JPH0257605A - Production of sintered alloy having excellent dimensional precision - Google Patents

Production of sintered alloy having excellent dimensional precision

Info

Publication number
JPH0257605A
JPH0257605A JP63206713A JP20671388A JPH0257605A JP H0257605 A JPH0257605 A JP H0257605A JP 63206713 A JP63206713 A JP 63206713A JP 20671388 A JP20671388 A JP 20671388A JP H0257605 A JPH0257605 A JP H0257605A
Authority
JP
Japan
Prior art keywords
sintering
binder
powder
sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63206713A
Other languages
Japanese (ja)
Inventor
Junichi Ota
純一 太田
Sadakimi Kiyota
禎公 清田
Kazuo Sakurada
桜田 一男
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63206713A priority Critical patent/JPH0257605A/en
Publication of JPH0257605A publication Critical patent/JPH0257605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the title sintered alloy with reduced variance in density and having excellent dimensional precision by forming the stainless steel powder having a specified particle size with a binder, removing the binder by heating, then sintering the formed product under specified conditions, and further sintering the product under pressure. CONSTITUTION:The particle size of the raw powder of ferritic and/or austenitic stainless steel is adjusted as follows. Namely, the content of the particles having <=5mum size is controlled to 3-20wt.%, that of the particles having 5-10mum size to 40wt.%, and that of the particles having 10-30mum size to 5-35wt.%. A binder is added to the metal powder and mixed, and the mixture is formed. The binder in the formed product is removed by heating in a nonoxidizing atmosphere. The heat-treated formed product is sintered at 1,050-1,350 deg.C and at a reduced pressure of <=0.1Torr, and then sintered at 1,250-1,350 deg.C in a nonoxidizing atmosphere. The sintered body is then further sintered at a pressure of <=100kgf/cm<2>. By this method, a sintered alloy with reduced variance in density and contraction by sintering and having excellent dimensional precision is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は粉末冶金法で製造される部品に関し、特に寸法
精度に優れた焼結合金に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to parts manufactured by powder metallurgy, and particularly to a sintered alloy with excellent dimensional accuracy.

〈従来の技術〉 近年、粉末冶金法による焼結部品の製造は著しい伸びを
示し、焼結部品の適用範囲が広がりつつある。 なかで
も、ステンレス鋼を用いた自動車部品、電子・電気部品
、事務用部品は形状の複雑化にともない製造方法も切削
加工法から粉末冶金法に置き換えられつつある。
<Prior Art> In recent years, the production of sintered parts by powder metallurgy has shown remarkable growth, and the range of applications of sintered parts is expanding. In particular, as the shapes of automobile parts, electronic/electrical parts, and office parts that use stainless steel become more complex, the manufacturing method is also replacing the cutting method with the powder metallurgy method.

しかし、粉末冶金法で製造された焼結合金には密度のば
らつきが生じ、このばらつきのために前記焼結合金の寸
法の精度は悪かった。
However, sintered alloys produced by powder metallurgy have density variations, and due to these variations, the dimensional accuracy of the sintered alloys has been poor.

〈発明が解決しようとする課題〉 そこで前述したように、焼結合金の寸法精度を正すため
焼結による収縮のばらつき、すなわち密度のばらつきを
できるだけ小さくすることを目的とする。
<Problems to be Solved by the Invention> Therefore, as described above, an object of the present invention is to minimize the variation in shrinkage due to sintering, that is, the variation in density, in order to correct the dimensional accuracy of the sintered alloy.

く課題を解決するための手段〉 本発明者らは、種々の検討を重ねた結果、金属粉末の粒
度構成が、5μm以下を3〜20重量%、5〜10μm
を40重量%以上、10〜・30μmを5〜35重量%
であるフェライト系および/またはオーステナイト系ス
テンレス鋼粉を原料粉末として用い、 前記金属粉末に結合材を添加し、混合、成形、この成形
体中の結合剤を非酸化性雰囲気で加熱除去し、続いて温
度1050〜1350℃、0.1Torr以下の減圧下
で焼結後、温度1250〜1350℃、非酸化性雰囲気
下で焼結し、さらに100 kgf/cm2以下で加圧
焼結することを特徴とする寸法精度に優れた焼結合金の
製造方法を提供する。
Means for Solving the Problems> As a result of various studies, the present inventors found that the particle size structure of the metal powder is 3 to 20% by weight of 5 μm or less, 5 to 10 μm
40% by weight or more, 5-35% by weight of 10-30μm
Using ferritic and/or austenitic stainless steel powder as a raw material powder, a binder is added to the metal powder, mixed, molded, the binder in this molded body is removed by heating in a non-oxidizing atmosphere, and then After sintering at a temperature of 1050 to 1350°C under a reduced pressure of 0.1 Torr or less, sintering at a temperature of 1250 to 1350°C in a non-oxidizing atmosphere, and then pressure sintering at a temperature of 100 kgf/cm2 or less. Provided is a method for manufacturing a sintered alloy with excellent dimensional accuracy.

