囲気が好ましい。
No pressure refers to normal pressure to vacuum. In addition, the atmosphere for pressureless sintering is vacuum, reducing or neutral (inert).
Although any atmosphere may be used, from the viewpoint of reducing C and 0, vacuum/ambience is preferable.

なお、還元性7囲気を形成するガスとしては、水素ガス
、アンモニア分解(AX)ガス、炭化水素変成(RX)
ガス等があげられ、中性7囲気を形成するガスとしては
、窒素ガス、アルゴンガス等があげられる。
Note that gases that form the reducing atmosphere include hydrogen gas, ammonia decomposition (AX) gas, and hydrocarbon conversion (RX) gas.
Examples of the gas that forms the neutral atmosphere include nitrogen gas, argon gas, and the like.

二次焼結は、温度1350〜1450℃、圧力2 0 
kg/cm’以上の加圧ガス雰囲気中で行う。
Secondary sintering is performed at a temperature of 1350 to 1450°C and a pressure of 20°C.
It is carried out in a pressurized gas atmosphere of kg/cm' or more.

この工程により、閉空孔を消滅させ、高密度化を図る。This step eliminates closed pores and achieves high density.

二次焼結時の温度は1350〜1450℃であるが、1
350℃未満では、加圧による高密度化が不十分であり
、一方、1450℃をこえると、結晶粒が粗大化し、強
度が低下し、この強度低下は、その後の無加圧焼結によ
っても回復できない。
The temperature during secondary sintering is 1350-1450℃, but 1
At temperatures below 350°C, densification by pressure is insufficient; on the other hand, at temperatures above 1450°C, crystal grains become coarse and strength decreases, and this decrease in strength is also caused by subsequent pressureless sintering. I can't recover.

また、この際の圧力は2 0 kg/cm”以上である
が、圧力が2 0 kg/cm2未満では、高温度下で
加圧焼結を行っても加圧効果が不足し、高密度化が十分
達成されない。 一方、圧力が250kg/cm2を越
えても、圧力上昇により得られる効果が小さく、かつ経
済的に不利となるので、圧力の上限を2 5 0 kg
/cm’とすることが望ましい。
In addition, the pressure at this time is 20 kg/cm2 or more, but if the pressure is less than 20 kg/cm2, even if pressure sintering is performed at a high temperature, the pressurizing effect will be insufficient, and it will be difficult to achieve high density. On the other hand, even if the pressure exceeds 250 kg/cm2, the effect obtained by increasing the pressure will be small and it will be economically disadvantageous, so the upper limit of the pressure should be set at 250 kg/cm2.
/cm' is desirable.

用いるガスとしては、通常の加圧焼結に適用可能なもの
があげられ、例えば、窒素ガス、アルゴンガス等の中性
(不活性)ガスや、水素ガス、AXガス、RXガス等の
還元性ガスである。
Gases to be used include those applicable to normal pressure sintering, such as neutral (inert) gases such as nitrogen gas and argon gas, and reducing gases such as hydrogen gas, AX gas, and RX gas. It's gas.

本発明では、さらに、温度1100〜 1350℃、無加圧下で三次焼結を行う。 この工程に
より、結晶粒度を調整し、焼結体の高強度化を図る。
In the present invention, tertiary sintering is further performed at a temperature of 1100 to 1350°C without pressure. This step adjusts the grain size and increases the strength of the sintered body.

三次焼結時の温度は1100〜1350℃であるが、1
100℃未満では、結晶粒度に大きな変化がなく、効果
があらわれない。 一方、1350℃を超えると、結晶
粒が粗大化し、焼結体の高強度化を図れない。
The temperature during tertiary sintering is 1100 to 1350°C, but 1
If the temperature is less than 100°C, there is no significant change in crystal grain size and no effect is obtained. On the other hand, if the temperature exceeds 1350°C, the crystal grains become coarse and the sintered body cannot be made to have high strength.

