JPH04285141A - Manufacture of ferrous sintered body - Google Patents
Manufacture of ferrous sintered bodyInfo
- Publication number
- JPH04285141A JPH04285141A JP4938991A JP4938991A JPH04285141A JP H04285141 A JPH04285141 A JP H04285141A JP 4938991 A JP4938991 A JP 4938991A JP 4938991 A JP4938991 A JP 4938991A JP H04285141 A JPH04285141 A JP H04285141A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- sintered body
- sintering
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title abstract 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 59
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- 238000005245 sintering Methods 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims description 23
- 238000000465 moulding Methods 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 abstract description 5
- 150000002505 iron Chemical class 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 9
- 238000004663 powder metallurgy Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、粉末冶金法による鉄系
焼結体の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing iron-based sintered bodies by powder metallurgy.
【0002】0002
【従来の技術】粉末冶金法は、溶解鋳造法では製造困難
な部材を容易に大量生産することができる特徴がある。
従来の粉末冶金では、平均粒径60〜100 μmの粉
末を使用して圧縮成形していたが、焼結体の焼結密度比
が90%程度で、溶解鋳造材に比べると、機械的特性や
磁気特性が劣っていた。BACKGROUND OF THE INVENTION Powder metallurgy is characterized by the ability to easily mass-produce parts that are difficult to manufacture by melting and casting. In conventional powder metallurgy, powder with an average particle size of 60 to 100 μm is used for compression molding, but the sintered density ratio of the sintered body is about 90%, and the mechanical properties are poor compared to melted and cast materials. and had poor magnetic properties.
【0003】一方、最近の粉末冶金の技術の進歩により
、微粉の使用が容易になった。平均粒径18μm以下の
微粉を使用すると焼結性がよくなり、90%以上、さら
には95%以上の焼結密度を得ることができる。成形方
法としては、圧縮成形、射出成形、スリップキャスティ
ングなどがあり、それぞれ、原料粉末を造粒処理、熱可
塑性樹脂等によるコンパウンド化処理、スラリー化処理
を行い金型充填流動性を高め工業的な成形を可能として
いる。On the other hand, recent advances in powder metallurgy technology have made it easier to use fine powder. When fine powder with an average particle size of 18 μm or less is used, the sinterability is improved, and a sintered density of 90% or more, and even 95% or more can be obtained. Molding methods include compression molding, injection molding, and slip casting, each of which processes the raw material powder by granulation, compounding with thermoplastic resin, and slurry to increase mold filling fluidity and improve industrial performance. It allows molding.
【0004】しかしながら、このような微粉を成形、焼
結して高密度の焼結体を製造するにあたり、焼結体の形
状を健全に保つことが難しいという問題があった。従来
の粉末冶金であれば、金属粉末粒子どうしが圧縮成形に
よって接着し、ある程度の強度をもった成形体ができる
。従来の場合成形体が焼結される時、常に成形体の初期
強度程度の強度を保って焼結がはじまるので、形がくず
れる問題が少ない。ところが、微粉の場合は、バインダ
を助剤として成形体強度が保たれており、焼結の進行に
先立ってバインダが除去されるので、その間に極めて脆
弱な成形体強度となる段階を通過する。そこで、成形体
の自重などによって好ましくない変形が起こり、最終的
な焼結体の形状が変形してしまうという問題が生じやす
い。However, when molding and sintering such fine powder to produce a high-density sintered body, there is a problem in that it is difficult to maintain the shape of the sintered body in a sound state. With conventional powder metallurgy, metal powder particles are bonded together through compression molding, creating a molded body with a certain degree of strength. In the conventional case, when a molded body is sintered, sintering always starts with the strength maintained at about the initial strength of the molded body, so there is little problem of deformation. However, in the case of fine powder, the strength of the compact is maintained using a binder as an auxiliary agent, and since the binder is removed before sintering progresses, the compact passes through a stage during which the strength of the compact becomes extremely weak. Therefore, undesirable deformation occurs due to the molded body's own weight, and the final shape of the sintered body is likely to be deformed.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、平均
粒径18μm以下の主に鉄系からなる微粉を用いて高密
度の鉄系焼結体を得るとともに形状性の点でも優れた鉄
系焼結体の製造方法を提案することである。[Problems to be Solved by the Invention] It is an object of the present invention to obtain a high-density iron-based sintered body by using fine powder mainly made of iron with an average particle size of 18 μm or less, and to obtain an iron-based sintered body with excellent shapeability. The purpose of this study is to propose a method for producing a sintered body.
