JPH0551688A - Production of high density sintered compact of stainless steel - Google Patents

Production of high density sintered compact of stainless steel

Info

Publication number
JPH0551688A
JPH0551688A JP23242491A JP23242491A JPH0551688A JP H0551688 A JPH0551688 A JP H0551688A JP 23242491 A JP23242491 A JP 23242491A JP 23242491 A JP23242491 A JP 23242491A JP H0551688 A JPH0551688 A JP H0551688A
Authority
JP
Japan
Prior art keywords
powder
stainless steel
sintering
grain size
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23242491A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsubo
宏 大坪
Keiichi Maruta
慶一 丸田
Yukio Makiishi
幸雄 槙石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23242491A priority Critical patent/JPH0551688A/en
Publication of JPH0551688A publication Critical patent/JPH0551688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the occurrence of change in shape by gravity, etc., before sintering and to obtain a high density sintered compact having superior dimensional accuracy by adding specific amounts of Fe-V powder of specific grain size to a stainless steel powder of specific grain size and subjecting the resulting powder mixture to compacting and to sintering. CONSTITUTION:An Fe-V powder of 1-10mu average grain size is added to a water atomized stainless steel powder of 5-20mu average grain size so that V content in a sintered compact becomes 0.10-2.0wt.%, and the resulting powder mixture is compacted and sintered. By the above procedure, the green compact before sintering can be prevented from getting brittle and the occurrence of deformation by gravity, etc., before sintering can be prevented. As to the average grain size of the stainless steel powder to be used, manufacturing costs are increased when it is below 5mu, and, on the other hand, sintering characteristics become insufficient when it exceeds 2mu. Manufacturing costs are increased when the average grain size of the Fe-V powder is below 1mu, and, when it exceeds 10mu, the deformation preventing effect is reduced. Corrosion resistance is deteriorated when the above-mentioned content of the Fe-V powder exceeds 2.0, and, on the other hand, deformation is increased because the amount of pulverized powder acting as sintering auxiliary is decreased when it is below 0.1%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,粉末冶金による高密度
ステンレス鋼焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density stainless steel sintered body by powder metallurgy.

【0002】[0002]

【従来の技術】粉末冶金法は、溶解鋳造法では製造困難
な部材を容易に大量生産することができる特徴がある。
従来の粉末冶金では、粒径60〜100 μm の粉末を使用し
て圧縮成形していたが、焼結体の焼結密度比は高々90%
程度で、溶解鋳造材に比べると、機械的特性や磁気特性
が劣っている。一方、最近の粉末冶金の技術進歩によ
り、微粉末の使用が容易になった。平均粒径20μm 以下
の微粉末を使用すると焼結性がよくなり、90% 以上、さ
らには95% 以上の焼結密度を得ることができる。この場
合、成形法としては圧縮成形、射出成形、スリップキャ
スティング等の方法があり、それぞれ原料微粉末を金型
充填性の良い造粒処理、熱可塑性樹脂等による射出成形
可能なコンパウンド化処理、スラリー化処理等を施し、
工業的な成形を可能にしている。
2. Description of the Related Art The powder metallurgy method is characterized in that it is possible to easily mass-produce a member which is difficult to manufacture by a melt casting method.
In conventional powder metallurgy, powder with a particle size of 60 to 100 μm was used for compression molding, but the sintered density ratio of the sintered body is 90% at most.
However, the mechanical properties and magnetic properties are inferior to those of the melt-cast material. On the other hand, recent technological advances in powder metallurgy have facilitated the use of fine powders. If fine powder having an average particle size of 20 μm or less is used, the sinterability is improved, and it is possible to obtain a sintered density of 90% or more, further 95% or more. In this case, there are methods such as compression molding, injection molding, slip casting, etc. as the molding method, and each of the raw material fine powder is granulated with good mold filling property, compounding treatment capable of injection molding with thermoplastic resin, slurry Chemical treatment,
It enables industrial molding.

