JPH05239503A - Production of high-density stainless steel sintered compact with reduced deformation in sintering - Google Patents

Production of high-density stainless steel sintered compact with reduced deformation in sintering

Info

Publication number
JPH05239503A
JPH05239503A JP4075477A JP7547792A JPH05239503A JP H05239503 A JPH05239503 A JP H05239503A JP 4075477 A JP4075477 A JP 4075477A JP 7547792 A JP7547792 A JP 7547792A JP H05239503 A JPH05239503 A JP H05239503A
Authority
JP
Japan
Prior art keywords
powder
sintering
stainless steel
binder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075477A
Other languages
Japanese (ja)
Inventor
Keiichi Maruta
慶一 丸田
Hiroshi Otsubo
宏 大坪
Yukio Makiishi
幸雄 槇石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4075477A priority Critical patent/JPH05239503A/en
Publication of JPH05239503A publication Critical patent/JPH05239503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a high-density stainless steel sintered compact which is hardly deformed in sintering by powder metallurgy. CONSTITUTION:An Fe-Sn powder having 2-10mum average grain diameter is added to a water-atomized stainless steel powder having 5-20mum average grain diameter so that the Sn content of the final sintered compact is controlled to 0.5-2wt.%, a binder is further added, and the mixture is compacted, degreased and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金法による焼結
時の形状変形の少ない高密度ステンレス鋼焼結体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density stainless steel sintered body having a small shape deformation during sintering by powder metallurgy.

【0002】[0002]

【従来の技術】従来の粉末冶金法では平均粒径60〜1
00μm 程度の粉末を用いるが、最終焼結体の密度比が
せいぜい90%どまりで、機械的特性、磁気的特性や耐
食性が溶製材に比較して劣る問題があった。近年、粉末
冶金の進歩により、平均粒径20μm 以下の微粉末の使
用が可能となり、焼結体密度比が95%以上を達成でき
るようになった。成形方法としては、結合剤として熱可
塑性樹脂などを混合してコンパウンドを作って利用する
射出成形やスリップキャスティングまたは微粉末を造粒
してプレス成形に供する方法が開発されている。しか
し、結合剤を混合して成形する方法では、焼結体の形状
保持が困難であるという問題点がある。従来の粉末冶金
では高い圧力で圧縮成形する段階で、粉末同士が絡み合
い密着してある程度の強度をもった成形体ができる。こ
の成形体を焼結するときにも強度を維持したまま焼結が
開始するために、形状が崩れることが少ない。微粉末を
用いる場合ではバインダーを用いて成形体が保形されて
いる。この場合、焼結の前にバインダーが除去されるた
めに、成形体強度は一時的に弱くなる段階を通過する。
その時に成形体の自重などによって、部品形状が著しく
変形してしまうことがある。さらにステンレス鋼粉末の
場合には、その表面には通常Cr、Fe、Mn、Siな
どの酸化物で覆われている。加熱の過程でバインダーが
除去された後、これらの酸化物が高温で除去されるまで
焼結が進行しないので、成形体強度が一層高温まで弱く
なり、形状変形が著しくなるという問題がある。
2. Description of the Related Art A conventional powder metallurgy method has an average particle size of 60 to 1
Although a powder having a size of about 00 μm is used, the density ratio of the final sintered body is 90% at most, and there is a problem that mechanical properties, magnetic properties and corrosion resistance are inferior to those of the ingot material. In recent years, advances in powder metallurgy have made it possible to use fine powders having an average particle size of 20 μm or less, and achieve a sintered body density ratio of 95% or more. As a molding method, there have been developed an injection molding method in which a thermoplastic resin or the like is mixed as a binder to form a compound, a slip casting method, or a method in which fine powder is granulated and subjected to press molding. However, the method of mixing and molding a binder has a problem that it is difficult to maintain the shape of the sintered body. In the conventional powder metallurgy, powders are entangled and intimately adhered to each other at the stage of compression molding at a high pressure, so that a molded product having a certain strength can be obtained. Even when the molded body is sintered, the sintering is started while maintaining the strength, so that the shape is not likely to collapse. When the fine powder is used, the molded body is shaped by using a binder. In this case, since the binder is removed before the sintering, the strength of the molded body passes through the stage of temporarily weakening.
At that time, the shape of the part may be significantly deformed due to the weight of the molded body. Further, in the case of stainless steel powder, the surface thereof is usually covered with oxides such as Cr, Fe, Mn and Si. After the binder is removed in the heating process, the sintering does not proceed until these oxides are removed at a high temperature, so that the strength of the molded body is further lowered to a high temperature, and the shape deformation becomes significant.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ステンレス
鋼粉末において前述のような現状を踏まえバインダー除
去後、焼結が開始する前の成形体が弱くなる段階に、成
形体の強度を向上させるための方法を提案するためのも
のである。
DISCLOSURE OF THE INVENTION The present invention improves the strength of a compact in a stainless steel powder after the binder has been removed and the compact before the start of sintering becomes weaker in view of the above-mentioned situation. This is to propose a method for doing so.