また、金属粉末の粒度構成が、5μm以下を3〜20重
量%、5〜10μmを40重量%以上、10〜30μm
を5〜35重量%であり、 前記金属粉末としてNiを0.5〜50重量%含み残部
Feである原料粉末を用いて、これに結合材を添加し、
混合、成形後この成形体中の結合剤を非酸化性雰囲気中
で加熱除去し、続いて温度1100〜1300℃還元性
雰囲気中で焼結後、100 kgf/c+n’以下で加
圧焼結することを特徴とする寸法精度に優れた焼結合金
の製造方法を提供する。
In addition, the particle size structure of the metal powder is 3 to 20% by weight of 5 μm or less, 40% by weight or more of 5 to 10 μm, and 10 to 30 μm.
using a raw material powder containing 0.5 to 50 weight% of Ni and the balance being Fe as the metal powder, adding a binder to this,
After mixing and shaping, the binder in this compact is removed by heating in a non-oxidizing atmosphere, followed by sintering at a temperature of 1100 to 1300°C in a reducing atmosphere, followed by pressure sintering at 100 kgf/c+n' or less. To provide a method for manufacturing a sintered alloy with excellent dimensional accuracy.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明に於いて、寸法精度向上のために、原料金属粉末
の粒度構成が最も重要である。
In the present invention, the particle size structure of the raw metal powder is most important for improving dimensional accuracy.

焼結による寸法変化は最も大きく、成形体から焼結体の
収縮率が15%以上となり、この過程における寸法ばら
つきを押えることが肝要である。
The dimensional change due to sintering is the largest, with a shrinkage rate of 15% or more from the molded body to the sintered body, and it is important to suppress dimensional variations during this process.

原料粉末の粒径は焼結性を左右し、即ち収縮率のばらつ
きの原因と考えられる。 つまり、微細な粉末程容易に
焼結が進み、収縮が大きいが、粗粒粉では焼結も遅く、
収縮が小さくなることによって全体として収縮率をばら
つかせ、寸法精度を悪くしている。
The particle size of the raw material powder influences sinterability, and is considered to be the cause of variation in shrinkage rate. In other words, the finer the powder, the easier it is to sinter and the larger the shrinkage, but the coarser the powder, the slower the sintering.
As the shrinkage becomes smaller, the shrinkage rate varies as a whole and dimensional accuracy deteriorates.

従って、原料粉の粒度構成を調整することによって優れ
た寸法精度の焼結合金が得られる。
Therefore, by adjusting the particle size structure of the raw material powder, a sintered alloy with excellent dimensional accuracy can be obtained.

本発明に於いて、原料である金属粉末の粒度構成として
は、粒径が、5μm以下;3〜20重量%、5〜10μ
m:40重量%以上、10〜30μm:5〜35重量%
を含有するのがよい。
In the present invention, the particle size composition of the metal powder that is the raw material is: 5 μm or less; 3 to 20% by weight; 5 to 10 μm;
m: 40% by weight or more, 10-30 μm: 5-35% by weight
It is good to contain.

粒径5μm以下の粉末を3〜20重量%含有するのは、
粒径5μm以下の微粉は焼結が容易に進行するために、
これによって気孔を閉塞化する率が高いためである。 
気孔の閉塞化は後の加圧焼結工程で重要で、加圧の効果
を得るためには密度92%以上が必要であることを実験
によって確認している。
Containing 3 to 20% by weight of powder with a particle size of 5 μm or less is
Because fine powder with a particle size of 5 μm or less progresses easily in sintering,
This is because the rate of pore blockage is high.
Pore clogging is important in the subsequent pressure sintering process, and experiments have confirmed that a density of 92% or more is required to obtain the effect of pressure.

また、含有量を3重量%以上としたのは、3重量%未満
では焼結促進剤として有効性がみられず、閉気孔率の増
加もみられないからである。
Further, the reason why the content is set to 3% by weight or more is that if it is less than 3% by weight, it is not effective as a sintering accelerator and no increase in closed porosity is observed.

また、20重量%を超えると閉気孔率は増加するが、収
縮のばらつきが大きくなり、寸法精度を低下させるため
である。
Moreover, if it exceeds 20% by weight, the closed porosity increases, but the variation in shrinkage increases and dimensional accuracy decreases.

次に、粒径5〜10μmの粉末を40重量%以上含有す
るとよい。
Next, it is preferable to contain 40% by weight or more of powder having a particle size of 5 to 10 μm.