【0006】[0006]
【課題を解決するための手段】すなわち、本発明は、主
に鉄系からなる平均粒径1〜18μmの粉末 100重
量部に対し、平均粒径1〜18μmの銅粉を 0.2〜
5重量部添加して成形、焼結することを特徴とする鉄系
焼結体の製造方法である。[Means for Solving the Problems] That is, in the present invention, 0.2 to 100 parts by weight of copper powder having an average particle size of 1 to 18 μm is added to 100 parts by weight of a powder mainly made of iron and having an average particle size of 1 to 18 μm.
This is a method for producing an iron-based sintered body, characterized in that 5 parts by weight of the iron-based sintered body is added, and then molded and sintered.
【0007】[0007]
【作 用】鉄系粉末を焼結する場合、銅は焼結体の機
械的特性に良い影響を及ぼすか、少なくとも悪影響が無
いことが多い。銅は融点が鉄よりも低いので、比較的低
温で焼結促進の効果がある。そこで、鉄系粉末に銅微粉
を混合して成形、焼結すれば、バインダの除去から鉄系
粉末の焼結開始に至る間の成形体が脆弱となる段階で、
銅が部分的に鉄系粉末粒子の接着剤として働き、その時
点での成形体の強度を改善して自重等による変形を未然
に防ぐことができる。[Operation] When sintering iron-based powders, copper often has a positive effect on the mechanical properties of the sintered body, or at least has no negative effect. Since copper has a lower melting point than iron, it has the effect of promoting sintering at relatively low temperatures. Therefore, if fine copper powder is mixed with iron-based powder and then molded and sintered, the molded body becomes brittle from the removal of the binder to the start of sintering of the iron-based powder.
Copper partially acts as an adhesive for the iron-based powder particles, improving the strength of the compact at that point and preventing deformation due to its own weight.
【0008】この場合、鉄系粉末は平均粒径1〜18μ
mの微粉として、最終的な焼結密度を十分に高くできる
ようにする。また鉄系粉末は必ずしも一種の粉末である
必要はなく、たとえば鉄粉とニッケル粉との混合物で、
焼結後に鉄系合金となるものでも良い。添加する銅粉は
平均粒径1〜18μmとする。鉄系粉末または鉄系粉末
混合物 100重量部に対する銅粉の添加量は0.2〜
5重量部とする。[0008] In this case, the iron-based powder has an average particle size of 1 to 18 μm.
As a fine powder of m, the final sintered density can be made sufficiently high. In addition, iron-based powder does not necessarily have to be a single type of powder; for example, it can be a mixture of iron powder and nickel powder,
It may also be a material that becomes an iron-based alloy after sintering. The copper powder added has an average particle size of 1 to 18 μm. The amount of copper powder added is 0.2 to 100 parts by weight of iron-based powder or iron-based powder mixture.
5 parts by weight.
【0009】このように本発明によれば、1〜18μm
の鉄系粉末に1〜18μmの銅粉を添加して成形、焼結
することにより、焼結時に成形体が脆弱になるのを防ぐ
結果、自重などによる焼結体の形状変形を抑制すること
ができる。使用する鉄系ならびに銅系微粉は、それぞれ
平均粒径が1μmより小さいと製造コストが高くなり、
一方平均径が18μmより大きいと焼結性が不十分とな
るので、平均径を1〜18μmの範囲とする。As described above, according to the present invention, 1 to 18 μm
By adding copper powder of 1 to 18 μm to the iron-based powder and molding and sintering, the molded body is prevented from becoming brittle during sintering, and as a result, deformation of the shape of the sintered body due to its own weight etc. is suppressed. Can be done. If the average particle size of the iron-based and copper-based fine powders used is smaller than 1 μm, the manufacturing cost will be high;
On the other hand, if the average diameter is larger than 18 μm, the sinterability will be insufficient, so the average diameter is set in the range of 1 to 18 μm.
