JPS5827304A - Rare-earth material for permanent magnet - Google Patents

Rare-earth material for permanent magnet

Info

Publication number
JPS5827304A
JPS5827304A JP56124145A JP12414581A JPS5827304A JP S5827304 A JPS5827304 A JP S5827304A JP 56124145 A JP56124145 A JP 56124145A JP 12414581 A JP12414581 A JP 12414581A JP S5827304 A JPS5827304 A JP S5827304A
Authority
JP
Japan
Prior art keywords
carbon
coercive force
contained
magnet
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124145A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56124145A priority Critical patent/JPS5827304A/en
Publication of JPS5827304A publication Critical patent/JPS5827304A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase coercive force and to obtain a high energy product without lowering the density of a residual magnetic flux by a method wherein magnetic material of two-phase separate type R2T17 series is allowed to contain 0.005- 0.35wt% of carbon. CONSTITUTION:Traces of carbon cause coercive force IHC to sharply increase, to reach its maximum when C=0.05wt% and to gradually decrease when 0.05wt% or more of carbon is contained. On the other hand, Br tends to slightly decrease as the amount of C added is increased. Consequently, the amount of C contained within the range of 0.005wt% to 0.35wt% is discovered suitable according to the observation of the (BH)max curve. Thus, because of the carbon contained in the magnet of two-phase separate type R2Co17 series, carbonic compounds are educed in metal magnetic phases and crystalline grain boundaries and this helps coercive force to increase and the two-phase separation to be properly brought about without reducing the density of a residual magnetic flux, causing a magnet to be provided with a high energy product.

Description

【発明の詳細な説明】 本発明は、サマリウムコバルト磁石を代表とする。イツ
トリウムや希土類金属(6)と遷移金属(T′)との金
属間化合物である希土類永久磁石材料に関し、特に、2
相分離型R2T1γ系永久磁石材料の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is typified by a samarium cobalt magnet. Regarding rare earth permanent magnet materials, which are intermetallic compounds of yttrium and rare earth metals (6) and transition metals (T'),
This invention relates to the improvement of phase-separated R2T1γ permanent magnet materials.

遷移金属としてコパル) (Co)を用いた希土類コバ
ルト磁石について以下述べる。
A rare earth cobalt magnet using copal (Co) as the transition metal will be described below.

希土類コバルト合金は、  ROos 、 R20o7
 、 R20oz7等いくつかの化合物形態をとること
が知られている。ところで、磁石特性の上ではROo 
5が最も優れており、 TLOoB系永久磁石材料が実
用されている。
Rare earth cobalt alloys are ROos, R20o7
, R20oz7, etc. is known to take several compound forms. By the way, in terms of magnetic properties, ROo
5 is the best, and TLOoB permanent magnet materials are in practical use.

ところで、  RzOotyは保磁力(IHO)が小さ
いので、永久磁石材料としては用いられない。しかしな
がら、飽和磁束密度(Bs )およびキーリ一温度(T
c)については、  RC!o5より高く(例えばSm
20o17ではBs = 12KGauss、 Tc=
 926℃に対し、  Sm0o5ではBs= 10.
7KGauss、 Tc= 724℃)。
By the way, since RzOoty has a small coercive force (IHO), it cannot be used as a permanent magnet material. However, the saturation magnetic flux density (Bs) and the Kiley temperature (T
Regarding c), RC! higher than o5 (e.g. Sm
At 20o17, Bs = 12K Gauss, Tc =
For Sm0o5, Bs=10.
7K Gauss, Tc = 724°C).

しかも結晶異方性定数も5 X 107erg/、3と
かなり高い値を示す。従って、  R2001?はRO
o5に続いて永久磁石材料として期待される。
Moreover, the crystal anisotropy constant also shows a fairly high value of 5×10 7 erg/.3. Therefore, R2001? is R.O.
It is expected to be used as a permanent magnet material following o5.

前述のようにR20o17は、保磁力が小さいので。As mentioned above, R20o17 has a small coercive force.

永久磁石として用いるには、保磁力の改善が急務である
In order to use it as a permanent magnet, it is urgently necessary to improve the coercive force.

これ迄のところ、  R20o17系永久磁石材料は。So far, R20o17-based permanent magnet materials.