40重量%未満では、流動性が低下し、成形性を損ね、
その結果成形体内で不均一な充填具合を示し、寸法精度
を低下させるので不適である。
If it is less than 40% by weight, fluidity decreases and moldability is impaired,
As a result, the molded product exhibits non-uniform filling, which reduces dimensional accuracy and is therefore unsuitable.

また、粒径10〜30μmのものを5〜35重量%含有
するとよい。
Further, it is preferable to contain particles having a particle size of 10 to 30 μm in an amount of 5 to 35% by weight.

粒径10〜30μmの原料粉末は、これ以下の粉末に比
較して焼結性が劣るが、成形体の形状保持、収縮傾向の
抑制、流動性の向上の目的で混合される。 さらに、結
合剤を含んだ成形体から脱活合剤処理を施す際、適当量
粗粒粉を含んだ粒度構成の方が粒子間の隙間が大きくな
ることによって、結合剤がぬけ易くなる。
Although raw material powder with a particle size of 10 to 30 μm has inferior sinterability compared to powder with a particle size of 10 to 30 μm, it is mixed for the purpose of maintaining the shape of the molded body, suppressing shrinkage tendency, and improving fluidity. Furthermore, when a molded article containing a binder is subjected to a deactivation mixture treatment, a particle size structure containing an appropriate amount of coarse powder makes it easier for the binder to escape because the gaps between the particles become larger.

なお、粒径10〜30μmの原料粉の含有量は、5重量
%未満とすると前述のような効果がみられないので4好
ましくない。
It should be noted that if the content of the raw material powder with a particle size of 10 to 30 μm is less than 5% by weight, the above-mentioned effects will not be seen, so it is not preferable.

また、35重量%を超えて含有した場合には、流動性が
低下し、成形性を損ね、その結果、成形体内の不均一な
充填状態は焼結によっても解消されず、寸法精度を低下
させるので好ましくない。
In addition, if the content exceeds 35% by weight, fluidity decreases and formability is impaired, and as a result, the uneven filling state within the molded object cannot be resolved even by sintering, resulting in a decrease in dimensional accuracy. So I don't like it.

なお、粒径が30μm超では、焼結性を極端に劣化させ
るため、不適である。
It should be noted that if the particle size exceeds 30 μm, the sinterability will be extremely deteriorated, and therefore it is not suitable.

本発明は、粒径30μm以下の粉末を用いるため、銅粉
に結合剤を適当量添加混合して成形する。 銅粉だけで
は成形時にラミネーションや割れなどの欠陥が生じ歩留
りが低下するためである。
In the present invention, since a powder having a particle size of 30 μm or less is used, an appropriate amount of a binder is added to the copper powder, mixed, and then molded. This is because copper powder alone causes defects such as lamination and cracking during molding, resulting in a decrease in yield.

結合剤は熱可塑性樹脂、ワックスあるいは両方混合して
成形しても良い。
The binder may be a thermoplastic resin, wax, or a mixture of both for molding.

また、必要に応じて可塑剤、潤滑剤および脱脂促進剤な
どを添加する。
Additionally, a plasticizer, lubricant, degreasing accelerator, etc. are added as necessary.

熱可塑性樹脂としては、アクリル系、ポリエチレン系、
ポリプロピレン系およびポリスチレン系等の1種あるい
は2種以上の混合物が選択でき、ワックス類としては、
密ろう、木ろう、モンタンワックス等に代表されるよう
な天然ろう、および低分子ポリエチレン、ミクロクリス
タリンワックス、パラフィンワックス等に代表されるよ
うな合成ろうから選ばれる1 ff!あるいは2種以上
を選択して使用できる。
Thermoplastic resins include acrylic, polyethylene,
One type or a mixture of two or more types such as polypropylene type and polystyrene type can be selected, and the waxes include:
1 ff! selected from natural waxes such as beeswax, wood wax, montan wax, etc., and synthetic waxes such as low molecular weight polyethylene, microcrystalline wax, paraffin wax, etc. Alternatively, two or more types can be selected and used.

可塑剤は、主体となる樹脂類あるいはワックス類との組
合せによって選択し、フタル酸ジー2−エチルヘキシル
(DOP)、フタル酸ジ−エチル(DEP)  フタル
酸ジ−n−ブチル(DHP)等を使用できる。
The plasticizer is selected depending on the combination with the main resin or wax, and di-2-ethylhexyl phthalate (DOP), di-ethyl phthalate (DEP), di-n-butyl phthalate (DHP), etc. are used. can.

潤滑剤としては、高級脂肪酸、脂肪酸アミド、脂肪酸エ
ステル等を使用でき、場合によってはワックス類を潤滑
剤として兼用する。
As the lubricant, higher fatty acids, fatty acid amides, fatty acid esters, etc. can be used, and waxes may also be used as the lubricant in some cases.