無加圧焼結時の雰囲気は、一次焼結の項ですでに述べた
通りであるが、三次焼結は、中性ガス雰囲気中、常圧下
で焼結を行うのが好ましい。
The atmosphere during pressureless sintering is as already described in the section of primary sintering, but tertiary sintering is preferably performed under normal pressure in a neutral gas atmosphere.

なお、いずれの焼結工程でも、焼結時間に制約は無いが
、本発明法の技術的効果とコストの観点から、各工程と
も10〜200分間程度が好ましい。
Although there is no restriction on the sintering time in any of the sintering steps, from the viewpoint of the technical effect and cost of the method of the present invention, the sintering time is preferably about 10 to 200 minutes in each step.

く実施例〉 以下、実施例をあげて本発明を具体的に説明する。Example Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) 平均粒径34μm、最大粒径87μmであり 、 C:
0.04 宵t%、 Si:0.03 冑t%、Mn:
O  、 10wt%、 P  :  0.011  
wt%、 S :0.008  wt%、Ni  :0
.  23wt%、MO :0.33胃t%を含むアト
マイズ鉄粉に、ステアリン酸亜鉛1.Owt%および黒
鉛粉0.5wt%を添加混合し、成形用コンパウンドと
した.コレヲ、35L×10w×6.5Hの直方体の抗
折力試験片に圧縮密度6 .  5 7 g/cn’で
成形(成形圧力5 t/cm’ ) L/た.脱ろうは
、AXガス中で、600℃で100分間行ない、一次焼
結は、1 0 −’Torrの真空中で、1 300℃
、1360℃、1450℃、あるいは1480℃で60
分間行なった。 また、二次焼結は、Arガス、4 0
 kg/cm2の加圧雰囲気中で、一次焼結と同じ温度
条件で30分間行ない、三次焼結は、行なう場合は、A
rガス、常圧の7囲気中で、1250℃で60分間行な
った。
(Example 1) Average particle size is 34 μm, maximum particle size is 87 μm, and C:
0.04 t%, Si: 0.03 t%, Mn:
O, 10wt%, P: 0.011
wt%, S: 0.008 wt%, Ni: 0
.. Zinc stearate 1.23 wt%, MO:0.33 gastric t% to atomized iron powder. Owt% and 0.5wt% of graphite powder were added and mixed to prepare a molding compound. This is a 35L x 10W x 6.5H rectangular transverse rupture strength test piece with a compressed density of 6. Molding at 5 7 g/cn' (molding pressure 5 t/cm') L/ta. Dewaxing was performed at 600°C for 100 minutes in AX gas, and primary sintering was performed at 1300°C in a vacuum of 10-'Torr.
, 60 at 1360℃, 1450℃, or 1480℃
I did it for a minute. In addition, secondary sintering is performed using Ar gas, 40
kg/cm2 in a pressurized atmosphere for 30 minutes under the same temperature conditions as the primary sintering.
The test was carried out at 1250° C. for 60 minutes in an atmosphere of r gas and normal pressure.

このようにして得られた抗折力試験片の密度を、アルキ
メデスの方法で測定した。
The density of the thus obtained transverse rupture strength test piece was measured by Archimedes' method.

また、抗折力を、3点式曲げ試験法で測定した。Further, the transverse rupture strength was measured by a three-point bending test method.

焼結条件と測定結果は、第1表に示した。The sintering conditions and measurement results are shown in Table 1.

第 ! 表 * 100%=7.84g/cm’ 発明例であるBおよびCは、密度および抗折力が高かっ
た。 これに対し、1、2次焼結温度の低いA(比較例
)は、閉空孔とならなかったため、密度および抗折力の
いずれもが低く、一方、焼結温度の高いD(比較例)は
、密度は高いが、結晶粒が粗大化したために抗折力が低
かった。
No.! Table * 100% = 7.84 g/cm' Inventive examples B and C had high density and transverse rupture strength. On the other hand, A (comparative example) with a low primary and secondary sintering temperature did not have closed pores, so both density and transverse rupture strength were low, whereas D (comparative example) with a high sintering temperature Although the density was high, the transverse rupture strength was low because the crystal grains were coarsened.