ROo5マトリックス中にR20o17相を微細に析出
させた。2相分離型の材料であるが、coの一部をOu
で置換することによって、保磁力が向上することが見出
された。従って、現在はR20o17系磁石では、  
OuによるCoの一部置換が、その特性改善の主流とな
っている。
The R20o17 phase was finely precipitated in the ROo5 matrix. Although it is a two-phase separation type material, some of the co is
It has been found that the coercive force can be improved by substituting with . Therefore, currently with R20o17 magnets,
Partial replacement of Co by O has become the mainstream for improving its properties.

Cuによる置換で保磁力が改善されるのは、 OuがR
20017相の微細化を促進したことによるものと考え
られる。
The coercive force is improved by substitution with Cu because O is R
This is thought to be due to promoting the refinement of the 20017 phase.

本発明の目的は、保磁力を改善した安価な2相分離型の
R20o17系磁石を提供することである。
An object of the present invention is to provide an inexpensive two-phase separation type R20o17 magnet with improved coercive force.

本発明は、2相分離型のR20o17系磁石に炭素を含
有させたもので、この炭素の存在により。
The present invention is a two-phase separation type R20o17 magnet containing carbon, and due to the presence of this carbon.

金属磁性相内及び結晶粒界に炭素化合物が析出し、保磁
力IHCが向上し、2相分離が適正に行なわれる。この
結果、残留磁束密度Brをほとんど低下させることなく
保磁力IHCが向上し。
Carbon compounds precipitate within the metal magnetic phase and at grain boundaries, improving coercive force IHC and properly performing two-phase separation. As a result, the coercive force IHC is improved without substantially reducing the residual magnetic flux density Br.

高エネルギー積の磁石が得られる。A magnet with a high energy product is obtained.

本発明の磁石材料は9本系磁石の製造方法で製造される
。即ち、原料の溶解、粉砕(粗粉砕および微粉砕)、磁
場配向、圧縮成型、焼結。
The magnet material of the present invention is manufactured by a method for manufacturing a nine-piece magnet. That is, melting of raw materials, pulverization (coarse and fine pulverization), magnetic field orientation, compression molding, and sintering.

溶体化熱処理(時効)の各工程を通して製造される。溶
解は、レビテーションアーク9.高周波等の手段によっ
て不活性雰囲気中で行う。一部真空中で行なわれる場合
もある。粗粉砕は鉄乳鉢、ブラウン・ミル等で行ない、
微粉砕はボールミル、振動ミル、ジェットミル等で行な
われる。磁場中配向および圧縮成型は、金型を用いる場
合には、同時に行なわれるのが通例で、配向磁場は8〜
25に6eで、成型圧力は0.4〜10 ton/儒で
ある。焼結はAr 、 He等の不活性雰囲気ないし真
空中で1150〜1250”Cの温度領域で行なう。溶
体化は一般に焼結と同時に進行するが。
Manufactured through various steps of solution heat treatment (aging). Melting is a levitation arc9. It is carried out in an inert atmosphere by means such as radio frequency. In some cases, it is performed in a vacuum. Coarse grinding is done in an iron mortar, brown mill, etc.
Fine pulverization is performed using a ball mill, vibration mill, jet mill, etc. Orientation in a magnetic field and compression molding are usually performed at the same time when using a mold, and the orientation magnetic field is
25 to 6e, and the molding pressure is 0.4 to 10 ton/Fu. Sintering is carried out in an inert atmosphere such as Ar or He or in vacuum at a temperature range of 1150 to 1250''C. Solution treatment generally proceeds simultaneously with sintering.

もし必要であれば2両工程を分離しても良い。If necessary, the two steps may be separated.

熱処理は700〜900℃で行なわれる。Heat treatment is performed at 700-900°C.

実施例 Smが25.8wt%、 Ouが9wt%、 Feが1
5wt%。
Example Sm is 25.8 wt%, O is 9 wt%, Fe is 1
5wt%.