また脱脂促進剤としては、樟脳等のような昇華性物質を
添加することもできる。
Further, as a degreasing accelerator, a sublimable substance such as camphor can also be added.

結合剤は成形方法によって異なるが、たとえば複雑形状
部品を成形する場合に用いる射出成形法では10重量%
程の結合剤を要する。
The binder varies depending on the molding method, but for example, in the injection molding method used to mold parts with complex shapes, it is 10% by weight.
Requires about 100% of binder.

成形後、結合剤を除去するために非酸化性雰囲気中で一
定速度で昇温、保持する。 この時の昇温速度を速くし
過ぎると製品に割れや膨れが生じるため5℃/h〜20
℃/hで昇温する。
After molding, the temperature is raised and maintained at a constant rate in a non-oxidizing atmosphere to remove the binder. If the heating rate is too fast at this time, the product will crack or swell, so
Raise the temperature at °C/h.

結合剤を除去した後、高密度化を達成するために焼結す
る。 結合剤は完全に除去されずに残っているが、この
残留炭素の除去方法は原料組成によって異なる。
After removing the binder, it is sintered to achieve densification. The binder remains without being completely removed, but the method for removing this residual carbon varies depending on the raw material composition.

本発明において金属粉末がフェライト系および/または
オーステナイト系ステンレス鋼粉の場合には、残留炭素
とステンレス鋼粉の表面に存在する酸化皮膜の酸素の反
応を減圧下で焼結することによって、最終焼結体の不純
物c、。
In the present invention, when the metal powder is ferritic and/or austenitic stainless steel powder, the final sintering process is performed by sintering the residual carbon and oxygen in the oxide film present on the surface of the stainless steel powder under reduced pressure. Consolidated impurities c.

を極力減少させる。Reduce as much as possible.

Fe−Ni系の場合には、非酸化性雰囲気で焼結を行う
のがよい。 とくにFe−Ni系では酸素と親和力の強
い元素を含まないために還元性雰囲気焼結で十分残留炭
素は除去可能である。
In the case of Fe--Ni, it is preferable to sinter in a non-oxidizing atmosphere. In particular, since the Fe-Ni type does not contain any elements that have a strong affinity for oxygen, residual carbon can be sufficiently removed by sintering in a reducing atmosphere.

ステンレス鋼の場合、室温から1050〜1350℃ま
では0.1Torr以下の真空中で加熱するのが好まし
い。 続いて、窒素、Arのような非酸化性雰囲気下で
1250〜1350℃まで加熱保持することがよい。 
この過程を経ることで、92%以上の密度比を有する焼
結合金を得ることができる。 その後、同一温度で10
0  kgf/cm2以下の圧力で保持することによっ
て、寸法精度の優れた焼結合金を得ることができる。
In the case of stainless steel, it is preferable to heat it from room temperature to 1050 to 1350°C in a vacuum of 0.1 Torr or less. Subsequently, it is preferable to heat and maintain the temperature up to 1250 to 1350° C. in a non-oxidizing atmosphere such as nitrogen or Ar.
Through this process, a sintered alloy having a density ratio of 92% or more can be obtained. After that, at the same temperature, 10
By maintaining the pressure at 0 kgf/cm2 or less, a sintered alloy with excellent dimensional accuracy can be obtained.

ステンレス鋼の場合には、耐食性が要求され、使用環境
も比較的厳しく、寸法精度とともに耐食性の向上も望ま
れている。 合金元素のうち、特にCrは耐食性向上に
効果があるが、Crの蒸気圧は1300℃で1O−3T
orrより高く、真空焼結において真空度によってはC
rが蒸発して表面のCr濃度が低下するため、耐食性が
著しく劣化する。 そこで、Cr蒸発を抑制し、Cra
度分布を不均一化しないようにすることが肝要である。
In the case of stainless steel, corrosion resistance is required, the environment in which it is used is relatively harsh, and improvements in corrosion resistance as well as dimensional accuracy are desired. Among alloying elements, Cr is particularly effective in improving corrosion resistance, but the vapor pressure of Cr is 1O-3T at 1300℃.
orr, and depending on the degree of vacuum in vacuum sintering, C
Since r evaporates and the Cr concentration on the surface decreases, corrosion resistance deteriorates significantly. Therefore, by suppressing Cr evaporation,
It is important to avoid making the degree distribution non-uniform.

  このことは本発明の低温下での真空焼結およびその
後の高温焼結によって達成される。
This is accomplished by the present invention's low temperature vacuum sintering followed by high temperature sintering.