【0010】銅粉の添加量は、鉄系粉末 100重量部
に対して 0.2重量部未満であると前記の焼結途中の
強度向上効果が見られず、逆に5重量部を超えると焼結
体の密度を下げるので、 0.2〜5重量部の範囲とす
る。[0010] If the amount of copper powder added is less than 0.2 parts by weight per 100 parts by weight of the iron-based powder, the above-mentioned strength improvement effect during sintering will not be observed, and on the contrary, if it exceeds 5 parts by weight, Since it lowers the density of the sintered body, the amount is set in the range of 0.2 to 5 parts by weight.
【0011】[0011]
【実施例】実施例1
平均粒径 1.3、 4.9、 8.3、11.6、1
5.2、17.0、18.8、23.6μmの高圧水ア
トマイズ鉄粉と、平均粒径 3.7μmの電解鋼粉を用
意した。各々の鉄粉に銅粉を添加しないものと、鉄粉
100重量部に対して銅粉を 2.0重量部添加したも
のを別々に作った。それぞれの混合物に樟脳を2%(重
量%、以下同じ)添加し、2t/cm2 の成形圧力で
長さ35mm、幅10mm、高さ5mmの直方体の成形
体を成形した。[Example] Example 1 Average particle size 1.3, 4.9, 8.3, 11.6, 1
High-pressure water atomized iron powder with sizes of 5.2, 17.0, 18.8, and 23.6 μm and electrolytic steel powder with an average particle size of 3.7 μm were prepared. Each type of iron powder does not contain copper powder, and iron powder does not contain copper powder.
A sample containing 2.0 parts by weight of copper powder per 100 parts by weight was prepared separately. 2% (wt%) camphor was added to each mixture, and a rectangular parallelepiped molded body having a length of 35 mm, a width of 10 mm, and a height of 5 mm was molded at a molding pressure of 2 t/cm 2 .
【0012】成形体を間隔25mmで立たせたアルミナ
板にまたがるようにのせ、水素雰囲気中5℃/分の速度
で昇温し、1250℃で1時間保持した。冷却後、焼結
体の密度をアルキメデス法で測定した。また、自重によ
り焼結体の長手方向の中央部が下方に沈んだ距離を変形
量として測定した。表1に測定結果を示す。銅粉を添加
した場合、明らかに自重による変形が抑制される。その
効果は、鉄粉の粒径が1μmに近くなるほど細かい時に
は、比較的に小さいが粒径の増大とともに顕著な効果が
認められる。ただし鉄粉の粒径が18μmを超えると焼
結体の密度が上がらなくなるとともに、銅粉添加による
変形抑制効果も小さくなる。[0012] The molded body was placed so as to straddle alumina plates placed at intervals of 25 mm, heated at a rate of 5°C/min in a hydrogen atmosphere, and held at 1250°C for 1 hour. After cooling, the density of the sintered body was measured using the Archimedes method. In addition, the distance that the central portion of the sintered body in the longitudinal direction sank downward due to its own weight was measured as the amount of deformation. Table 1 shows the measurement results. When copper powder is added, deformation due to its own weight is clearly suppressed. This effect is relatively small when the particle size of the iron powder is as small as 1 μm, but it becomes more noticeable as the particle size increases. However, if the particle size of the iron powder exceeds 18 μm, the density of the sintered body will not increase, and the effect of suppressing deformation due to the addition of copper powder will be reduced.