Zrが1.6 wt%、 Tiが0.15wt%、Cが
0.002〜0.5wt%、残部Coとなるように、ア
ルゴン雰囲気中で高周波加熱により合金を溶解した。次
にこの合金を粗粉砕した後、ボールミルを用いて平均粒
径4μ程度に微粉砕した。これらの合金を10に6e以
上の磁場中+  1 tonl、、2の電力で成型した
。成型物をAr雰囲気中、  1210℃で1時間焼結
シタ後、1180℃で1時間溶体化処理した。この焼結
体を800℃で1時間熱処理した後、5℃/min以下
の冷却速度で、  300″Gまで冷却した。
The alloy was melted by high frequency heating in an argon atmosphere so that Zr was 1.6 wt%, Ti was 0.15 wt%, C was 0.002 to 0.5 wt%, and the balance was Co. Next, this alloy was coarsely ground, and then finely ground to an average particle size of about 4 μm using a ball mill. These alloys were molded in a magnetic field of 10 to 6 e or more with a power of +1 tonl,.2. The molded product was sintered at 1210° C. for 1 hour in an Ar atmosphere, and then solution-treated at 1180° C. for 1 hour. This sintered body was heat treated at 800° C. for 1 hour, and then cooled to 300″G at a cooling rate of 5° C./min or less.

この試料の磁石特性を図に示す。The magnetic properties of this sample are shown in the figure.

図から明らかなように、炭素がわずがでも入るとIHC
は急激に増加し+  c−0,05wt%で最大となり
、  0.05wt%以上のC含有量では、徐々に減少
する。一方BrはCの添加とともにわずかずつ減少する
。従って、  (BH)mayのカーブがらCの含有量
は0.005wt%から0.35wt%の範囲が適当で
あることがわかる。
As is clear from the figure, if even a small amount of carbon enters, IHC
increases rapidly and reaches a maximum at +c-0.05 wt%, and gradually decreases at C content of 0.05 wt% or more. On the other hand, Br decreases little by little as C is added. Therefore, it can be seen from the curve of (BH)may that the content of C is suitably in the range of 0.005 wt% to 0.35 wt%.

以上のとおり9本発明によれば、炭素の添加によって、
  IHCおよび(BH)maxの大幅な向上が図られ
る。
As described above, according to the present invention, by adding carbon,
Significant improvements in IHC and (BH)max are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図は、炭素含有量と磁気特性との関係を示すグラフであ
る。 (F (N (に 工1 (に C含何量(wtγ。)
The figure is a graph showing the relationship between carbon content and magnetic properties. (F (N (Ni) 1 (C content (wtγ.)

Claims (1)

【特許請求の範囲】[Claims] 1.2相分離型R2T17系磁石材料(ただし、Rはイ
ツトリウム、希土類元素を表わし、Tは遷移金属を表わ
す)であって、炭素をo、oos〜0.35wt%含む
ととを特徴とする希土類永久磁石材料。
1. A two-phase separation type R2T17-based magnet material (wherein R represents yttrium, a rare earth element, and T represents a transition metal), and is characterized by containing o, oos to 0.35 wt% of carbon. Rare earth permanent magnet material.
JP56124145A 1981-08-10 1981-08-10 Rare-earth material for permanent magnet Pending JPS5827304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124145A JPS5827304A (en) 1981-08-10 1981-08-10 Rare-earth material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124145A JPS5827304A (en) 1981-08-10 1981-08-10 Rare-earth material for permanent magnet

Publications (1)

Publication Number Publication Date
JPS5827304A true JPS5827304A (en) 1983-02-18

Family

ID=14878040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124145A Pending JPS5827304A (en) 1981-08-10 1981-08-10 Rare-earth material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS5827304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313501A (en) * 1989-06-12 1991-01-22 Tokin Corp Sintered body and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313501A (en) * 1989-06-12 1991-01-22 Tokin Corp Sintered body and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0340082B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6348805A (en) Manufacture of rare-earth magnet
JPS5827304A (en) Rare-earth material for permanent magnet
JPS5911641B2 (en) Bonded permanent magnet powder and its manufacturing method
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPS5848607A (en) Production of rare earth cobalt magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPH0477066B2 (en)
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JPS6263645A (en) Production of permanent magnet material
JPS6260208A (en) Permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH01184244A (en) Permanent magnetic material and its manufacture
JPS6238841B2 (en)
JPS6140738B2 (en)
JPH024942A (en) Permanent magnetic alloy
JPS6347907A (en) Manufacture of rare earth magnet
JPH0897022A (en) Manufacture of rare-earth magnet
JPH0527241B2 (en)
JPH0439208B2 (en)
JPS629658B2 (en)
JPS6293337A (en) Manufacture of rare earth magnet