本発明に係る銅粉は、難還元性元素であるCrを含有す
る組成である。 本発明では通常の焼結工程で用いられ
ている水素雰囲気における還元に比べて、真空焼結によ
って含有Cの作用により容易に還元を促進させることが
でき、その結果高密度の焼結体を得ることができる。 
焼結作用は粒子同士の接触点から始まり、原子の固体拡
散によって進行するが、粉末表面が酸化物で覆われてい
る場合は原子の拡散が遮られて緻密化が進まず、焼結体
の高密度が達成されない。 つまり、高密度を得るため
にはCr系酸化物を還元する必要がある。 そのために
、減圧下で焼結する。  0.1Torrを超えるとC
r系酸化物の還元反応が進みにくいため上限を0.1T
orrとした。
The copper powder according to the present invention has a composition containing Cr, which is a hardly reducible element. In the present invention, compared to reduction in a hydrogen atmosphere used in a normal sintering process, vacuum sintering allows reduction to be easily promoted by the action of contained C, and as a result, a high-density sintered body can be obtained. be able to.
The sintering action begins at the point of contact between particles and proceeds by the solid-state diffusion of atoms. However, if the powder surface is covered with oxides, the diffusion of atoms is blocked and densification does not proceed, resulting in the formation of a sintered body. High density is not achieved. That is, in order to obtain high density, it is necessary to reduce the Cr-based oxide. For this purpose, it is sintered under reduced pressure. C when exceeding 0.1 Torr
The upper limit is set at 0.1T because the reduction reaction of r-based oxides is difficult to proceed.
It was set as orr.

真空焼結の温度範囲を1050〜1350℃としたのは
、1050℃より低い温度ではCr系酸化物の還元が十
分なされないため、酸化物が残留し、その後の焼結を阻
害する。 従って、下限を1050℃とした。
The reason why the temperature range for vacuum sintering is set to 1050 to 1350°C is because the Cr-based oxide is not sufficiently reduced at temperatures lower than 1050°C, so the oxide remains and inhibits subsequent sintering. Therefore, the lower limit was set at 1050°C.

方、1350℃を超えて焼結した場合、Crの表面から
の蒸発量が大きくなり、濃度分布が不均一になるばかり
でなく、液相が出現して形状を崩すなどの欠陥が見られ
る。 よって、上限を1350℃とした。
On the other hand, when sintering is performed at a temperature exceeding 1350° C., the amount of Cr evaporated from the surface increases, and not only does the concentration distribution become non-uniform, but defects such as the appearance of a liquid phase and loss of shape are observed. Therefore, the upper limit was set to 1350°C.

続いて、高密度化および拡散による合金元素の均一化を
達成するために非酸化性;囲気中、1250〜1350
℃で焼結する。 前段階の低温の真空焼結で粒子同士の
接触点ができ、焼結が始まるが、さらに高温にすること
によって拡散を促進させて焼結を進め、残留気孔の微細
化と球状化を図る。雰囲気を非酸化性としたのは125
0℃以上の高温でのCr蒸発を抑制するためである。
Subsequently, in order to achieve densification and homogenization of alloying elements by diffusion, non-oxidizing; in ambient air, 1250-1350
Sinter at °C. The previous stage of low-temperature vacuum sintering creates contact points between the particles and sintering begins, but by increasing the temperature even higher, diffusion is promoted and sintering progresses, making the remaining pores smaller and more spheroidal. 125 made the atmosphere non-oxidizing.
This is to suppress Cr evaporation at high temperatures of 0° C. or higher.

Fe−Ni合金の場合は、還元性雰囲気であれば残留炭
素の除去は可能であり、たとえば工業的に用いられてい
る分解アンモニアガス、水素ガス等が用いられる。 ま
た、湿水素雰囲気、露点0〜30℃で保持後乾燥雰囲気
に変えると、残留炭素の除去により一層の効果がある。
In the case of Fe--Ni alloys, residual carbon can be removed in a reducing atmosphere; for example, industrially used decomposed ammonia gas, hydrogen gas, etc. can be used. Moreover, if the atmosphere is maintained in a wet hydrogen atmosphere at a dew point of 0 to 30° C. and then changed to a dry atmosphere, the removal of residual carbon will be more effective.

この時の圧力は、大気圧下で雰囲気焼結を行なうが、次
工程で加圧効果を得るために気孔の閉塞化が十分進んで
いることが必要である。 そのため、焼結温度範囲を1
100℃〜1300℃にするのがよい。
At this time, atmospheric sintering is performed under atmospheric pressure, but it is necessary that the pores are sufficiently closed in order to obtain a pressurizing effect in the next step. Therefore, the sintering temperature range is
The temperature is preferably 100°C to 1300°C.

1100℃未満では、拡散速度が遅く、加圧効果の得ら
れる焼結密度(92%以上)が得られず、最終焼結体の
寸法精度は低下する。
If the temperature is less than 1100°C, the diffusion rate is slow, a sintered density (92% or more) that provides a pressurizing effect cannot be obtained, and the dimensional accuracy of the final sintered body decreases.