また、3次焼結を行なわない比較例であるE−Hは、い
ずれも、結晶粒の調整がなされていないので、抗折力が
低かった。
In addition, in E-H, which is a comparative example in which tertiary sintering was not performed, the transverse rupture strength was low because the crystal grains were not adjusted.

〔実施例2〕 実施例1と同様の成形体を、実施例1と同様の条件で脱
ろうしたのち、1 0 −3Torrの真空中、136
0℃で60分間、一次焼結を行ない、次いで、Arガス
、4 0 kg/cm2霊囲気中、1360℃で60分
間、二次焼結を行った。
[Example 2] A molded article similar to that in Example 1 was dewaxed under the same conditions as in Example 1, and then heated at 136° C. in a vacuum of 10 −3 Torr.
Primary sintering was performed at 0° C. for 60 minutes, and then secondary sintering was performed at 1360° C. for 60 minutes in Ar gas and 40 kg/cm 2 ashes.

その後、Arガス、常圧雰囲気中、1050℃、115
0℃、1250℃、1350℃、あるいは1400℃で
60分間、三次焼結を行ない、抗折力試験片を得た。
After that, Ar gas, normal pressure atmosphere, 1050°C, 115
Tertiary sintering was performed at 0°C, 1250°C, 1350°C, or 1400°C for 60 minutes to obtain transverse rupture strength test pieces.

これらについて、実施例1と同様に密度と抗折力を測定
した。
Regarding these, the density and transverse rupture strength were measured in the same manner as in Example 1.

三次焼結温度と測定結果を、第2表に示した。The tertiary sintering temperature and measurement results are shown in Table 2.

第2表 * 1 0 0%=7.84g/cm”発明例であるJ
−Lは、いずれも高い抗折力を示した. これに対し、
三次焼結温度の低い比較例である■は、密度はほぼ満足
のいくレベルであるが、結晶粒調整の効果が不十分のた
めに抗折力が不足し、一方、三次焼・結温度が高い比較
例であるMは、結晶粒が粗大化し、抗折力が低かった. (実施例3〕 一次焼結までは、実施例2と同様の条件で行った。
Table 2 * 1 0 0% = 7.84 g/cm” J which is an invention example
-L all showed high transverse rupture strength. On the other hand,
Comparative example ■ with a low tertiary sintering temperature has a density that is almost at a satisfactory level, but the transverse rupture strength is insufficient due to the insufficient effect of grain adjustment. M, which is a high comparative example, had coarse grains and low transverse rupture strength. (Example 3) The same conditions as in Example 2 were used up to the primary sintering.

次いで、Arガス中、10、20,40,100、23
0、あるいは3 5 0 k,g/am’の加圧下、1
250℃で60分間の二次焼結を行い、さらに、Arガ
ス、常圧の雰囲気中、1250℃で60分間の三次焼結
を行なった。
Then, in Ar gas, 10, 20, 40, 100, 23
0, or under a pressure of 350 k, g/am', 1
Secondary sintering was performed at 250° C. for 60 minutes, and tertiary sintering was performed at 1250° C. for 60 minutes in an atmosphere of Ar gas and normal pressure.

これらについて、実施例1と同様に密度と抗折力を測定
した。
Regarding these, the density and transverse rupture strength were measured in the same manner as in Example 1.

二次焼結圧力と測定結果を、第3表に示した。The secondary sintering pressure and measurement results are shown in Table 3.

第3表 く発明の効果〉 本発明により、高密度、高強度の鉄系粉末冶金材料の得
られる鉄系粉末の焼結方法が提供される. 本発明法は、どのような粒径の原料粉末を用いても行な
えるので、コストダウンを図れる。
Effects of the invention as shown in Table 3 The present invention provides a method for sintering iron-based powder that yields a high-density, high-strength iron-based powder metallurgical material. Since the method of the present invention can be carried out using raw material powder of any particle size, costs can be reduced.

