JP2703939B2 - Method for producing Fe-Si soft magnetic sintered material - Google Patents
Method for producing Fe-Si soft magnetic sintered materialInfo
- Publication number
- JP2703939B2 JP2703939B2 JP63206705A JP20670588A JP2703939B2 JP 2703939 B2 JP2703939 B2 JP 2703939B2 JP 63206705 A JP63206705 A JP 63206705A JP 20670588 A JP20670588 A JP 20670588A JP 2703939 B2 JP2703939 B2 JP 2703939B2
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- temperature
- heat treatment
- atmosphere
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
- B22F3/1007—Atmosphere
- B22F3/101—Changing atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、交流特性に優れるFe−Si系軟磁性焼結材料
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a Fe—Si soft magnetic sintered material having excellent AC characteristics.
<従来の技術> Fe−Si系合金は、軟質磁性材料の中でも電気抵抗率が
高いことを特徴とし、鉄損が低いために交流用用途に高
範囲で使用されている。<Prior Art> Fe-Si alloys are characterized by having high electrical resistivity among soft magnetic materials, and are used in a wide range for AC applications because of their low iron loss.
しかし、その焼結材については、本合金の硬くて脆い
性質に起因する成形の困難性のために応用が限られてい
る。特に、3wt%程度以上のSiの場合は、この傾向が強
い。However, the application of the sintered material is limited due to the difficulty of forming due to the hard and brittle nature of the present alloy. This tendency is particularly strong in the case of about 3 wt% or more of Si.
<発明が解決しようとする課題> この成形性の改良法として、有機バインダを利用した
射出成形は、粉末の硬さが殆ど問題とならないために、
有望視されている。ところが、金属粉末を射出成形によ
って成形し、焼結する場合は、Si等のように酸化性の高
い元素を極端に酸化させずに、有機バインダに起因する
Cを除去する方法がなく、交流磁気特性に優れた焼結材
料が得られなかった。<Problems to be Solved by the Invention> As a method of improving the moldability, injection molding using an organic binder is performed because the hardness of the powder is hardly a problem.
Promising. However, when molding and sintering metal powder by injection molding, there is no method for removing C originating from the organic binder without extremely oxidizing highly oxidizable elements such as Si. A sintered material having excellent characteristics could not be obtained.
本発明は、以上の実情に鑑みてなされたもので、射出
成形法を利用し、極端な酸化を伴わないように有機バイ
ンダに起因するCを除去することにより交換磁気特性に
優れたFe−Si系軟磁性焼結材料を製造する方法を提供す
ることを目的としている。The present invention has been made in view of the above circumstances, and uses an injection molding method to remove C caused by an organic binder so as not to involve extreme oxidation, thereby providing Fe-Si having excellent exchange magnetic properties. It is an object of the present invention to provide a method for producing a soft magnetic sintered material.
<課題を解決するための手段> 本発明者らは、Fe−Si系焼結材料の射出成形を利用し
た製造に関して、種々の焼結条件で原料粉末の焼結およ
び反応性および得られる焼結材料の磁気特性について、
詳細な実験を行うことによって本発明をなすに至った。<Means for Solving the Problems> Regarding the production of Fe—Si-based sintered materials using injection molding, the present inventors have studied the sintering and reactivity of raw material powders under various sintering conditions and the obtained sintering. Regarding the magnetic properties of materials,
The present invention has been accomplished by conducting detailed experiments.
