JPH0313501A - Sintered body and manufacture thereof - Google Patents

Sintered body and manufacture thereof

Info

Publication number
JPH0313501A
JPH0313501A JP1146683A JP14668389A JPH0313501A JP H0313501 A JPH0313501 A JP H0313501A JP 1146683 A JP1146683 A JP 1146683A JP 14668389 A JP14668389 A JP 14668389A JP H0313501 A JPH0313501 A JP H0313501A
Authority
JP
Japan
Prior art keywords
carbon
sintered body
powder
sintered
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1146683A
Other languages
Japanese (ja)
Inventor
Morikazu Yamada
盛一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1146683A priority Critical patent/JPH0313501A/en
Publication of JPH0313501A publication Critical patent/JPH0313501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a sintered body improving magnetic characteristic by adding carbon so as to contain the specific quantity of the carbon in the manufactured sintered body at the time of adding organic binder to metal powder, injection-forming into a formed body, degreasing and sintering. CONSTITUTION:At the time of manufacturing the sintered body by adding the organic binder to the metal or alloy powder, injection-forming, extrusion-forming or compression-forming to make the formed body and degreasing and sintering to this formed body, the carbon powder is added at 0.05-1wt.% together with the organic binder. By this method, the sintered body having 10-1000ppm carbon content and good magnetic characteristic, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高磁気特性を有する焼結金属及び焼結合金の製
造方法に関し、特に金属(合金)粉末に少くとも1種以
上の有機バインダーを加えて混合。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing sintered metals and sintered alloys having high magnetic properties, and particularly relates to a method for producing sintered metals and sintered alloys having high magnetic properties, and in particular, the present invention relates to a method for producing sintered metals and sintered alloys having high magnetic properties. Add and mix.

混練を行い、これを射出成形、押出成形又は圧縮成形を
行い、所望の形状品とし、この後、加熱法により、脱脂
を行い2次いで焼結することによって、所望形状の磁気
的性能を有する金属又は合金製品及びその製造方法に関
する。
The product is kneaded, then injection molded, extrusion molded or compression molded to form a product into the desired shape, and then degreased by a heating method and then sintered to produce a metal having the desired shape and magnetic performance. Or related to alloy products and their manufacturing methods.

[従来の技術] 金属磁性材料の製造方法としては、古くから。[Conventional technology] It has been used as a manufacturing method for metal magnetic materials since ancient times.

圧延法、プレス法などが行われて来たが、近年になり、
より複雑形状あるいは異形状の製品を後加工無しで、あ
るいは後加工を極力省略して得ることを目的として、い
わゆる「粉末成形法」と言われるプロセスが注目を集め
てきた。この方法は。
Rolling methods, pressing methods, etc. have been used, but in recent years,
A process called "powder compaction" has been attracting attention for the purpose of producing products with more complex or irregular shapes without post-processing or with as little post-processing as possible. This method is.

所望の粉末に有機バインダーを加え、射出成形。Add an organic binder to the desired powder and injection mold.

押出成形、圧縮成形を行った後脱脂、焼結を行い。After extrusion molding and compression molding, degreasing and sintering are performed.

製品を得るものである。しかし、特に磁性材料という観
点からこの方法を見た場合、従来法に比べて焼結後の密
度が低く、いわゆる機能性材料としての特徴は不充分で
ある。
You get the product. However, especially when looking at this method from the viewpoint of magnetic materials, the density after sintering is lower than that of conventional methods, and the characteristics as a so-called functional material are insufficient.

そこで本発明の技術的課題は、磁気的性能を有する金属
又は合金製品の製造方法において、「粉末成形法」の特
徴を充分生かしながら、なおかつ。
Therefore, the technical problem of the present invention is to provide a method for manufacturing metal or alloy products having magnetic performance while fully utilizing the features of the "powder compaction method".

磁気的性能をも向上させうる製造方法を提供することで
ある。
It is an object of the present invention to provide a manufacturing method that can also improve magnetic performance.

[課題を解決するための手段] 本発明によれば、金属又は合金粉末に有機バインダーを
加えて射出成形、押出成形又は圧縮成形により成形体と
なし、該成形体を脱脂、焼結して製造された焼結体にお
いて、カーボンを10〜1000 ppH含有すること
を特徴とする磁気的性能を有する焼結体が得られる。
[Means for Solving the Problems] According to the present invention, an organic binder is added to metal or alloy powder, a molded body is formed by injection molding, extrusion molding, or compression molding, and the molded body is degreased and sintered to produce the product. A sintered body having magnetic performance characterized by containing 10 to 1000 ppH of carbon is obtained.