【0013】[0013]
【表1】[Table 1]
【0014】実施例2
平均粒径11.6μmの高圧水アトマイズ鉄粉と、平均
粒径 1.2、 3.7、10.1、16.9、20.
3、31.6μmの電解銅粉を用意した。鉄粉に各々の
銅粉を重量比で 100:2.0 の割合で混合し、実
施例1と同様に成形、焼結して密度と変形量とを測定し
た。Example 2 High-pressure water atomized iron powder with an average particle size of 11.6 μm and average particle sizes of 1.2, 3.7, 10.1, 16.9, 20.
3. Electrolytic copper powder of 31.6 μm was prepared. Each copper powder was mixed with iron powder at a weight ratio of 100:2.0, molded and sintered in the same manner as in Example 1, and the density and deformation amount were measured.
【0015】表2に測定結果を示す。銅粉の粒径が細か
いほど変形抑制効果が大きい。この粒径が18μmを超
えると焼結体の密度が低下する上に、変形抑制効果も不
十分になっている。Table 2 shows the measurement results. The finer the particle size of the copper powder, the greater the deformation suppressing effect. When the particle size exceeds 18 μm, the density of the sintered body decreases and the deformation suppressing effect becomes insufficient.
【0016】[0016]
【表2】[Table 2]
【0017】実施例3
平均粒径11.6μmの高圧水アトマイズ鉄粉と、平均
粒径 3.7μmの電解銅粉を用意した。鉄粉 100
重量部に対し、銅粉を 0.1、 0.2、 1.0、
2.0、 4.0、 8.0、15.0重量部混合し
た混合物を作った。それぞれを実施例1と同様に成形、
焼結して密度と変形量を測定した。Example 3 High-pressure water atomized iron powder with an average particle size of 11.6 μm and electrolytic copper powder with an average particle size of 3.7 μm were prepared. iron powder 100
Copper powder is 0.1, 0.2, 1.0, based on weight part.
A mixture was prepared by mixing 2.0, 4.0, 8.0, and 15.0 parts by weight. Each was molded in the same manner as in Example 1,
After sintering, the density and deformation amount were measured.
【0018】表3に結果を示す。銅粉の添加量が 0.
2〜8重量部の時に変形抑制効果が大きい。ただし、銅
粉添加量が5重量部超になると密度低下が甚だしくなっ
て好ましくない。さらに過剰の銅粉を添加すると、焼結
時の液相量が過多になり、焼結体の肌あれや巣の原因と
なり、部品製造には適さない。Table 3 shows the results. The amount of copper powder added is 0.
The deformation suppressing effect is large when the amount is 2 to 8 parts by weight. However, if the amount of copper powder added exceeds 5 parts by weight, the density decreases significantly, which is not preferable. Furthermore, if an excessive amount of copper powder is added, the amount of liquid phase during sintering becomes excessive, causing roughness and cavities in the sintered body, making it unsuitable for manufacturing parts.
【0019】[0019]
【表3】[Table 3]
【0020】[0020]
【発明の効果】以上に示したとおり、本発明によれば、
寸法精度よく、高密度の鉄系焼結体を作製することがで
きるので、複雑形状の部品を製造する技術として有用性
が高い。[Effects of the Invention] As shown above, according to the present invention,
Since it is possible to produce a high-density iron-based sintered body with good dimensional accuracy, it is highly useful as a technology for manufacturing parts with complex shapes.