すなわち、本発明の第一の態様によれば、平均粒径が
3〜9μmの合金粉末もしくは混合粉末より構成される
原料粉末を調製し、次にこれを有機バインダと混練し、
射出成形処理、脱脂処理を行った後、還元性雰囲気中も
しくは0.1Torr以下の減圧雰囲気中にて1050〜1250℃で
第1段目の加熱処理を行い、更に、不活性ガス雰囲気中
にて第1段目の加熱処理温度より50℃以上高く且つ1200
〜1350℃の範囲内の温度で第2段目の加熱処理を行うこ
とを特徴とする、 Si:1.5〜6.5wt%、 O :0.03〜0.5wt%、 C :0.03wt%以下 を含有し、残部がFeおよび不可避的不純物からなり、焼
結密度比が95.0%以上であるFe−Si系軟磁性焼結材料の
製造方法が提供される。That is, according to the first aspect of the present invention, a raw material powder composed of an alloy powder or a mixed powder having an average particle diameter of 3 to 9 μm is prepared, and then kneaded with an organic binder,
After performing the injection molding process and the degreasing process, the first stage heat treatment is performed at 1050 to 1250 ° C. in a reducing atmosphere or a reduced pressure atmosphere of 0.1 Torr or less, and further, the first heating process is performed in an inert gas atmosphere. 1200 degrees higher than the first stage heat treatment temperature and 1200 ° C
The second stage heat treatment is performed at a temperature within a range of ~ 1350 ° C, comprising: Si: 1.5 to 6.5 wt%, O: 0.03 to 0.5 wt%, C: 0.03 wt% or less; A method for producing an Fe—Si soft magnetic sintered material having a balance of Fe and unavoidable impurities and a sintering density ratio of 95.0% or more is provided.
また、本発明の第二の態様によれば、平均粒径が3〜
25μmの合金粉末もしくは混合粉末より構成される原料
粉末を調製し、次にこれを有機バインダと混練し、射出
成形処理、脱脂処理を行った後、還元性雰囲気中もしく
は0.1Torr以下の減圧雰囲気中にて1050〜1250℃で第1
段目の加熱処理を行い、更に、30〜150気圧の不活性ガ
ス雰囲気中にて第1段目の加熱処理温度より50℃以上高
く且つ1200〜1350℃の範囲内の温度で第2段目の加熱処
理を行うことを特徴とする、 Si:1.5〜6.5wt%、 O :0.03〜0.5wt%、 C :0.03wt%以下 を含有し、残部がFeおよび不可避的不純物からなり、焼
結密度比が95.0%以上であるFe−Si系軟磁性焼結材料の
製造方法が提供される。According to the second aspect of the present invention, the average particle diameter is 3 to
A raw material powder composed of a 25 μm alloy powder or a mixed powder is prepared, and then kneaded with an organic binder, subjected to an injection molding treatment and a degreasing treatment, and then subjected to a reducing atmosphere or a reduced pressure atmosphere of 0.1 Torr or less. 1st at 1050-1250 ° C
The first-stage heat treatment is performed, and the second-stage heat treatment is performed at a temperature higher than the first-stage heat treatment temperature by 50 ° C. or more and in a range of 1200 to 1350 ° C. in an inert gas atmosphere of 30 to 150 atm. Characterized by the following heat treatment: Si: 1.5 to 6.5 wt%, O: 0.03 to 0.5 wt%, C: 0.03 wt% or less, the balance being Fe and unavoidable impurities, and the sintered density A method for producing a Fe—Si soft magnetic sintered material having a ratio of 95.0% or more is provided.
以下に本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
まず、本発明の製造法で得られる焼結材料における組
成を限定した理由について説明する。First, the reason for limiting the composition of the sintered material obtained by the production method of the present invention will be described.
Si:1.5〜6.5wt% Siは、Feに添加することによって電気抵抗率を向上さ
せるが、1.5wt%に満たない場合は、電気抵抗率向上の
効果が小さい。また、Siは、透磁率を向上させるが、6.
5wt%を超えると急激に低下をきたすため、Si量を1.5〜
6.5wt%に限定した。Si: 1.5 to 6.5 wt% Si improves the electrical resistivity by adding it to Fe, but if less than 1.5 wt%, the effect of improving the electrical resistivity is small. Also, Si improves the magnetic permeability, but 6.
If it exceeds 5 wt%, it will drop sharply.
Limited to 6.5 wt%.