本発明によれば、金属又は合金粉末に、有機バインダー
を加える際、添加物としてカーボン粉末を0.05〜l
vt%混、入させることを特徴とする焼結体の製造方法
が得られる。
According to the present invention, when adding an organic binder to metal or alloy powder, 0.05 to 1 liter of carbon powder is added as an additive.
A method for manufacturing a sintered body characterized by mixing vt% is obtained.

[発明の構成] 本発明は金属及び又は合金粉末に有機バインダーを加え
て射出成形、押出成形又は圧縮成形により成形体となし
、該成形体を脱脂、焼結して得る磁気的性能を有する金
属又は合金製品において。
[Structure of the Invention] The present invention provides a metal having magnetic performance obtained by adding an organic binder to a metal and/or alloy powder, forming a molded body by injection molding, extrusion molding, or compression molding, and degreasing and sintering the molded body. or in alloy products.

該製品中にカーボンを含有せしめることを特徴とするも
のである。
The product is characterized by containing carbon.

即ち1本発明者らは「粉末成形法」の特徴を生かしなが
ら、なおかつ、磁気特性をも向上させ得る方法について
、鋭意検討を重ねた結果、以外にも製品中に磁気特性の
向上には不利と考えられるカーボンが一定量存在する場
合に、焼結密度が向上し、磁気特性が向上することを見
出し2本発明を完成させたものである。カーボンの効果
については焼結過程において、大気中から取込み吸着し
ている酸素及び有機バインダー中に存在する酸素と化学
的に反応し、金属(合金)粉末の表面を洗浄化し、予想
以上の効果により焼結密度の向上に寄与したものと推定
している。又この考え方からすると、理論的に反応させ
て酸素及びカーボンを0にするのが最も理想的と考えら
れるが現実的には当量反応で0にすることは極めて困難
であること、残存する酸素量が必ずしも一定ではなく、
これを基にしてカーボン量を決めることも極めて困難で
あること、そして、焼結品中に酸素とカーボンが存在す
る場合、カーボンに比べて酸素の存在が磁気特性に大き
く影響することなどから、極力酸素を除去するためにカ
ーボン過剰で行わしめる法が好ましいことと言える。
Namely, 1. As a result of intensive studies by the present inventors on a method that can improve the magnetic properties while taking advantage of the characteristics of the "powder compaction method," we found that there are other disadvantages to improving the magnetic properties of the product. The present invention was completed based on the discovery that when a certain amount of carbon exists, the sintered density improves and the magnetic properties improve. Regarding the effect of carbon, during the sintering process, it chemically reacts with the oxygen absorbed from the atmosphere and the oxygen present in the organic binder, cleaning the surface of the metal (alloy) powder, resulting in a more effective than expected effect. It is estimated that this contributed to the improvement of sintered density. Also, from this point of view, it is thought that theoretically it would be most ideal to reduce oxygen and carbon to zero through a reaction, but in reality it is extremely difficult to reduce oxygen and carbon to zero through an equivalent reaction, and the amount of oxygen remaining is not necessarily constant,
It is extremely difficult to determine the amount of carbon based on this, and when oxygen and carbon are present in a sintered product, the presence of oxygen has a greater effect on magnetic properties than carbon. It can be said that it is preferable to carry out the method with excess carbon in order to remove oxygen as much as possible.

残存させるカーボンの量は余りに少いと前述のごとく除
去されない酸素の影響で磁気特性が低くなり2又余りに
多いと元素が非磁性体故やはり磁気特性の低下を招く。
If the amount of carbon remaining is too small, the magnetic properties will deteriorate due to the influence of oxygen that is not removed, as described above, and if it is too large, the magnetic properties will also deteriorate because the element is non-magnetic.

従って効果的なカーボンの量は、10〜1000 pp
mさらに好ましくは30〜500 ppm+である。
Therefore, the effective amount of carbon is 10 to 1000 pp
m is more preferably 30 to 500 ppm+.