【0003】このような微粉末を成形・焼結して高密度
の焼結体を製造するにあたり、焼結体の形状を健全に保
つことが難しいという問題点がある。従来の粉末冶金で
あれば、金属粉末粒子同士が圧縮成形において、密着
し、ある程度の強度をもった成形体ができる。その成形
体が焼結されるとき常に成形体の初期強度程度の強度を
保って焼結が始まるので、形が崩れることが少ない。と
ころが、微粉末の場合は、成形のときはバインダーを助
剤として成形体強度が保たれているが、焼結の進行に先
立ってバインダーがかなり低温で除去されるので、高温
で焼結が始まるまでに脆弱な成形体強度となる段階を通
過する。そのさい、成形体の自重などによって、好まし
くない変形がおこり、最終的に得られる焼結体の寸法が
大きく変化してしまうという問題がある。
When molding and sintering such fine powder to produce a high-density sintered body, it is difficult to keep the shape of the sintered body sound. With the conventional powder metallurgy, the metal powder particles are brought into close contact with each other in compression molding, and a molded product having a certain strength can be obtained. When the molded body is sintered, the sintering is always started while maintaining the strength about the initial strength of the molded body, so that the shape is not easily lost. However, in the case of fine powder, the strength of the molded body is maintained by using the binder as an auxiliary agent at the time of molding, but since the binder is removed at a considerably low temperature prior to the progress of sintering, sintering starts at a high temperature. Pass through the stage until it becomes brittle molded body strength. At that time, there is a problem that unfavorable deformation occurs due to the self-weight of the molded body and the dimensions of the finally obtained sintered body are largely changed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述のよう
な現状に鑑みバインダー除去後焼結が開始する前の成形
体が脆弱となる段階において、成形体の強度を上げるた
めの方法を提案するためのものである。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention proposes a method for increasing the strength of a compact after the binder is removed and before the sintering is started, the compact becomes brittle. It is for doing.

【0005】[0005]

【課題解決のための手段】水アトマイズ・ステンレス鋼
粉末を焼結する場合、ステンレス鋼粉末の表面はCr、
Mn、Si等の難還元性の酸化物でおおわれているた
め、バインダー除去後、焼結が進まず、焼結過程中の成
形体はとくに脆弱となる。そこで本発明者等はこの段階
での脆弱化を防ぎ成形体の強度を上昇させる方法を鋭意
研究した結果、ステンレス鋼粉末にFe-V粉末を混合し、
成形・焼結すれば、低温で焼結が進みステンレス鋼粉末
の粒子の付着剤として働き、その時点で成形体の強度を
改善して、自重等による変形を未然に防ぐことができる
ことを発見し、この知見にもとずき本発明をなすに至っ
た。本発明は、平均粒径 5〜20μmの水アトマイズ・ス
テンレス鋼粉末に平均粒径1〜10μmのFe-V粉末を最終
焼結体で V含有量が 0.10 〜2.0 重量%となるように添
加し、成形・焼結することを特徴とする高密度ステンレ
ス鋼焼結体の製造方法である。
When water atomized stainless steel powder is sintered, the surface of the stainless steel powder is Cr,
Since it is covered with a non-reducing oxide such as Mn or Si, the sintering does not proceed after the binder is removed, and the compact during the sintering process becomes particularly fragile. Therefore, the present inventors have conducted intensive studies on a method of preventing weakening at this stage and increasing the strength of a molded body, and mixing Fe-V powder with stainless steel powder,
It was discovered that if compacted and sintered, the sintering proceeds at low temperature and acts as an adhesive agent for the particles of stainless steel powder, at which point the strength of the compact can be improved and deformation due to its own weight, etc. can be prevented. Based on this finding, the present invention has been completed. According to the present invention, Fe-V powder having an average particle size of 1 to 10 μm is added to water atomized stainless steel powder having an average particle size of 5 to 20 μm so that the V content is 0.10 to 2.0% by weight in the final sintered body. A method for producing a high-density stainless steel sintered body, which comprises molding and sintering.