O:0.03〜0.5wt%、C:0.03wt%以下 C,Oは磁気特性、特に保持力(Hc)および最大透磁率
(μmax)に悪影響を及ぼす。O: 0.03 to 0.5 wt%, C: 0.03 wt% or less C and O adversely affect the magnetic properties, particularly the coercive force (Hc) and the maximum magnetic permeability (μmax).
しかしながら、Siのように非常に酸化性の高い元素を
含む場合、結晶雰囲気下で、原料粉末に起因するO量お
よび射出成形材料とするために添加した有機バインダに
起因するC量を同時に低減することが実質不可能であ
る。そこで、磁気特性に特に悪影響を与えるC量の低減
に主眼をおいた。磁気特性に対して悪影響の小さいO量
を、本発明では、むしろ高くすることによって、C量を
低減したものである。すなわち、C量が0.03wt%を超え
ると磁気特性劣化が著しいため、C量の上限値を0.03wt
%とした。また、C量を0.03wt%以下に低減するため
に、O量を0.03wt%以上とした。O量が0.03wt%を下回
ると決してC量を0.03wt%以下とすることができないた
め、O量の下限値を0.03wt%とした。However, when an extremely oxidizable element such as Si is contained, the amount of O caused by the raw material powder and the amount of C caused by the organic binder added to make the injection molding material are simultaneously reduced in a crystal atmosphere. It is virtually impossible. Therefore, the main focus has been on reducing the amount of carbon, which has a particularly adverse effect on magnetic properties. In the present invention, the C amount is reduced by increasing the O amount, which has a small adverse effect on the magnetic properties, in the present invention. That is, if the C content exceeds 0.03 wt%, the magnetic properties deteriorate significantly, so the upper limit of the C content is set to 0.03 wt%.
%. Further, in order to reduce the C content to 0.03 wt% or less, the O content is set to 0.03 wt% or more. If the O content is less than 0.03 wt%, the C content cannot be reduced to 0.03 wt% or less, so the lower limit of the O content is set to 0.03 wt%.
さらに、O量が0.5wt%を超えると、磁気特性が著し
く劣化するため、O量の上限値を0.5wt%とした。Further, if the O content exceeds 0.5 wt%, the magnetic properties are significantly deteriorated, so the upper limit of the O content is set to 0.5 wt%.
焼結密度比:95.0%以上 磁束密度は焼結密度比に比例し、焼結密度比が95.0%
を下回る場合、磁束密度が著しく低下し、競合成形法で
ある金型圧縮成形でえられる材料に対する優位性が見出
せない。Sintering density ratio: 95.0% or more Magnetic flux density is proportional to sintering density ratio, and sintering density ratio is 95.0%
If the ratio is less than the above, the magnetic flux density is remarkably reduced, and no advantage over the material obtained by the die compression molding as a competitive molding method can be found.
したがって、焼結密度比の下限を95.0%に限定した。 Therefore, the lower limit of the sintered density ratio is limited to 95.0%.
以上のように限定することによってはじめて磁気特性
に優れたFe−Si系焼結材料が得られる。Only by limiting as described above, an Fe-Si based sintered material having excellent magnetic properties can be obtained.
次に本発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
本発明の製造方法は、金属粉末を有機バインダと混練
したのち、射出成形処理、脱脂処理し、さらに焼結処理
を行うものである。特に本発明においては、従来、一般
に採用されている圧縮成形法の替わりに、射出成形法を
採用する点に大きな特徴がある。圧縮成形法では、原料
粉末が焼結性の低い粗粉末に限定されるのに対して、射
出成形法では、焼結性の高い微粉末を使用できる利点が
ある。これにより従来の低い磁気特性の改良が可能にな
った。The production method of the present invention comprises kneading a metal powder with an organic binder, performing an injection molding treatment, a degreasing treatment, and a sintering treatment. In particular, the present invention has a great feature in that an injection molding method is employed in place of the compression molding method which has been conventionally generally employed. In the compression molding method, the raw material powder is limited to a coarse powder having a low sinterability, whereas the injection molding method has an advantage that a fine powder having a high sinterability can be used. This has made it possible to improve the conventional low magnetic properties.