カーボンを存在させる方法としては、脱脂終了時に有機
バインダーを完全に除去しない方法、又は成形体にあら
かじめカーボンを混合分散させておく方法、又は焼結時
に不活性ガス雰囲気中で行う方法など任意にとれるが、
最も工業的に安定して行える方法は、成形体にカーボン
を混合する方法である。この場合、添加するカーボンと
しては。
Any method for making carbon exist may be used, such as not completely removing the organic binder at the end of degreasing, mixing and dispersing carbon in the compact in advance, or performing sintering in an inert gas atmosphere. but,
The most industrially stable method is to mix carbon into the molded body. In this case, as carbon to be added.

例えば活性炭粉末、黒鉛粉末、グラファイト粉末など任
意に選択できる。添加量は余りに少いと効果が無く又余
りに多いと射出成形、押出成形時に流動性を阻害し、成
形品が得られないこと又成形品を得るためにバインダー
量を多くする必要があり、脱脂時間の延長、焼結収縮の
バラつき大など。
For example, activated carbon powder, graphite powder, graphite powder, etc. can be arbitrarily selected. If the amount added is too small, it will not be effective, and if it is too large, it will inhibit fluidity during injection molding and extrusion molding, making it impossible to obtain a molded product.Also, it will be necessary to increase the amount of binder to obtain a molded product, and the degreasing time will be reduced. extension, large variations in sintering shrinkage, etc.

工業的に不利となるので金属又は合金粉末に対して0.
05〜1.0重量%好しくは0.1〜0.5重量%であ
るが、特にこれには制約されない。
0.0 for metal or alloy powder as it is industrially disadvantageous.
The amount is 0.05 to 1.0% by weight, preferably 0.1 to 0.5% by weight, but is not particularly limited to this.

[実施例] 次に1本発明の実施例を図面を参照して説明する。[Example] Next, an embodiment of the present invention will be described with reference to the drawings.

一実施例1− Fe30vt%−Co50vt%なる組成で、平均粒径
が10μmの水アトマイズ粉末を原料粉末として用いた
。この粉末の酸素含有量は5200 ppmであった。
Example 1 - A water atomized powder having a composition of 30 vt% Fe-50 vt% Co and an average particle size of 10 μm was used as a raw material powder. The oxygen content of this powder was 5200 ppm.

次に、この粉末と第1表に示す熱可塑性バインダー及び
黒鉛粉末(−500l1esh)を第2表に示す配分比
で加圧ニーグーにより130℃で20分間混練し次に解
砕して射出成形に共する原料ベレットを得た。
Next, this powder, the thermoplastic binder shown in Table 1, and the graphite powder (-500l1esh) were kneaded at 130°C for 20 minutes in a pressurized niegu at the distribution ratio shown in Table 2, and then crushed and used for injection molding. A raw material pellet was obtained.

次に、この原料ペレットを用い温度190℃。Next, using this raw material pellet, the temperature was 190°C.

ゲージ圧力100kg/cdの条件で外径50mmで。With a gauge pressure of 100 kg/cd and an outer diameter of 50 mm.

厚みが1 mm −5m+sの成形体を射出成形により
作製した。
A molded body having a thickness of 1 mm -5 m+s was produced by injection molding.

第1表 バインダー 第2表 配合組成 (vt%) 以下余白 これらの成形体をアルミナセッター上に置き。Table 1 Binder Table 2 Mixture composition (vt%) Margin below Place these molded bodies on an alumina setter.

H2ガスを54J/sin流した雰囲気とし、室温から
毎時10℃の昇温速度で600℃まで昇温加熱し、60
0℃で2時間保持した後、室温まで冷却した。次に、水
素炉に投入し室温から毎時200℃の昇温速度で120
0℃まで昇温加熱し、5時間保持した後、炉冷し焼結体
を得た。
An atmosphere was created in which H2 gas was flowed at 54 J/sin, and the temperature was raised from room temperature to 600 °C at a rate of 10 °C per hour.
After holding at 0°C for 2 hours, it was cooled to room temperature. Next, it was placed in a hydrogen furnace and heated to 120°C at a heating rate of 200°C per hour from room temperature.
The temperature was raised to 0° C., held for 5 hours, and then cooled in a furnace to obtain a sintered body.