【0006】[0006]

【作用】本発明によれば平均粒径 5〜20μmのステンレ
ス鋼粉末に 1〜10μmのFe-V粉末を添加して成形焼結す
ることにより、焼結前に成形体が脆弱になるのを防ぐ結
果、自重などによる焼結前の形状変形を抑制することが
できる。使用するステンレス鋼粉末は平均粒径が 5μm
より小さいと製造コストが高くなり、一方平均粒径が20
μmを越えると焼結性が不十分であるから平均粒径を5
〜20μmの範囲とする。添加するFe-V粉末は平均粒径が
1μmより小さいと製造コストが高くなり、一方平均粒
径が10μmを越えると変形抑制の効果が小さくなる。し
たがって平均粒径を 1〜10μmとした。
According to the present invention, by adding 1 to 10 μm Fe-V powder to stainless steel powder having an average particle size of 5 to 20 μm and compacting and sintering, the compact becomes fragile before sintering. As a result, the deformation of the shape before sintering due to its own weight can be suppressed. The average particle size of the stainless steel powder used is 5 μm
The smaller the size, the higher the manufacturing cost, while the average particle size is 20.
If the average particle size exceeds 5 μm, the sinterability is insufficient, so the average particle size is 5
The range is up to 20 μm. The average particle size of the added Fe-V powder is
If it is less than 1 μm, the manufacturing cost is high, while if the average particle size exceeds 10 μm, the effect of suppressing deformation is reduced. Therefore, the average particle size is set to 1 to 10 μm.

【0007】また、Fe-V粉末の混合する量を最終焼結体
の V含有量が0.1%以上2.0%以下としたのは、2.0%を越え
ると耐蝕性が劣化するためである。一方0.1%未満では焼
結助材の役目をする微粉末量が少ないため、変形が大き
い。Fe-V粉末は水アトマイズ粉末でもよいし、粉砕粉末
でもよい。Fe-V粉末中のV量は、20〜80% が適当であ
る。さらにCr、Ni、Mo量等も、最終的に得られる焼結体
において目標値となるようにステンレス鋼粉末のCr、N
i、Mo量も調整しておく。
Further, the amount of the Fe-V powder mixed is set so that the V content of the final sintered body is 0.1% or more and 2.0% or less because the corrosion resistance is deteriorated when it exceeds 2.0%. On the other hand, if it is less than 0.1%, the amount of fine powder that serves as a sintering aid is small, resulting in large deformation. The Fe-V powder may be water atomized powder or ground powder. The appropriate amount of V in Fe-V powder is 20 to 80%. Furthermore, the amounts of Cr, Ni, Mo, etc. should be set to the target values in the finally obtained sintered body.
Adjust the amounts of i and Mo in advance.

【0008】[0008]

【実施例】【Example】

(実施例1)平均粒径 3、5.1 、10.2、17.0、23.6μm
の高圧水アトマイズ・SUS 304 ステンレス鋼粉末と平均
粒径4.7 μmのFe-V粉砕粉末を用意した。Fe-V粉砕粉末
はFe-50 wt% V 合金をアトライターで粉砕して作成し
た。各種ステンレス鋼粉末100重量部にたいしてFe-V粉
砕粉末を1.41部添加混合した。それぞれの混合物に樟脳
を 2.0重量% 添加し、2 t/cm2 の成形圧力で長さ35mm、
幅10mm、高さ 5mmの直方体を成形した。成形体を間隔25
mmで立たせたアルミナ角棒にまたがるようにのせ、真空
中100C/minの速度で昇温し、1250℃で 2時間保持した。
冷却後、焼結体の密度をアルキメデス法で測定した。変
形量としては自重により焼結体の中央部が下方に沈んだ
距離を測定した。表1に測定結果を示す。Fe-V粉末を添
加した場合、あきらかに自重による変形が抑制されてい
る。
(Example 1) Average particle size 3, 5.1, 10.2, 17.0, 23.6 μm
High-pressure water atomized SUS 304 stainless steel powder and Fe-V crushed powder having an average particle size of 4.7 μm were prepared. The Fe-V crushed powder was prepared by crushing Fe-50 wt% V alloy with an attritor. To 100 parts by weight of various stainless steel powders, 1.41 parts of Fe-V ground powder was added and mixed. 2.0% by weight of camphor was added to each mixture, and the length was 35 mm at a molding pressure of 2 t / cm 2 .
A rectangular parallelepiped with a width of 10 mm and a height of 5 mm was molded. Spacing between compacts 25
placed so as to extend over the alumina angle bars standing in mm, the temperature was raised at a rate of vacuum 10 0 C / min, held for 2 hours at 1250 ° C..
After cooling, the density of the sintered body was measured by the Archimedes method. As the amount of deformation, the distance at which the center of the sintered body sank downward due to its own weight was measured. Table 1 shows the measurement results. When Fe-V powder was added, the deformation due to its own weight was clearly suppressed.