また、本発明法は、工業的規模でも行ない得るので、非
常に有用である。
Furthermore, the method of the present invention is very useful because it can be carried out on an industrial scale.

*100%=7.84g/am’ 発明例である0〜Sは、いずれも高密度を示した。*100%=7.84g/am' Inventive examples 0 to S all showed high density.

これに対し、二次焼結時の雰囲気圧力の低い比較例であ
るNは、密度および抗折力が不足した。 なお、二次焼
結時の雰囲気圧力の特に高いSは、密度および抗折力が
高かったが、圧力上昇に伴なう密度および抗折力の上昇
効果が小さく、経済的でなかった。
On the other hand, N, which is a comparative example in which the atmospheric pressure during secondary sintering was low, was insufficient in density and transverse rupture strength. Note that S, which had a particularly high atmospheric pressure during secondary sintering, had a high density and transverse rupture strength, but the effect of increasing the density and transverse rupture strength with an increase in pressure was small and was not economical.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄系粉末を成形、焼結してなる粉末冶金材料の製
造において、鉄系粉末の成形体を脱ろう後、温度135
0〜1450℃、無加圧下で焼結し、温度1350〜1
450℃、圧力20kg/cm^2以上の加圧ガス雰囲
気中で焼結し、さらに、温度1100〜1350℃、無
加圧下で焼結することを特徴とする鉄系粉末の焼結方 法。
(1) In the production of powder metallurgy materials made by molding and sintering iron-based powder, after dewaxing the iron-based powder compact, the temperature is 135
Sintered under no pressure at 0-1450℃, temperature 1350-1
A method for sintering iron-based powder, characterized by sintering in a pressurized gas atmosphere at 450°C and a pressure of 20 kg/cm^2 or more, and further sintering at a temperature of 1100 to 1350°C without pressure.
JP11136689A 1989-04-28 1989-04-28 Method for sintering iron series powder Pending JPH02290904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11136689A JPH02290904A (en) 1989-04-28 1989-04-28 Method for sintering iron series powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136689A JPH02290904A (en) 1989-04-28 1989-04-28 Method for sintering iron series powder

Publications (1)

Publication Number Publication Date
JPH02290904A true JPH02290904A (en) 1990-11-30

Family

ID=14559372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136689A Pending JPH02290904A (en) 1989-04-28 1989-04-28 Method for sintering iron series powder

Country Status (1)

Country Link
JP (1) JPH02290904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499669A (en) * 2012-02-24 2013-08-28 Charles Malcolm Ward-Close A method of densifying a porous metallic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499669A (en) * 2012-02-24 2013-08-28 Charles Malcolm Ward-Close A method of densifying a porous metallic body
GB2499669B (en) * 2012-02-24 2016-08-10 Malcolm Ward-Close Charles Processing of metal or alloy objects

Similar Documents

Publication Publication Date Title
CN109014211B (en) Low-cost MIM (metal-insulator-metal) manufacturing process for high-nitrogen non-magnetic high-strength stainless steel part
CN101342591B (en) Method of manufacturing powder metallurgy nitrogen/high nitrogen containing stainless steel parts
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JPS6237302A (en) Production of metallic or alloy article
JPH02138435A (en) Sintered alloy steel having excellent corrosion resistance and its manufacture
JPH0254733A (en) Manufacture of ti sintered material
JPH02290904A (en) Method for sintering iron series powder
JPH02298204A (en) Method for sintering ferrous powder
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH02107703A (en) Composition for injection molding
JP2980209B2 (en) Noble metal sintered body and method for producing the same
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH04285141A (en) Manufacture of ferrous sintered body
JPH03173702A (en) Production of sintered body
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
KR20170062567A (en) Manufacturing methd of high density fe alloy powder and fe alloy unit using the same
JPH0257615A (en) Method for high-density sintering iron-based powder
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH0339402A (en) Manufacture of metal powder sintered body
JPH06136405A (en) Production of high-density pure iron sintered compact
JPH01212702A (en) Manufacture of magnetic material
KR970002092B1 (en) Method of manufacturing iron powder