比較のため第2表に示す黒鉛粉末を除いた組成比が同一
である射出成形体を同一形状で作製し同一の脱脂、焼結
を行なった。このときの焼結体の焼結密度を第3表にC
90残存量を第4表に、磁気特性を第5表に示す。但し
、焼結密度は理論密度(8,15g / cc)に対す
る相対値(%)で示しである。
For comparison, injection molded bodies having the same composition ratio except for the graphite powder shown in Table 2 were produced in the same shape, and were subjected to the same degreasing and sintering. The sintered density of the sintered body at this time is shown in Table 3.
90 residual amount is shown in Table 4, and the magnetic properties are shown in Table 5. However, the sintered density is expressed as a relative value (%) to the theoretical density (8.15 g/cc).

第3表 焼結密度(相対比) 第4表 C1 0残存量 (ppm) 以下余白 第5表 磁気特性 この結果上記のプロセスで作製した焼結体は。Table 3 Sintered density (relative ratio) Table 4 C1 0 remaining amount (ppm) Margin below Table 5 Magnetic properties As a result, the sintered body produced by the above process is.

黒鉛粉末添加量が0.1〜0.5νt%の範囲で最も焼
結密度が高く、磁気特性も良好となる結果となった。
The results showed that the sintered density was highest when the amount of graphite powder added was in the range of 0.1 to 0.5 νt%, and the magnetic properties were also good.

第1図に、カーボン量に対して焼結体の磁気特性を示す
がカーボン添加量が0.1〜0.5wt%で最高の磁気
特性が得られた。又、焼結体中のカーボン及び酸素の残
存量を見ると(第4表)、カーボンが少ないものは酸素
が多く、逆に、カーボンが多いものは酸素が少なくなっ
ており、多過ぎるカーボン酸素はともに、焼結密度の向
上と磁気特性に態形を与えることがわかりこのことから
、最適のカーボン添加量の存在することがわかる。この
最適範囲が上述の0.1〜0.5wt%である。又、試
料Nα10は比較例として黒鉛粉末無添加でステアリン
酸を1 、5wt%添加し、  3ton/cdでプレ
ス成形したものである。この試料の場合焼結体のカーボ
ン量は低いが、酸素量が比較的高くかつ焼結密度は低く
なっている。このことからカーボンの添加は、焼結体の
密度向上に有効であることが明らかとなった。
FIG. 1 shows the magnetic properties of the sintered body with respect to the amount of carbon, and the best magnetic properties were obtained when the amount of carbon added was 0.1 to 0.5 wt%. Also, when looking at the remaining amounts of carbon and oxygen in the sintered bodies (Table 4), the ones with less carbon have more oxygen, and conversely, the ones with more carbon have less oxygen. It was found that both improve the sintered density and improve the magnetic properties, which indicates that there is an optimum amount of carbon added. This optimum range is the above-mentioned 0.1 to 0.5 wt%. Sample Nα10 is a comparative example in which no graphite powder was added, 1.5 wt% of stearic acid was added, and the sample was press-molded at 3 ton/cd. In the case of this sample, the amount of carbon in the sintered body is low, but the amount of oxygen is relatively high and the sintered density is low. This revealed that the addition of carbon is effective in improving the density of the sintered body.

次に、第2図に酸素量が1ooopp−以下であった焼
結体について、その含有する炭素量と磁気特性の関係を
示す。炭素量が5000 ppmを超えると、特性は顕
著に劣化するのが分かる。第2図から炭素量が30 p
pm〜500 ppm間で磁気特性に極大値が存在する
事が分る。
Next, FIG. 2 shows the relationship between the amount of carbon contained in the sintered body and the magnetic properties of the sintered body in which the amount of oxygen was 1 ooopp- or less. It can be seen that when the amount of carbon exceeds 5000 ppm, the characteristics deteriorate significantly. From Figure 2, the amount of carbon is 30 p.
It can be seen that the magnetic properties have a maximum value between pm and 500 ppm.

一実施例2− 平均粒径5.5μmのカルボニルFe粉に、実施例1で
用いた第1表に示すバインダーをB、lvt%及び活性
炭粉末(−3256)を第6表に示す配合量で添加し、
加圧ニーダ−により130℃で20分間、混練し次に解
砕機にて解砕し押出し成形に供する原料ベレットとした
。又カルボニルFe粉のOは4350 ppt*であっ
た。
Example 2 - Carbonyl Fe powder with an average particle size of 5.5 μm was mixed with the binder shown in Table 1 used in Example 1, B, lvt%, and activated carbon powder (-3256) in the amounts shown in Table 6. Add,
The mixture was kneaded using a pressure kneader at 130° C. for 20 minutes, and then crushed using a crusher to obtain raw material pellets for extrusion molding. Further, the O content of the carbonyl Fe powder was 4350 ppt*.