【0009】(実施例2)平均粒径10.2μmの高圧水ア
トマイズ・ステンレス鋼粉末と平均粒径2.5 、7.3 、1
2.4μmのFe-V粉末(V 含有量:50重量% )をステンレ
ス鋼粉 100重量部にたいし、Fe-V粉末1.41重量部添加
し、混合した。これらの混合物を実施例1と同様の方法
で成形・焼結し、さらに変形量を測定した。表2に結果
を示す。表2より本発明例のみが変形抑制効果がある。
(Example 2) High-pressure water atomized stainless steel powder having an average particle size of 10.2 μm and an average particle size of 2.5, 7.3 and 1
2.4 μm Fe-V powder (V content: 50% by weight) was added to 100 parts by weight of stainless steel powder, and 1.41 parts by weight of Fe-V powder was added and mixed. These mixtures were molded and sintered in the same manner as in Example 1, and the amount of deformation was measured. The results are shown in Table 2. From Table 2, only the examples of the present invention have the deformation suppressing effect.

【0010】[0010]

【発明の効果】以上に示したとおり、本発明によれば寸
法精度がよく、高密度のステンレス鋼焼結体を製造でき
るので複雑形状部品を製造する技術として有用性が高
い。
As described above, according to the present invention, a dimensional accuracy is high and a high density stainless steel sintered body can be manufactured, and therefore, it is highly useful as a technique for manufacturing a complex shaped part.

【表1】 [Table 1]

【表2】 [Table 2]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月24日[Submission date] September 24, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,粉末冶金による高密度
ステンレス鋼焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density stainless steel sintered body by powder metallurgy.

【0002】[0002]

【従来の技術】粉末冶金法は、溶解鋳造法では製造困難
な部材を容易に大量生産することができる特徴がある。
従来の粉末冶金では、粒径60〜100μmの粉末を使
用して圧縮成形していたが、焼結体の焼結密度比は高々
90%程度で、溶解鋳造材に比べると、機械的特性や磁
気特性が劣っている。一方、最近の粉末冶金の技術進歩
により、微粉末の使用が容易になった。平均粒径20μ
m以下の微粉末を使用すると焼結性がよくなり、90%
以上、さらには95%以上の焼結密度を得ることができ
る。この場合、成形法としては圧縮成形、射出成形、ス
リップキャスティング等の方法があり、それぞれ原料微
粉末を金型充填性の良い造粒処理、熱可塑性樹脂等によ
る射出成形可能なコンパウンド化処理、スラリー化処理
等を施し、工業的な成形を可能にしている。
2. Description of the Related Art The powder metallurgy method is characterized in that it is possible to easily mass-produce a member which is difficult to manufacture by a melt casting method.
In the conventional powder metallurgy, powder having a particle diameter of 60 to 100 μm was used for compression molding, but the sintered density ratio of the sintered body is at most about 90%, which is higher than mechanical properties and melting characteristics. Magnetic properties are inferior. On the other hand, recent technological advances in powder metallurgy have facilitated the use of fine powders. Average particle size 20μ
Use of fine powder of m or less improves sinterability, and 90%
As described above, a sintered density of 95% or more can be obtained. In this case, there are methods such as compression molding, injection molding, slip casting, etc. as the molding method, and each of the raw material fine powder is granulated with good mold filling property, compounding treatment capable of injection molding with thermoplastic resin, slurry Chemical treatment is applied to enable industrial molding.