【0004】[0004]

【課題を解決するための手段】本発明者らは、この段階
での成形体強度を向上させるために鋭意研究した結果、
ステンレス鋼粉末にFe−Sn粉末をを混合し、成形、
焼結すれば、焼結が比較的低温から開始し、粉末同士の
結合に寄与し、成形体の強度を保持できることを発見し
た。そこで、この知見にもとずいて下記の発明をなすに
到った。すなわち、本発明は、平均粒径5〜20μm の
ステンレス鋼粉末に、平均粒径2〜10μm のFe−S
n粉末を最終焼結体でのSn含有量が0.5〜2重量%
となるように混合添加し、結合材を混合して成形し、該
成形体中の結合材を除去した後、焼結することを特徴と
する、焼結時形状変形の少ない高密度ステンレス鋼焼結
体の製造方法である。
Means for Solving the Problems The inventors of the present invention have conducted diligent research to improve the strength of the molded body at this stage.
Mixing Fe-Sn powder with stainless steel powder, molding,
It has been discovered that, when sintered, the sintering starts at a relatively low temperature, contributes to the bonding of the powders, and the strength of the compact can be maintained. Therefore, based on this finding, the inventors have made the following inventions. That is, according to the present invention, a stainless steel powder having an average particle size of 5 to 20 μm is added to Fe-S having an average particle size of 2 to 10 μm.
n powder has a Sn content of 0.5 to 2 wt% in the final sintered body.
A high-density stainless steel fired product having a small shape deformation during sintering, which is characterized in that it is mixed and added so that the binder is mixed and molded, and the binder in the molded body is removed, followed by sintering. It is a method for producing a bound body.

【0005】[0005]

【作用】以下に本発明の作用を示す。使用するステンレ
ス鋼粉末の平均粒径を5〜20μm としたのは、20μ
m を越えると焼結体の密度が十分に高くならないためで
あり、一方、5μm 未満では大幅なコスト高になるため
に上記範囲とした。添加するFe−Sn粉末の平均粒径
を2〜10μm としたのは、10μm を越えると焼結が
速やかに進まず、したがって変形の抑制効果も小さい。
一方、2μm 未満としても効果が変わらないが、大幅に
コスト高になる。そこで上記範囲に限定した。またFe
−Sn粉末の混合する量を最終焼結体でのSn含有量が
0.5〜2重量%となるように規定したのは、2重量%
を越えると焼結体の密度が低下し、0.5重量%未満で
は焼結を促進する効果がなくなるためである。Fe−S
n粉末は水アトマイズ法によるものでも粉砕粉末でも構
わない。
The function of the present invention will be described below. The average particle size of the stainless steel powder used was 5 to 20 μm, which was 20 μm.
This is because if the density exceeds m, the density of the sintered body will not become sufficiently high, while if it is less than 5 μm, the cost will increase significantly, so the above range was made. The average particle size of the added Fe-Sn powder is set to 2 to 10 µm. When it exceeds 10 µm, the sintering does not proceed rapidly, and therefore the deformation suppressing effect is small.
On the other hand, if the thickness is less than 2 μm, the effect will not change, but the cost will increase significantly. Therefore, it is limited to the above range. Also Fe
The amount of Sn powder to be mixed is specified so that the Sn content in the final sintered body is 0.5 to 2% by weight.
This is because the density of the sintered body is reduced when it exceeds 0.5%, and the effect of promoting the sintering is lost when it is less than 0.5% by weight. Fe-S
The n powder may be a water atomized method or a ground powder.