焼結体の磁気特性は、原料粉末の粒度と密接な関係が
あることを本発明者は知見した。原料粉末の平均粒径
は、焼結密度を左右し、ある上限粒度を超えると本発明
の焼結材料が得られない。The present inventors have found that the magnetic properties of the sintered body are closely related to the particle size of the raw material powder. The average particle size of the raw material powder affects the sintering density. If it exceeds a certain upper limit particle size, the sintered material of the present invention cannot be obtained.
また、焼結方法によって使用しうる原料粉末の粒度は
異なるが、平均粒径は3〜25μmであることが必要であ
る。まず、通常の加熱のみによる焼結の場合は、3〜9
μmの平均粒径が好ましく、加熱と同時にガス圧による
加圧を併用する加圧焼結を適用する場合は、10〜25μm
が好ましい。加熱のみによる焼結をおこなった場合、平
均粒径が増加するにつれて焼結密度比は低下し、9μm
を超えると焼結密度比は95.0%を達成できず、さらに25
μmを超えると焼結密度比は90%を達成できない。しか
し、焼結密度比が90%を上回る場合は、焼結体の気孔は
閉気孔となっているため、加圧焼結によって、焼結密度
比を95.0%以上にすることができる。The particle size of the raw material powder that can be used varies depending on the sintering method, but the average particle size needs to be 3 to 25 μm. First, in the case of sintering only by ordinary heating, 3 to 9
The average particle size of μm is preferable, and when applying pressure sintering that simultaneously uses heating and pressurization by gas pressure, 10 to 25 μm
Is preferred. When sintering is performed only by heating, the sintering density ratio decreases as the average particle size increases, and is 9 μm.
Exceeds 95.0%, the sintered density ratio cannot reach 95.0%.
If it exceeds μm, the sintered density ratio cannot reach 90%. However, when the sintering density ratio exceeds 90%, since the pores of the sintered body are closed pores, the sintering density ratio can be increased to 95.0% or more by pressure sintering.
また、10μm以上の平均粒径では加圧焼結による密度
比の向上が著しく、10μm未満の粉末よりもむしろ高い
密度比がえられる。When the average particle size is 10 μm or more, the density ratio is significantly improved by pressure sintering, and a higher density ratio can be obtained than a powder having a particle size of less than 10 μm.
一方、平均粒径が25μmを超えると決して95.0%以上
の密度比が達成できず、本発明の焼結材料が得られない
ため、平均粒径の上限値を25μmに限定した。また、平
均粒径が3μm未満の粉末は高価格であるため、経済的
でないため除外する。On the other hand, if the average particle size exceeds 25 μm, a density ratio of 95.0% or more cannot be achieved, and the sintered material of the present invention cannot be obtained. Therefore, the upper limit of the average particle size is limited to 25 μm. Powders having an average particle size of less than 3 μm are excluded because they are expensive and are not economical.
つぎに、焼結条件について説明する。 Next, the sintering conditions will be described.
焼結は2段階で行う必要がある。 Sintering must be performed in two stages.