第6表 配合組成 (wt%) の円筒を成形した。次に成形体を厚み5 in毎に切断
し、リングと成し、これをアルミナセッター上に置き、
Arガスを5fl1層in流した雰囲気とし室温から毎
時10℃の昇温速度で600℃まで昇温加熱し600℃
で2時間保持した後室温まで冷却した。次に水素炉に投
入し室温から毎時200℃の昇温速度で1200℃まで
昇温し、5時間保持した後炉冷し、焼結体を得た。得ら
れた焼結体の残存酸素炭素量と磁気特性を第7表に示す
Table 6: Blend composition (wt%) A cylinder was molded. Next, the molded body was cut into rings with a thickness of 5 inches, and this was placed on an alumina setter.
In an atmosphere in which 5 fl of Ar gas was flowed in one layer, the temperature was raised from room temperature to 600°C at a temperature increase rate of 10°C per hour.
After being maintained at 2 hours, the mixture was cooled to room temperature. Next, it was placed in a hydrogen furnace and heated from room temperature to 1200°C at a rate of 200°C per hour, held for 5 hours, and then cooled in the furnace to obtain a sintered body. Table 7 shows the residual oxygen carbon content and magnetic properties of the obtained sintered body.

第7表 焼結体の特性 次にこの原料ペレットを用い温度160℃、毎   こ
の結果、アルゴン雰囲気で脱脂を行なった試分1mの押
出し速度で、外径30mm、内径20 mm   料に
ついても実施例1と同様に活性炭粉末の添加量が0.1
〜0.5vt%で良好な特性が得られることが分かった
Table 7 Characteristics of sintered body Next, this raw material pellet was used at a temperature of 160°C, and as a result, an extrusion speed of 1 m was used for a test sample degreased in an argon atmosphere, with an outer diameter of 30 mm and an inner diameter of 20 mm. Similar to 1, the amount of activated carbon powder added is 0.1
It was found that good characteristics can be obtained at ~0.5 vt%.

一実施例3− 水アトマイズ法で得られたF e (!+O) −Co
 (50)−V (2)粉末[セメンジュール]平均粒
径10.Bμmに(表−8)に示したバインダーを粉末
に対して10vt%添加しカーボン粉末を加えない他は
実施例1と同様の方法で射出成形用ベレットを得た。
Example 3 - Fe (!+O) -Co obtained by water atomization method
(50)-V (2) Powder [cemendur] average particle size 10. A pellet for injection molding was obtained in the same manner as in Example 1, except that 10% by volume of the binder shown in Table 8 was added to the powder and no carbon powder was added.

さらにこの材料を用いて実施例1と同様の方法で成形を
行った。成形品は(表−8)に示す条件で脱脂を行い、
残存カーボン量を調整した。これらの脱脂品をアルゴン
及び水素雰囲気下で1200’CX5hr焼結を行い焼
結体を得た。この時の磁気特性及び密度を(表−8)に
示したが残存カーボン量に磁気特性における最適範囲が
存在する事が分る。
Furthermore, molding was performed in the same manner as in Example 1 using this material. The molded product was degreased under the conditions shown in (Table 8).
The amount of residual carbon was adjusted. These degreased products were sintered for 1200'CX for 5 hours in an argon and hydrogen atmosphere to obtain a sintered body. The magnetic properties and density at this time are shown in Table 8, and it can be seen that there is an optimum range for the magnetic properties depending on the amount of residual carbon.