【0006】使用する粉末の粒径が細かいため、粉末の
みでは成形が困難であり、また成形体表面に割れなどの
欠陥を生じたり、金型を傷めるなどの問題もある。そこ
で粉末に結合材を混合して成形を行う。結合材としては
ワックス、樹脂またはこれらの混合物を用いてもよい。
成形方法は射出成形、押出成形、プレス成形のいずれで
もよいが、結合材の添加量は成形方法によって適当な量
を添加する。例えば射出成形では10〜15重量%の結
合材が必要であり、プレス成形では0.5〜2重量%程
度である。成形後、結合材を除去するが、その方法は加
熱法や溶媒中で除去する方法など適当な方法が選択され
る。その後に焼結がおこなわれる。焼結パターンも各組
成系で最適なものが選択される。以上示したような本発
明の方法によれば、焼結時の部品の形状のくずれが少な
い高密度焼結体を製造することができる。
Since the powder to be used has a small particle size, it is difficult to mold the powder alone, and there are problems that defects such as cracks occur on the surface of the molded body and the mold is damaged. Therefore, the powder is mixed with a binder to be molded. Wax, resin or a mixture thereof may be used as the binder.
The molding method may be any of injection molding, extrusion molding and press molding, but the binder is added in an appropriate amount depending on the molding method. For example, injection molding requires 10 to 15% by weight of binder and press molding requires about 0.5 to 2% by weight. After the molding, the binder is removed. As the method, an appropriate method such as a heating method or a method of removing in a solvent is selected. After that, sintering is performed. The optimum sintering pattern is selected for each composition system. According to the method of the present invention as described above, it is possible to manufacture a high-density sintered body in which the shape of a component during sintering is small.

【0007】[0007]

【実施例】以下、実施例にしたがって説明する。 (実施例1)SUS316L組成で、平均粒径5.3、
11.2、15.4、18.7、22.3μm の高圧水
アトマイズ粉末を準備した。これらの粉末に平均粒径
7.5μm のFe−20%Sn水アトマイズ粉末をSn
含有量が1.5重量%になるように添加混合した。Fe
−20%Sn粉末を加えたものと加えないもの2通りの
系を製造し、これらの粉末に結合材を10重量%加え、
混練して原料コンパウンドを製造した。このコンパウン
ドを射出成形して、長さ60mm、幅10mm、厚さ6
mmの直方体試験片を製造した。結合材の除去は窒素雰
囲気中10℃/hで最高温度550℃まで加熱しておこ
なった。その後、成形体の炭素および酸素量が適正であ
ることを確認して焼結をおこなった。焼結の際、試験片
を50mmの間隔で置いたアルミナブロックに梁状に設
置し、試験片中央部の下方への変形量を測定した。焼結
は真空中10℃/minの昇温速度で、1250℃で2
h保持しておこなった。表1に実験結果をまとめて示
す。Fe−20%Sn粉末を加えたものは、加えないも
のに比べて明らかに焼結時の変形が抑制されていること
がわかる。また高圧水アトマイズ粉末の平均粒径が2
2.3μm のものは、焼結体密度が低くとどまってい
る。
EXAMPLES Hereinafter, examples will be described. (Example 1) SUS316L composition, average particle size 5.3,
11.2, 15.4, 18.7, and 22.3 μm high-pressure water atomized powders were prepared. Fe-20% Sn water atomized powder having an average particle size of 7.5 μm was added to these powders as Sn.
The mixture was added and mixed so that the content was 1.5% by weight. Fe
Two systems were prepared, one with and without the addition of -20% Sn powder, and 10% by weight of binder was added to these powders,
A raw material compound was manufactured by kneading. This compound is injection molded to a length of 60 mm, a width of 10 mm and a thickness of 6
mm rectangular parallelepiped test pieces were manufactured. The binder was removed by heating at a maximum temperature of 550 ° C. at 10 ° C./h in a nitrogen atmosphere. Then, sintering was carried out after confirming that the carbon and oxygen contents of the molded body were appropriate. At the time of sintering, the test pieces were installed in a beam shape on an alumina block placed at intervals of 50 mm, and the amount of downward deformation of the center of the test piece was measured. Sintering is performed at a temperature rising rate of 10 ° C./min in vacuum at 1250 ° C. for 2 hours.
Hold for h. The experimental results are summarized in Table 1. It can be seen that, in the case where the Fe-20% Sn powder is added, the deformation during sintering is obviously suppressed as compared with the case where the Fe-20% Sn powder is not added. The average particle size of the high-pressure water atomized powder is 2
In the case of 2.3 μm, the density of the sintered body remains low.

【0008】[0008]

【表1】 [Table 1]

【0009】(実施例2)ここではFe−20%Sn粉
末の粒径について検討した。SUS316L組成で、平
均粒径11.2μm の水アトマイズ粉末に、平均粒径
2.2、7.5、9.0、11.8μm のFe−20%
Sn水アトマイズ粉末をSn含有量が1.5重量%にな
るように添加混合した。これらの粉末を用いて実施例1
と同じ実験をおこなった。表2に実験結果を示す。Fe
−20%Sn粉末が11.8μm のものは、変形の抑制
効果があらわれていない。
Example 2 Here, the grain size of Fe-20% Sn powder was examined. Fe-20% with an average particle size of 2.2, 7.5, 9.0 and 11.8 μm in water atomized powder of SUS316L composition with an average particle size of 11.2 μm.
Sn water atomized powder was added and mixed so that the Sn content was 1.5% by weight. Example 1 using these powders
The same experiment was performed. Table 2 shows the experimental results. Fe
When the -20% Sn powder has a particle size of 11.8 μm, the deformation suppressing effect is not exhibited.