この第1段目は、還元性雰囲気である水素含有ガスも
しくは0.1Torr以下の減圧雰囲気で行う必要がある。さ
もなければ、原料粉末表面の酸素や成形助剤の残留に起
因する炭素を除去できず、高純度の焼結体が得られな
い。また、焼結温度は、1050〜1250℃で行う必要があ
る。この下限値を下回ると、雰囲気と原料粉末との間で
起こる不純物除去反応が効果的に進行しない。また、こ
の上限値を超えると、不純物除去反応よりも粉末同士の
焼結の方が早く進行するために、不純物が除去できな
い。これらの不純物は、水蒸気もしくは炭酸ガスとして
除去されるため、ガス流通孔を失うことは大きな弊害と
なる。特に、成形体は微粉末で構成されるため、もとも
と流通孔は小さいので、注意が必要である。また、これ
らの温度は、焼結の進行が速やかになりはじめる温度で
もあり、原料粉末の粒度によっても異なるため、平均粒
径が小さい場合には、より低温側に平均粒径が大きい場
合は、より高温側に、本発明の範囲より選択するのが好
ましい。This first stage needs to be performed in a hydrogen-containing gas which is a reducing atmosphere or a reduced-pressure atmosphere of 0.1 Torr or less. Otherwise, carbon on the surface of the raw material powder due to the residual oxygen or molding aid cannot be removed, and a high-purity sintered body cannot be obtained. Further, the sintering temperature needs to be 1050 to 1250 ° C. Below this lower limit, the impurity removal reaction between the atmosphere and the raw material powder does not proceed effectively. If the upper limit is exceeded, the sintering of the powders proceeds faster than the impurity removal reaction, so that impurities cannot be removed. Since these impurities are removed as water vapor or carbon dioxide gas, losing the gas flow holes is a serious adverse effect. In particular, care must be taken since the formed body is composed of fine powder and the flow hole is originally small. In addition, these temperatures are also temperatures at which the progress of sintering starts to be rapid, and also vary depending on the particle size of the raw material powder. Therefore, when the average particle size is small, when the average particle size is larger at a lower temperature side, It is preferable to select the higher temperature side from the range of the present invention.
焼結時間は、使用した焼結温度で、C、O量が平衡値
に達するに要する時間であり、通常、20分〜4時間の範
囲であり、数回の試行実験で容易に決定できる。The sintering time is the time required for the amounts of C and O to reach the equilibrium value at the sintering temperature used, and is usually in the range of 20 minutes to 4 hours, and can be easily determined by several trial experiments.
続いて、本発明の焼結の第2段目について説明する。 Next, the second stage of the sintering of the present invention will be described.
第2段目は、第1段目で高純度化、閉空孔化した焼結
体を高密度化する工程であるため、もはや反応性のガス
を使用する必要はない。したがって、雰囲気ガスは不活
性ガスに限定する。また、温度は、第1段目の焼結温度
よりも50℃以上高い温度である必要がある。Since the second stage is a process for increasing the density of the sintered body which has been purified and closed in the first stage, it is no longer necessary to use a reactive gas. Therefore, the atmosphere gas is limited to the inert gas. Further, the temperature needs to be 50 ° C. or more higher than the first-stage sintering temperature.
温度の下限値を、第1段目の焼結温度よりも50℃以上
高い温度としたのは、第1段目の焼結温度が、焼結速度
が加速しはじめる温度に設定してあるために、高密度化
が不充分であるためである。さらに、第1段目で減圧雰
囲気を使用した場合、構成元素の蒸気圧の差によって焼
結体表面に組成分布が生じる。また、還元性のガス雰囲
気でも、ガスに触れている焼結体もしくは粉末表面とそ
れらの内部との間に組成分布が生じることがある。この
組成分布は焼結体中の原子拡散律速で成立するものであ
り、大気圧以上の構成元素の蒸発しない雰囲気で、ある
いは化学反応の全く起こることのない雰囲気で、第1段
目よりも50℃以上高い温度、すなわち、より拡散速度の
高い温度領域で、均一化処理を速やかに進行させる必要
があるからである。The reason for setting the lower limit of the temperature to be 50 ° C. or more higher than the sintering temperature of the first stage is that the sintering temperature of the first stage is set to a temperature at which the sintering speed starts to accelerate. In addition, the high density is insufficient. Further, when a reduced-pressure atmosphere is used in the first stage, a composition distribution occurs on the surface of the sintered body due to a difference in vapor pressure of the constituent elements. Further, even in a reducing gas atmosphere, a composition distribution may be generated between the surface of the sintered body or powder contacting the gas and the inside thereof. This composition distribution is established by the atomic diffusion rate control in the sintered body. In an atmosphere in which the constituent elements at atmospheric pressure or higher do not evaporate, or in an atmosphere in which no chemical reaction occurs, the composition distribution is higher than that in the first stage. This is because it is necessary to promptly advance the homogenization process at a temperature higher than or equal to ° C., that is, at a temperature region where the diffusion rate is higher.