【0003】このような微粉末を成形・焼結して高密度
の焼結体を製造するにあたり、焼結体の形状を健全に保
つことが難しいという問題点がある。従来の粉末冶金で
あれば、金属粉末粒子同士が圧縮成形において、密着
し、ある程度の強度をもった成形体ができる。その成形
体が焼結されるとき常に成形体の初期強度程度の強度を
保って焼結が始まるので、形が崩れることが少ない。と
ころが、微粉末の場合は、成形のときはバインダーを助
剤として成形体強度が保たれているが、焼結の進行に先
立ってバインダーがかなり低温で除去されるので、高温
で焼結が始まるまでに脆弱な成形体強度となる段階を通
過する。そのさい、成形体の自重などによって、好まし
くない変形がおこり、最終的に得られる焼結体の寸法が
大きく変化してしまうという問題がある。
When molding and sintering such fine powder to produce a high-density sintered body, it is difficult to keep the shape of the sintered body sound. With the conventional powder metallurgy, the metal powder particles are brought into close contact with each other in compression molding, and a molded product having a certain strength can be obtained. When the molded body is sintered, the sintering is always started while maintaining the strength about the initial strength of the molded body, so that the shape is not easily lost. However, in the case of fine powder, the strength of the molded body is maintained by using the binder as an auxiliary agent at the time of molding, but since the binder is removed at a considerably low temperature prior to the progress of sintering, sintering starts at a high temperature. Pass through the stage until it becomes brittle molded body strength. At that time, there is a problem that unfavorable deformation occurs due to the self-weight of the molded body and the dimensions of the finally obtained sintered body are largely changed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述のよう
な現状に鑑みバインダー除去後焼結が開始する前の成形
体が脆弱となる段階において、成形体の強度を上げるた
めの方法を提案するためのものである。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention proposes a method for increasing the strength of a compact after the binder is removed and before the sintering is started, the compact becomes brittle. It is for doing.

【0005】[0005]

【課題解決のための手段】水アトマイズ・ステンレス鋼
粉末を焼結する場合、ステンレス鋼粉末の表面はCr、
Mn、Si等の難還元性の酸化物でおおわれているた
め、バインダー除去後、焼結が進まず、焼結過程中の成
形体はとくに脆弱となる。そこで本発明者等はこの段階
での脆弱化を防ぎ成形体の強度を上昇させる方法を鋭意
研究した結果、ステンレス鋼粉末にFe−V粉末を混合
し、成形・焼結すれば、低温で焼結が進みステンレス鋼
粉末の粒子の付着剤として働き、その時点で成形体の強
度を改善して、自重等による変形を未然に防ぐことがで
きることを発見し、この知見にもとずき本発明をなすに
至った。本発明は、平均粒径5〜20μmの水アトマイ
ズ・ステンレス鋼粉末に平均粒径1〜10μmのFe−
V粉末を最終焼結体でV含有量が0.10〜2.0重量
%となるように添加し、成形・焼結することを特徴とす
る高密度ステンレス鋼焼結体の製造方法である。
When water atomized stainless steel powder is sintered, the surface of the stainless steel powder is Cr,
Since it is covered with a non-reducing oxide such as Mn or Si, the sintering does not proceed after the binder is removed, and the compact during the sintering process becomes particularly fragile. Therefore, as a result of intensive studies on the method of preventing the brittleness at this stage and increasing the strength of the molded body, the present inventors mixed the Fe-V powder with the stainless steel powder, molded and sintered it, and fired it at a low temperature. It was discovered that the bonding progresses and it acts as an adhesive agent for the particles of the stainless steel powder, at which point the strength of the molded body can be improved and deformation due to its own weight or the like can be prevented beforehand, and based on this finding, the present invention Came to make. The present invention relates to water atomized stainless steel powder having an average particle size of 5 to 20 μm and Fe-having an average particle size of 1 to 10 μm.
A method for producing a high-density stainless steel sintered body, characterized in that V powder is added to the final sintered body so that the V content is 0.10 to 2.0% by weight, and the mixture is molded and sintered. ..