【0010】[0010]

【表2】 [Table 2]

【0011】(実施例3)ここでは、Fe−20%Sn
粉末の添加量について検討した。SUS316L組成
で、平均粒径11.2μm の水アトマイズ粉末に、平均
粒径7.5μm のFe−20%Sn水アトマイズ粉末を
Sn含有量が0.3、0.8、1.5、1.9、2.5
重量%になるように添加混合した。これらの粉末を用い
て実施例1と同じ実験をおこなった。表3に実験結果を
示す。焼結体Sn含有量で0.3重量%では焼結変形の
抑制効果が少ない。一方、2.5重量%のものでは、焼
結体の密度が上昇していない。
(Embodiment 3) Here, Fe-20% Sn
The amount of powder added was examined. Fe-20% Sn water atomized powder having a SUS316L composition and an average particle size of 11.2 μm and Fe-20% Sn water atomized powder having an average particle size of 7.5 μm and having Sn contents of 0.3, 0.8, 1.5, 1. 9, 2.5
The mixture was added and mixed so as to have a weight percentage. The same experiment as in Example 1 was conducted using these powders. Table 3 shows the experimental results. When the content of the sintered body Sn is 0.3% by weight, the effect of suppressing the sintering deformation is small. On the other hand, with 2.5% by weight, the density of the sintered body does not increase.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【発明の効果】以上に示したように、本発明によれば焼
結時の変形を抑制して高密度のステンレス鋼焼結体を製
造できるので、粉末冶金で複雑形状部品を製造する技術
として有用性が高い。
As described above, according to the present invention, it is possible to produce a high density stainless steel sintered body while suppressing deformation during sintering. Highly useful.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径5〜20μm のステンレス鋼粉
末に、平均粒径2〜10μm のFe−Sn粉末を最終焼
結体でのSn含有量が0.5〜2重量%となるように混
合添加し、結合材を混合して成形し、該成形体中の結合
材を除去した後、焼結することを特徴とする、焼結時形
状変形の少ない高密度ステンレス鋼焼結体の製造方法。
1. A Fe—Sn powder having an average particle size of 2 to 10 μm is added to a stainless steel powder having an average particle size of 5 to 20 μm so that the Sn content in the final sintered body is 0.5 to 2% by weight. Manufacture of a high-density stainless steel sintered body with little shape deformation during sintering, characterized by mixing and adding, mixing and shaping the binder, removing the binder in the molded body, and then sintering Method.
JP4075477A 1992-02-26 1992-02-26 Production of high-density stainless steel sintered compact with reduced deformation in sintering Pending JPH05239503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075477A JPH05239503A (en) 1992-02-26 1992-02-26 Production of high-density stainless steel sintered compact with reduced deformation in sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075477A JPH05239503A (en) 1992-02-26 1992-02-26 Production of high-density stainless steel sintered compact with reduced deformation in sintering

Publications (1)

Publication Number Publication Date
JPH05239503A true JPH05239503A (en) 1993-09-17

Family

ID=13577422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075477A Pending JPH05239503A (en) 1992-02-26 1992-02-26 Production of high-density stainless steel sintered compact with reduced deformation in sintering

Country Status (1)

Country Link
JP (1) JPH05239503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189677A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Metal powder, composite magnetic material, dust core and coil component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189677A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Metal powder, composite magnetic material, dust core and coil component

Similar Documents

Publication Publication Date Title
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
JP2002523629A (en) Debinding and sintering method for metal injection molded parts made using aqueous binder
EP0378702A1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JPH0775205B2 (en) Method for producing Fe-P alloy soft magnetic sintered body
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0525506A (en) Production of injection-molded and sintered pure iron having high strength
JPH04329801A (en) Production of sintered parts
JPH05239503A (en) Production of high-density stainless steel sintered compact with reduced deformation in sintering
JPH04285141A (en) Manufacture of ferrous sintered body
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPS591763B2 (en) stainless steel powder
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH04362103A (en) Production of stainless steel sintered body
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH0551688A (en) Production of high density sintered compact of stainless steel
JPH06136405A (en) Production of high-density pure iron sintered compact
JPH06279124A (en) Production of silicon nitride sintered compact
JPH03173702A (en) Production of sintered body
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH07173569A (en) Production of high density stainless steel sintered compact with scarce deformation in sintering
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH0565589A (en) Production of high density stainless steel sintered body
KR20000042176A (en) Method for injection molding austenite stainless powder