上限温度は、必要以上に結晶粒径が粗大化したり、溶
融を開始する温度である。より好ましい温度範囲は、12
00〜1350℃である。The upper limit temperature is a temperature at which the crystal grain size becomes unnecessarily large or melting starts. A more preferred temperature range is 12
00-1350 ° C.
また、この第2段目の工程で、加圧焼結を行う場合に
ついても、温度の下限値は、第1段目の焼結温度よりも
50℃以上高い温度であることが必要である。この下限温
度は、焼結速度が加速しはじめる温度である第1段目で
設定した温度と相関があり、この温度を境に加圧焼結が
効果的となる。さらに、前述の通り、第1段目の焼結に
おいて形成された組成分布を解消するために、本工程で
均一化処理を速やかに進行させる必要があるからであ
る。上限温度についても、加圧焼結の場合も加圧しない
場合と同様である。また、加圧に必要な圧力は30〜150
気圧である。30気圧未満の場合は、圧力を加えない場合
と有意差がでず、150気圧を超えるガス媒体を用いると
設備コストが急騰するからである。Also, in the case of performing pressure sintering in the second stage, the lower limit of the temperature is lower than the first stage sintering temperature.
The temperature must be higher than 50 ° C. This lower limit temperature has a correlation with the temperature set in the first stage, which is the temperature at which the sintering speed starts to accelerate, and pressure sintering becomes effective at this temperature. Further, as described above, in order to eliminate the composition distribution formed in the first-stage sintering, it is necessary to promptly advance the homogenization treatment in this step. The upper limit temperature is the same as in the case of pressure sintering and in the case of no pressure. The pressure required for pressurization is 30 to 150
Atmospheric pressure. If the pressure is less than 30 atm, there is no significant difference from the case where no pressure is applied, and if a gas medium exceeding 150 atm is used, the equipment cost rises sharply.
第2段目における焼結時間は、使用した焼結温度で、
焼結密度および化学組成分布が平衡に達するに要する時
間であり、通常、20分〜2時間の範囲であり、数回の試
行実験で容易に選択できる。The sintering time in the second stage is the sintering temperature used,
This is the time required for the sintering density and chemical composition distribution to reach equilibrium, usually in the range of 20 minutes to 2 hours, and can be easily selected by several trial experiments.
以上のように、焼結方法を限定することによって初め
て、射出成形法を利用して、高磁気特性のFe−Si系焼結
材料を経済的に製造することができる。As described above, only by limiting the sintering method, it is possible to economically produce a Fe—Si-based sintered material having high magnetic properties by using the injection molding method.
本発明の原料粉末を構成する出発原料粉末は、高圧水
アトマイズ法、還元法、カルボニル法等により得られた
粉末を分級あるいは粉砕することによって所望の粒度に
調整して使用する。本発明の原料粉末は、上記出発原料
単独またはそれらの混合粉末として使用できる。原料粉
末の純度については、焼結過程で除去できるC、Oを除
く他の不純物が実質的に無視できる程度でよく、通常、
Fe、Siの合計量が97〜99wt%の粉末が使用できる。The starting raw material powder constituting the raw material powder of the present invention is used after adjusting the powder obtained by a high-pressure water atomizing method, a reducing method, a carbonyl method or the like to a desired particle size by classifying or pulverizing the powder. The raw material powder of the present invention can be used alone or as a mixed powder thereof. Regarding the purity of the raw material powder, impurities other than C and O that can be removed in the sintering process may be substantially negligible.
A powder having a total amount of Fe and Si of 97 to 99 wt% can be used.
前記原料粉末は、有機バインダと混練してコンパウン
ドとし、公知の射出成形法により成形される。特に、複
雑形状部品の場合は射出成形法が効果的である。The raw material powder is kneaded with an organic binder to form a compound, and is molded by a known injection molding method. In particular, in the case of a complex-shaped part, the injection molding method is effective.