【0006】[0006]

【作用】本発明によれば平均粒径5〜20μmのステン
レス鋼粉末に1〜10μmのFe−V粉末を添加して成
形焼結することにより、焼結前に成形体が脆弱になるの
を防ぐ結果、自重などによる焼結前の形状変形を抑制す
ることができる。使用するステンレス鋼粉末は平均粒径
が5μmより小さいと製造コストが高くなり、一方平均
粒径が20μmを越えると焼結性が不十分であるから平
均粒径を5〜20μmの範囲とする。添加するFe−V
粉末は平均粒径が1μmより小さいと製造コストが高く
なり、一方平均粒径が10μmを越えると変形抑制の効
果が小さくなる。したがって平均粒径を1〜10μmと
した。
According to the present invention, by adding 1 to 10 µm Fe-V powder to stainless steel powder having an average particle diameter of 5 to 20 µm and performing sintering, the molded body becomes brittle before sintering. As a result, the deformation of the shape before sintering due to its own weight can be suppressed. If the average particle size of the stainless steel powder to be used is less than 5 μm, the manufacturing cost will increase, while if the average particle size exceeds 20 μm, the sinterability will be insufficient, so the average particle size will be in the range of 5 to 20 μm. Fe-V to be added
If the average particle size of the powder is less than 1 μm, the manufacturing cost is high, while if the average particle size exceeds 10 μm, the effect of suppressing deformation is reduced. Therefore, the average particle size is set to 1 to 10 μm.

【0007】また、Fe−V粉末の混合する量を最終焼
結体のV含有量が0.1%以上2.0%以下としたの
は、2.0%を越えると耐蝕性が劣化するためである。
一方0.1%未満では焼結助材の役目をする微粉末量が
少ないため、変形が大きい。Fe−V粉末は水アトマイ
ズ粉末でもよいし、粉砕粉末でもよい。Fe−V粉末中
のV量は、20〜80%が適当である。さらにCr、N
i、Mo量等も、最終的に得られる焼結体において目標
値となるようにステンレス鋼粉末のCr、Ni、Mo量
も調整しておく。
Further, the V content of the final sintered body is set to 0.1% or more and 2.0% or less because the amount of the Fe-V powder to be mixed is set to more than 2.0% because the corrosion resistance deteriorates. This is because.
On the other hand, if it is less than 0.1%, the amount of fine powder that serves as a sintering aid is small, so that the deformation is large. The Fe-V powder may be water atomized powder or pulverized powder. The amount of V in the Fe-V powder is suitably 20 to 80%. Further Cr, N
The amounts of i, Mo, etc. are also adjusted so that the amounts of Cr, Ni, Mo of the stainless steel powder are adjusted to the target values in the finally obtained sintered body.

【0008】[0008]

【実施例】 (実施例1)平均粒径3、5.1、10.2、17.
0、23.6μmの高圧水アトマイズ・SUS304ス
テンレス鋼粉末と平均粒径4.7μmのFe−V粉砕粉
末を用意した。Fe−V粉砕粉末はFe−50wt%V
合金をアトライターで粉砕して作成した。各種ステンレ
ス鋼粉末100重量部にたいしてFe−V粉砕粉末を
1.41部添加混合した。それぞれの混合物に樟脳を
2.0重量%添加し、2t/cmの成形圧力で長さ3
5mm、幅10mm、高さ5mmの直方体を成形した。
成形体を間隔25mmで立たせたアルミナ角棒にまたが
るようにのせ、真空中10℃/minの速度で昇温し、
1250℃で2時間保持した。冷却後、焼結体の密度を
アルキメデス法で測定した。変形量としては自重により
焼結体の中央部が下方に沈んだ距離を測定した。表1に
測定結果を示す。Fe−V粉末を添加した場合、あきら
かに自重による変形が抑制されている。
Examples (Example 1) Average particle size 3, 5.1, 10.2, 17.
High-pressure water atomized SUS304 stainless steel powder of 0,23.6 μm and Fe-V crushed powder having an average particle diameter of 4.7 μm were prepared. Fe-V ground powder is Fe-50 wt% V
It was made by crushing the alloy with an attritor. To 100 parts by weight of various stainless steel powders, 1.41 parts of Fe-V ground powder was added and mixed. 2.0% by weight of camphor was added to each mixture, and the length was 3 at a molding pressure of 2 t / cm 2.
A rectangular parallelepiped having a size of 5 mm, a width of 10 mm and a height of 5 mm was molded.
The molded body is placed so as to straddle an alumina square bar standing at an interval of 25 mm, and the temperature is raised in vacuum at a rate of 10 ° C./min,
It was kept at 1250 ° C for 2 hours. After cooling, the density of the sintered body was measured by the Archimedes method. As the amount of deformation, the distance at which the center of the sintered body was sunk downward due to its own weight was measured. Table 1 shows the measurement results. When the Fe-V powder is added, the deformation due to its own weight is clearly suppressed.