Claims (1)
mの粉末 100重量部に対し、平均粒径1〜18μm
の銅粉を 0.2〜5重量部添加して成形、焼結するこ
とを特徴とする鉄系焼結体の製造方法。Claim 1: Mainly iron-based particles with an average diameter of 1 to 18μ
Average particle size 1 to 18 μm per 100 parts by weight of m powder
1. A method for producing an iron-based sintered body, which comprises adding 0.2 to 5 parts by weight of copper powder, followed by molding and sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4938991A JPH04285141A (en) | 1991-03-14 | 1991-03-14 | Manufacture of ferrous sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4938991A JPH04285141A (en) | 1991-03-14 | 1991-03-14 | Manufacture of ferrous sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04285141A true JPH04285141A (en) | 1992-10-09 |
Family
ID=12829676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4938991A Pending JPH04285141A (en) | 1991-03-14 | 1991-03-14 | Manufacture of ferrous sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04285141A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050009A1 (en) * | 1998-03-26 | 1999-10-07 | Japan As Represented By Director General Of National Research Institute For Metals | High-strength metal solidified material and acid steel and manufacturing methods thereof |
KR20170080668A (en) | 2014-12-05 | 2017-07-10 | 제이에프이 스틸 가부시키가이샤 | Alloy steel powder for powder metallurgy, and sintered body |
JP6160792B1 (en) * | 2015-09-18 | 2017-07-12 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body |
KR20180022903A (en) | 2015-09-11 | 2018-03-06 | 제이에프이 스틸 가부시키가이샤 | Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact |
-
1991
- 1991-03-14 JP JP4938991A patent/JPH04285141A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050009A1 (en) * | 1998-03-26 | 1999-10-07 | Japan As Represented By Director General Of National Research Institute For Metals | High-strength metal solidified material and acid steel and manufacturing methods thereof |
KR20170080668A (en) | 2014-12-05 | 2017-07-10 | 제이에프이 스틸 가부시키가이샤 | Alloy steel powder for powder metallurgy, and sintered body |
US10207328B2 (en) | 2014-12-05 | 2019-02-19 | Jfe Steel Corporation | Alloy steel powder for powder metallurgy, and sintered body |
KR20180022903A (en) | 2015-09-11 | 2018-03-06 | 제이에프이 스틸 가부시키가이샤 | Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact |
JP6160792B1 (en) * | 2015-09-18 | 2017-07-12 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body |
KR20180031750A (en) | 2015-09-18 | 2018-03-28 | 제이에프이 스틸 가부시키가이샤 | Mixed powder for powder metallurgy, sintered compact, and method for producing sintered compact |
US10710155B2 (en) | 2015-09-18 | 2020-07-14 | Jfe Steel Corporation | Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0686608B2 (en) | Method for producing iron sintered body by metal powder injection molding | |
EP0409647B1 (en) | Manufacturing process for sintered Fe-P alloy product having soft magnetic characteristics | |
JPH04285141A (en) | Manufacture of ferrous sintered body | |
JP4282016B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2004308004A (en) | Method of producing aluminum sintered material | |
JP2000212679A (en) | Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member | |
JP2995661B2 (en) | Manufacturing method of porous cemented carbide | |
JPH02107703A (en) | Composition for injection molding | |
JP2002289418A (en) | High-density sintered body granulating powder and sintered body using the same | |
JPH08120393A (en) | Production of iron-silicon soft magnetic sintered alloy | |
JP4057563B2 (en) | Granule, sintered body | |
JPS63293102A (en) | Production of fe-base sintered alloy member having high strength and high toughness | |
JPH04298006A (en) | Manufacture of fe-si-al alloy sintered soft magnetic substance | |
JPH0313501A (en) | Sintered body and manufacture thereof | |
JP2745889B2 (en) | Method of manufacturing high-strength steel member by injection molding method | |
JPH0551688A (en) | Production of high density sintered compact of stainless steel | |
JPH05239503A (en) | Production of high-density stainless steel sintered compact with reduced deformation in sintering | |
JPH0565589A (en) | Production of high density stainless steel sintered body | |
JPH04362103A (en) | Production of stainless steel sintered body | |
JPH01319910A (en) | Magnetic substance and manufacture thereof | |
JP2005068483A (en) | Production method for sintered compact of mn-based high-damping alloy | |
JPH01219102A (en) | Fe-ni-b alloy powder as additive for sintering and sintering method thereof | |
JPH1030136A (en) | Manufacture of sintered titanium alloy | |
JPH02290901A (en) | Metal fine powder for compacting and manufacture of sintered body thereof | |
JP2639812B2 (en) | Magnetic alloy powder for sintering |