以下余白 [発明の効果] 以上説明したとおり本発明によれば、最適量の炭素を残
存されることにより高い焼結密度が得られかつ良好な磁
気特性も得られる。父上記の適量の炭素を残存される方
法として成形前に炭素粉末を用いて全炭素量を高くする
ことが、工業的に最も有利であり、大きな効果が得られ
た。
Margins below [Effects of the Invention] As explained above, according to the present invention, by leaving an optimum amount of carbon, a high sintered density can be obtained and good magnetic properties can also be obtained. As a method for retaining an appropriate amount of carbon as described above, it is industrially most advantageous to increase the total carbon content by using carbon powder before molding, and a great effect has been obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−50Coの射出成形体に添加した黒鉛粉
末の添加量と焼結体の磁気特性の関係を示す。 第2図は焼結体中に残存している炭素量と焼結体の磁気
特性の関係を示す。 (eン) 0019 6一
FIG. 1 shows the relationship between the amount of graphite powder added to an injection molded Fe-50Co body and the magnetic properties of the sintered body. FIG. 2 shows the relationship between the amount of carbon remaining in the sintered body and the magnetic properties of the sintered body. (en) 0019 61

Claims (2)

【特許請求の範囲】[Claims] (1) 金属又は合金粉末に有機バインダーを加えて射
出成形、押出成形又は圧縮成形により成形体となし、該
成形体を脱脂、焼結して製造された焼結体において、 カーボンを10〜1000ppm含有することを特徴と
する磁気的性能を有する焼結体。
(1) A sintered body produced by adding an organic binder to a metal or alloy powder, forming a molded body by injection molding, extrusion molding, or compression molding, and degreasing and sintering the molded body, containing 10 to 1000 ppm of carbon. A sintered body having magnetic performance characterized by containing.
(2) 特許請求の範囲第1項記載の焼結体の製造方法
において金属又は合金粉末に、有機バインダーを加える
際、添加物としてカーボン粉末を0.05〜1wt%混
入させることを特徴とする焼結体の製造方法。
(2) In the method for manufacturing a sintered body according to claim 1, when adding an organic binder to the metal or alloy powder, 0.05 to 1 wt% of carbon powder is mixed as an additive. A method for producing a sintered body.
JP1146683A 1989-06-12 1989-06-12 Sintered body and manufacture thereof Pending JPH0313501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146683A JPH0313501A (en) 1989-06-12 1989-06-12 Sintered body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146683A JPH0313501A (en) 1989-06-12 1989-06-12 Sintered body and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0313501A true JPH0313501A (en) 1991-01-22

Family

ID=15413226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146683A Pending JPH0313501A (en) 1989-06-12 1989-06-12 Sintered body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0313501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233530A1 (en) * 2022-05-31 2023-12-07 株式会社アドバンテスト Bias circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343006A (en) * 1976-10-01 1978-04-18 Warabi Tokushiyu Seikou Kk Process for production of permanently magnetic alloy
JPS5827304A (en) * 1981-08-10 1983-02-18 Tohoku Metal Ind Ltd Rare-earth material for permanent magnet
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343006A (en) * 1976-10-01 1978-04-18 Warabi Tokushiyu Seikou Kk Process for production of permanently magnetic alloy
JPS5827304A (en) * 1981-08-10 1983-02-18 Tohoku Metal Ind Ltd Rare-earth material for permanent magnet
JPS58193336A (en) * 1982-05-01 1983-11-11 Sumitomo Special Metals Co Ltd Permanent magnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233530A1 (en) * 2022-05-31 2023-12-07 株式会社アドバンテスト Bias circuit

Similar Documents

Publication Publication Date Title
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
JP2014031574A (en) Method of manufacturing powder metallurgy workpiece and powder metallurgy workpiece
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH0775205B2 (en) Method for producing Fe-P alloy soft magnetic sintered body
US5009841A (en) Process for dewaxing injection molded metal pieces and for improving the properties thereof
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
US6126873A (en) Process for making stainless steel aqueous molding compositions
JPH0692603B2 (en) METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME
US3196007A (en) Beryllium copper composition and method of producing green compacts and sintered articles therefrom
JPH0313501A (en) Sintered body and manufacture thereof
EP0409646A2 (en) Compound for an injection molding
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JPH02107703A (en) Composition for injection molding
JPH093510A (en) Copper powder for injection-molding of metallic powder and production of injection-molded product using the same
JPH04285141A (en) Manufacture of ferrous sintered body
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPH01184203A (en) Alloy powder for injected-compacting
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH04214801A (en) Manufacture of metal pelletized powder for powder metallurgy and sintered body using the same
JPS63237402A (en) Manufacture of sintered rare-earth magnet
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
KR100421722B1 (en) A manufacturing method of partial diffusion prealloy by ionic dispersion process
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same