方、1300℃を超えた焼結温度は、工業的な雰囲気焼
結炉では発熱体および耐火物の消耗が激しくコスト高と
なるため経済的に不利である。 さらに、密度上昇はそ
れ以上超えても著しい効果がみられないことから、上限
を1300℃とし、た。 続いて、焼結温度に保持した
状態で100 kgf/c[02以下の不活性ガスで加
圧することにより、寸法ばらつきの小さい焼結合金が製
造可能である。
On the other hand, a sintering temperature exceeding 1300° C. is economically disadvantageous in an industrial atmosphere sintering furnace because the heating element and refractory are rapidly consumed, resulting in high costs. Furthermore, since no significant effect on density increase was observed even if the temperature exceeded this limit, the upper limit was set at 1300°C. Subsequently, by pressurizing with an inert gas of 100 kgf/c [02 or less while maintaining the sintering temperature, a sintered alloy with small dimensional variations can be manufactured.

加圧圧力を100 kgf/cm2以下とするのが好ま
しい。 前工程における減圧、あるいは雰囲気焼結によ
って焼結体内部に残留する気孔は球状化し、閉塞化して
おり、それぞれの気孔が分断され、かつ結晶粒界近傍に
存在するため移動し易く、気孔内は真空もしくは還元性
ガスで気孔内のガス分圧は非常に小さく、低圧で消滅可
能である。 さらに100 kgf/cm2を超えて加
圧しても、それ以上の顕著な効果がみられず、経済性を
考慮し、上限を100 kgf/cm2とした。
It is preferable that the pressurizing pressure is 100 kgf/cm2 or less. Due to the reduced pressure or atmosphere sintering in the previous process, the pores remaining inside the sintered body become spheroidal and occluded, and each pore is divided and exists near the grain boundaries, so it is easy to move, and the inside of the pore is The gas partial pressure inside the pores is very small due to vacuum or reducing gas, and can disappear at low pressure. Furthermore, even if the pressure exceeded 100 kgf/cm2, no further significant effect was observed, so taking economic efficiency into consideration, the upper limit was set at 100 kgf/cm2.

なお、本発明の金属粉末中に、不可避的に非金属介在物
が1%以下含有していても特に影響はない。
Note that even if the metal powder of the present invention inevitably contains 1% or less of nonmetallic inclusions, there is no particular influence.

〈実施例〉 以下、実施例に基づいて本発明を具体的に説明する。<Example> The present invention will be specifically described below based on Examples.

(実施例1〜3、比較例1〜4) 原料粉末の平均粒径が2.1μm:0〜50重量%、8
.2μm;30重量%以上、14゜8μmho〜50重
量%であるように分級によって調整した5LIS316
組成の水アトマイズ鋼粉を用意した。
(Examples 1 to 3, Comparative Examples 1 to 4) Average particle size of raw material powder is 2.1 μm: 0 to 50% by weight, 8
.. 5LIS316 adjusted by classification to be 2 μm; 30% by weight or more, 14°8 μmho ~ 50% by weight
Water atomized steel powder with the following composition was prepared.

これに熱可塑性樹脂およびワックスを原料粉末に対し9
:1に添加混合し、加圧ニーダを用いて混練した。 混
練後、冷却し、ペレット状に粉砕し、射出成形機によっ
て長さ40mm、幅20mm、/lざ3mmの直方体を
30本成形した。 次に窒素雰囲気中で昇温速度10℃
/hで600℃まで加熱して、成形体中の070モル比
が1.0〜2.0になるように結合剤を除去した。
Add thermoplastic resin and wax to this powder at 9% of the raw material powder.
:1 and kneaded using a pressure kneader. After kneading, the mixture was cooled, crushed into pellets, and molded into 30 rectangular parallelepipeds with a length of 40 mm, a width of 20 mm, and a diameter of 3 mm per liter using an injection molding machine. Next, in a nitrogen atmosphere, the temperature was increased at a rate of 10°C.
/h to 600°C to remove the binder so that the 070 molar ratio in the molded body was 1.0 to 2.0.

それを真空中(<10−3Torr)1150℃で1時
間以上焼結し、続いて常圧のArガス雰囲気中1300
℃で2時間焼結後、炉内圧力50.100 kgf/a
m2に加圧し1時間保持した。
It was sintered at 1150°C in vacuum (<10-3 Torr) for over 1 hour, and then at 1300°C in an Ar gas atmosphere at normal pressure.
After sintering at ℃ for 2 hours, the furnace pressure was 50.100 kgf/a.
The pressure was increased to m2 and maintained for 1 hour.

冷却後、幅方向の寸法をマイクロメータで測定し、試料
数20本について平均値、標準偏差を求めた。
After cooling, the dimensions in the width direction were measured using a micrometer, and the average value and standard deviation were determined for 20 samples.