【0009】[0009]

表1[ Table 1 ]

0010】(実施例2)平均粒径10.2μmの高圧
水アトマイズ・ステンレス鋼粉末と平均粒径2.5、
7.3、12.4μmのFe−V粉末(V含有量:50
重量%)をステンレス鋼粉100重量部にたいし、Fe
−V粉末1.41重量部添加し、混合した。これらの混
合物を実施例1と同様の方法で成形・焼結し、さらに変
形量を測定した。表2に結果を示す。表2より本発明例
のみが変形抑制効果がある。
[0010] (Example 2) high-pressure water atomizing stainless steel powder having an average particle diameter 10.2μm and average particle diameter 2.5,
Fe-V powder of 7.3 and 12.4 μm (V content: 50
Wt%) to 100 parts by weight of stainless steel powder, Fe
1.41 parts by weight of -V powder was added and mixed. These mixtures were molded and sintered in the same manner as in Example 1, and the amount of deformation was measured. The results are shown in Table 2. From Table 2, only the examples of the present invention have the deformation suppressing effect.

0011[ 0011 ]

表2[ Table 2 ]

0012[ 0012 ]

【発明の効果】以上に示したとおり、本発明によれば寸
法精度がよく、高密度のステンレス鋼焼結体を製造でき
るので複雑形状部品を製造する技術として有用性が高
い。
As described above, according to the present invention, a dimensional accuracy is high and a high density stainless steel sintered body can be manufactured, and therefore, it is highly useful as a technique for manufacturing a complex shaped part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径 5〜20μmの水アトマイズ・ス
テンレス鋼粉末に平均粒径 1〜10μmのFe-V粉末を焼結
体の V含有量が 0.10 〜2.0 重量%となるように添加
し,成形・焼結することを特徴とする高密度ステンレス
鋼焼結体の製造方法。
1. A Fe-V powder having an average particle size of 1 to 10 μm is added to water atomized stainless steel powder having an average particle size of 5 to 20 μm so that the V content of the sintered body is 0.10 to 2.0% by weight. , A method for producing a high-density stainless steel sintered body characterized by forming and sintering.
JP23242491A 1991-08-21 1991-08-21 Production of high density sintered compact of stainless steel Pending JPH0551688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23242491A JPH0551688A (en) 1991-08-21 1991-08-21 Production of high density sintered compact of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23242491A JPH0551688A (en) 1991-08-21 1991-08-21 Production of high density sintered compact of stainless steel

Publications (1)

Publication Number Publication Date
JPH0551688A true JPH0551688A (en) 1993-03-02

Family

ID=16939050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23242491A Pending JPH0551688A (en) 1991-08-21 1991-08-21 Production of high density sintered compact of stainless steel

Country Status (1)

Country Link
JP (1) JPH0551688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164916A (en) * 2019-03-29 2020-10-08 新日本電工株式会社 Powder for molding, manufacturing method of the powder and manufacturing method of molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164916A (en) * 2019-03-29 2020-10-08 新日本電工株式会社 Powder for molding, manufacturing method of the powder and manufacturing method of molded article

Similar Documents

Publication Publication Date Title
CN108367356B (en) Iron-based powder for powder injection molding
JPH0244883B2 (en)
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
US6126873A (en) Process for making stainless steel aqueous molding compositions
JPH0254733A (en) Manufacture of ti sintered material
JPH0551688A (en) Production of high density sintered compact of stainless steel
JPH04285141A (en) Manufacture of ferrous sintered body
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPH0436563B2 (en)
JPH01184203A (en) Alloy powder for injected-compacting
JPH0565589A (en) Production of high density stainless steel sintered body
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH0159321B2 (en)
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPH04362103A (en) Production of stainless steel sintered body
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH02138706A (en) Anisotropic permanent magnet
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH05239503A (en) Production of high-density stainless steel sintered compact with reduced deformation in sintering
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPH0313501A (en) Sintered body and manufacture thereof
JPS5832076A (en) Manufacture of high density ceramic sintered body
JPH0754004A (en) Production of sintered product of head metal powder