本発明に用いられるバインダは、熱可塑性樹脂類また
はワックス類あるいはその混合物を主体とする公知バイ
ンダが使用でき、必要に応じて可塑剤、潤滑剤および脱
脂促進剤等を添加する。熱可塑性樹脂としては、アクリ
ル系、ポリエチレン系、ポリプロピレン系、およびポリ
スチレン系等の1種あるいは2種以上の混合物が選択で
きる。ワックス類としては、密ろう、木ろう、モンタン
ワックス等に代表されるような天然ろうおよび低分子ポ
リエチレン、ミクロクリスタリンワックス、パラフィン
ワックス等に代表されるような合成ろうより1種あるい
は2種以上を選択して使用できる。可塑剤は、主体とな
る樹脂類あるいはワックス類との組合せによって選択
し、DOP、DEP、DHP等を使用できる。潤滑剤としては、
高級脂肪酸、脂肪酸アミド、脂肪酸エステル等を使用で
き、場合によってはワックス類を潤滑剤として兼用す
る。また、脱脂を促進することを目的に、樟脳等のよう
な昇華性物質を添加することもできる。As the binder used in the present invention, a known binder mainly composed of a thermoplastic resin or wax or a mixture thereof can be used, and a plasticizer, a lubricant, a degreasing accelerator and the like are added as necessary. As the thermoplastic resin, one or a mixture of two or more of acrylic, polyethylene, polypropylene, and polystyrene can be selected. As the waxes, one or more waxes may be selected from natural waxes represented by beeswax, wood wax, montan wax and the like and synthetic waxes represented by low molecular weight polyethylene, microcrystalline wax, paraffin wax and the like. You can select and use. The plasticizer is selected depending on the combination with the main resin or wax, and DOP, DEP, DHP and the like can be used. As a lubricant,
Higher fatty acids, fatty acid amides, fatty acid esters and the like can be used, and in some cases, waxes are also used as a lubricant. A sublimable substance such as camphor may be added for the purpose of accelerating degreasing.
添加すべきバインダ量は、全体積の45〜60vol%であ
り(残体積は原料金属粉)、成形すべき形状の成形容易
性と脱脂性を考慮して調整できる。The amount of the binder to be added is 45 to 60 vol% of the total volume (the remaining volume is the raw metal powder), and can be adjusted in consideration of the ease of molding and the degreasing property of the shape to be molded.
鉄粉とバインダとの混合、混練には、バッチ式あるい
は連続式のニーダを使用できる。混練後、ペレタイザー
あるいは粉砕機等を使用して造粒を行い成形用原料を得
る。For the mixing and kneading of the iron powder and the binder, a batch type or continuous type kneader can be used. After kneading, granulation is performed using a pelletizer or a crusher to obtain a raw material for molding.
成形用原料は、通常のプラスチック用射出成形機を用
いて、成形することができる。The molding raw material can be molded using an ordinary plastic injection molding machine.
得られた成形体は、大気中あるいは雰囲気ガス中で、
脱脂処理を施す。The obtained molded body is in the air or in an atmosphere gas.
Degreasing treatment is performed.
脱脂処理の後、高密度化およびC、O量の低減のため
に前述のように焼結を行う。After the degreasing treatment, sintering is performed as described above to increase the density and reduce the amounts of C and O.
また、必要に応じて、最終焼結体のC、O量を調整す
る。C、O量の増減の方法としては、脱脂体のC/O量比
の増減によってなされ、C/O量比を小さくすることでC
量を低減でき、C/O量比を大きくすることでO量を低減
できる。C/O量比の増減には、原料粉末のC、O量の調
整、バインダの除去程度の加減、あるいは除去後の酸化
処理などによって行うことができる。さらに、C、O量
の全体レベル(C量とO量との積に相当)の低減には、
第1段目の焼結雰囲気の変更によって行い、減圧雰囲気
を利用する場合は圧力の低減により、還元性雰囲気を利
用する場合は雰囲気ガスの純度の向上によって達成でき
る。Further, if necessary, the amounts of C and O of the final sintered body are adjusted. As a method of increasing and decreasing the C and O amounts, the C / O amount ratio of the degreased body is increased and decreased.