その結果を第1表に示す。The results are shown in Table 1.

第    1    表 実施例1〜3に示すように原料粉の粒度構成が本発明の
範囲内にあると優れた寸法精度で寸法ばらつきの小さい
、最終焼結体が得られた。
As shown in Examples 1 to 3 of Table 1, when the particle size structure of the raw material powder was within the range of the present invention, a final sintered body with excellent dimensional accuracy and small dimensional variations was obtained.

一方、比較例1は2.1μmの微粉が全くないために閉
気孔率が低いために均一な収縮が得られず、寸法精度が
低下したと考えられる。
On the other hand, in Comparative Example 1, since there was no fine powder of 2.1 μm, the closed porosity was low, so uniform shrinkage could not be obtained, and it is thought that the dimensional accuracy decreased.

比較例2は2,1μmの微粉が多く、微粉の収縮割合が
大きくなったため、寸法にばらつきが生じたと考えられ
る。
In Comparative Example 2, there were many fine powders of 2.1 μm, and the shrinkage ratio of the fine powders was increased, which is thought to be the reason for the variation in dimensions.

比較例3は14.8μmの粗粒粉が最も多く、成形体で
の密度不均一が最終焼結体の寸法ばらつきの原因になっ
たと考えられる。
Comparative Example 3 had the largest amount of coarse powder with a diameter of 14.8 μm, and it is thought that non-uniform density in the compact was the cause of the dimensional variation in the final sintered compact.

比較例4は粗粒粉が全くないために、脱活合材が完全に
行なわれず、残留炭素量が多く、それによって液相が出
現し、収縮が進み不均一な寸法変化を示したと考えられ
る。
In Comparative Example 4, since there was no coarse powder at all, the deactivation of the composite material was not completed completely, and the amount of residual carbon was large, resulting in the appearance of a liquid phase, which caused shrinkage and non-uniform dimensional changes. .

(実施例4.5、比較例5.6) 原料粉末として、水アトマイズ鉄粉を分級によって平均
粒径2.0〜18゜0μmに調整し、これにカルボニル
Ni粉(平均粒径:8μm)を2重量%添加し、実施例
1〜3と同様な方法で形成し、脱活合剤処理した。 そ
の後、1250℃、水素雰囲気中で2時間焼結した。 
次に、アルゴン雰囲気、圧カニ100kgf/cm2下
で、1250℃で1時間保持した。
(Example 4.5, Comparative Example 5.6) As a raw material powder, water atomized iron powder was adjusted to an average particle size of 2.0 to 18°0 μm by classification, and carbonyl Ni powder (average particle size: 8 μm) was added to this. was added in an amount of 2% by weight, formed in the same manner as in Examples 1 to 3, and treated with a deactivating agent. Thereafter, it was sintered at 1250° C. in a hydrogen atmosphere for 2 hours.
Next, it was held at 1250° C. for 1 hour under an argon atmosphere and a pressure of 100 kgf/cm 2 .

冷却後、幅方向の寸法をマイクロメータで測定し、試料
数20本について平均値標準偏差を求めた。 その結果
を第2表に示す。
After cooling, the dimension in the width direction was measured using a micrometer, and the average standard deviation was determined for 20 samples. The results are shown in Table 2.

第2表かられかるように、原料粉の粒度構成が本発明の
範囲内である場合、寸法ばらつきの小さい結果が得られ
た。
As can be seen from Table 2, when the particle size structure of the raw material powder was within the range of the present invention, results with small dimensional variations were obtained.

一方、比較例5は微粉が多く、還元雰囲気下での焼結が
進むことによって収縮量が多くなり、寸法にばらつきが
生じたと考えられる。
On the other hand, in Comparative Example 5, there was a large amount of fine powder, and as sintering progressed in a reducing atmosphere, the amount of shrinkage increased, which is thought to have caused variations in dimensions.

比較例6は粗粒粉が最も多く、成形時の金属粉末の充填
具合が不均一となり、最終焼結体寸法のばらつきの原因
になったと考えられる。
Comparative Example 6 had the largest amount of coarse powder, which is thought to have caused non-uniform filling of the metal powder during molding, causing variations in the dimensions of the final sintered body.

〈発明の効果〉 以上のように、本発明は原料粉末の粒度構成を5μm以
下:3〜20重量%、5〜10μm=40重量%以上、
10〜30μm:5〜35重量%とじ、該粉末に結合剤
を添加混合し、成形した後、成形体の結合剤を非酸化性
雰囲気中で加熱・除去し、続いて減圧あるいは大気圧で
焼結後、加圧焼結することにより、寸法精度の優れた焼
結合金の得られる製造方法を提供することができる。
<Effects of the Invention> As described above, the present invention sets the particle size structure of the raw material powder to 5 μm or less: 3 to 20% by weight, 5 to 10 μm = 40% by weight or more,
10 to 30 μm: 5 to 35% by weight, a binder is added to the powder and mixed, and after molding, the binder of the molded body is heated and removed in a non-oxidizing atmosphere, and then sintered under reduced pressure or atmospheric pressure. By performing pressure sintering after sintering, it is possible to provide a manufacturing method that yields a sintered alloy with excellent dimensional accuracy.

Claims (2)

【特許請求の範囲】[Claims] (1)金属粉末の粒度構成が、5μm以下を3〜20重
量%、5〜10μmを40重量%以上、10〜30μm
を5〜35重量%であるフェライト系および/またはオ
ーステナイト系ステンレス鋼粉を原料粉末として用い、 前記金属粉末に結合材を添加し、混合、成形、この成形
体中の結合剤を非酸化性雰囲気で加熱除去し、続いて温
度1050〜1350℃、0.1Torr以下の減圧下
で焼結後、温度1250〜1350℃、非酸化性雰囲気
下で焼結し、さらに100kgf/cm^2以下で加圧
焼結することを特徴とする寸法精度に優れた焼結合金の
製造方法。
(1) The particle size structure of the metal powder is 3 to 20% by weight of 5 μm or less, 40% by weight or more of 5 to 10 μm, and 10 to 30 μm.
Ferritic and/or austenitic stainless steel powder containing 5 to 35% by weight is used as a raw material powder, a binder is added to the metal powder, mixed, molded, and the binder in this molded body is placed in a non-oxidizing atmosphere. Then, after sintering at a temperature of 1050 to 1350°C under a reduced pressure of 0.1 Torr or less, sintering at a temperature of 1250 to 1350°C in a non-oxidizing atmosphere, and further heating at a temperature of 100 kgf/cm^2 or less. A method for producing a sintered alloy with excellent dimensional accuracy, which is characterized by pressure sintering.
(2)金属粉末の粒度構成が、5μm以下を3〜20重
量%、5〜10μmを40重量%以上、10〜30μm
を5〜35重量%であり、 前記金属粉末としてNiを0.5〜50重量%含み残部
Feである原料粉末を用いて、これに結合材を添加し、
混合、成形後この成形体中の結合剤を非酸化性雰囲気中
で加熱除去し、続いて温度1100〜1300℃還元性
雰囲気中で焼結後、100kgf/cm^2以下で加圧
焼結することを特徴とする寸法精度に優れた焼結合金の
製造方法。
(2) The particle size structure of the metal powder is 3 to 20% by weight of 5 μm or less, 40% by weight or more of 5 to 10 μm, and 10 to 30 μm.
using a raw material powder containing 0.5 to 50 weight% of Ni and the balance being Fe as the metal powder, adding a binder to this,
After mixing and shaping, the binder in this compact is removed by heating in a non-oxidizing atmosphere, followed by sintering at a temperature of 1100-1300°C in a reducing atmosphere, followed by pressure sintering at 100 kgf/cm^2 or less. A method for producing a sintered alloy with excellent dimensional accuracy.
JP63206713A 1988-08-20 1988-08-20 Production of sintered alloy having excellent dimensional precision Pending JPH0257605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206713A JPH0257605A (en) 1988-08-20 1988-08-20 Production of sintered alloy having excellent dimensional precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206713A JPH0257605A (en) 1988-08-20 1988-08-20 Production of sintered alloy having excellent dimensional precision

Publications (1)

Publication Number Publication Date
JPH0257605A true JPH0257605A (en) 1990-02-27

Family

ID=16527878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206713A Pending JPH0257605A (en) 1988-08-20 1988-08-20 Production of sintered alloy having excellent dimensional precision

Country Status (1)

Country Link
JP (1) JPH0257605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426706A (en) * 1990-05-17 1992-01-29 Kobe Steel Ltd Manufacture of sintered member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426706A (en) * 1990-05-17 1992-01-29 Kobe Steel Ltd Manufacture of sintered member

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
KR920007456B1 (en) Sintered bodies and production process thereof
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JPH01142002A (en) Alloy steel powder for powder metallurgy
JP2009544841A (en) Iron-based powder
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0254733A (en) Manufacture of ti sintered material
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JP2703939B2 (en) Method for producing Fe-Si soft magnetic sintered material
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH01184203A (en) Alloy powder for injected-compacting
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH03173702A (en) Production of sintered body
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH0257660A (en) Manufacture of sintered alloy steel having excellent corrosion resistance
JPH10140209A (en) Production of cemented carbide by injection molding
JPH01212705A (en) Manufacture of magnetic material
JPH0257620A (en) Method for sintering metal powder
JPH0257604A (en) Production of injection-molding powder and metallic sintered body