The amount can be reduced, and the O amount can be reduced by increasing the C / O amount ratio. The C / O amount ratio can be increased or decreased by adjusting the amounts of C and O in the raw material powder, adjusting the degree of removal of the binder, or performing an oxidation treatment after the removal. Furthermore, to reduce the overall level of C and O (corresponding to the product of C and O),
The first step is carried out by changing the sintering atmosphere, and this can be achieved by reducing the pressure when using a reduced pressure atmosphere and by improving the purity of the atmosphere gas when using a reducing atmosphere.
<実施例> 以下に本発明を実施例に基づき具合的に説明する。<Example> Hereinafter, the present invention will be specifically described based on examples.
第1表に示す各原料粉末にそれぞれ第1表に示すバイ
ンダを添加し、加圧ニーダによって混練したのち、粉砕
して射出成形用コンパウンドを作成した。続いて、射出
成形機によって、外径53×内径41×高さ5mmのリング試
験片を作成した。これを窒素中、+5℃/hの速度で600
℃まで昇温の後、600℃で30分保持して、脱脂処理を施
した。次にそれぞれ第1表に示す条件で、第1段目の加
熱処理および第2段目の加熱処理を施した。得られた焼
結体の化学成分、密度比、磁気特性および電気抵抗率を
第1表に示す。The binders shown in Table 1 were added to the respective raw material powders shown in Table 1, kneaded by a pressure kneader, and then pulverized to prepare an injection molding compound. Subsequently, a ring test piece having an outer diameter of 53 × inner diameter of 41 × 5 mm in height was prepared by an injection molding machine. This is placed in nitrogen at a rate of + 5 ° C / h for 600
After the temperature was raised to 600 ° C., the temperature was maintained at 600 ° C. for 30 minutes to perform degreasing. Next, the first-stage heat treatment and the second-stage heat treatment were performed under the conditions shown in Table 1, respectively. Table 1 shows the chemical composition, density ratio, magnetic properties and electric resistivity of the obtained sintered body.
なお、第1表中No.1−1〜1−11については、脱脂後
に露点0℃の水素雰囲気中、350〜650℃の温度範囲で加
熱温度の水準を調節することによりC、O量を調整した
のち第1段目および第2段目の熱処理を施した。For No. 1-1 to 1-11 in Table 1, the amount of C and O was adjusted by adjusting the level of the heating temperature within a temperature range of 350 to 650 ° C. in a hydrogen atmosphere having a dew point of 0 ° C. after degreasing. After the adjustment, the first and second heat treatments were performed.
第1表から、No.1−1〜1−11についてC量およびO
量が各々0.03wt%、0.5wt%を超える場合は、磁気特性
が劣化した(比較例1,2)。また、O量が低過ぎる場合
(比較例1)は、C量を低減できず、磁気特性が極端に
劣化した。しかし、C、O量が本発明の範囲内の場合は
優れた磁気特性が得られた(本発明例1〜8)。From Table 1, it can be seen that for Nos. 1-1 to 1-11, the C content and O
When the amounts exceeded 0.03 wt% and 0.5 wt%, respectively, the magnetic properties deteriorated (Comparative Examples 1 and 2). On the other hand, when the O amount was too low (Comparative Example 1), the C amount could not be reduced, and the magnetic properties were extremely deteriorated. However, when the C and O contents were within the range of the present invention, excellent magnetic properties were obtained (Examples 1 to 8 of the present invention).
第2段目の加熱処理温度が、第1段目の加熱温度より
も50℃以上高くない場合(比較例3)は、低い密度しか
得られないため、優れた磁気特性が得られなかった。When the second-stage heat treatment temperature was not higher than the first-stage heating temperature by 50 ° C. or more (Comparative Example 3), only a low density was obtained, so that excellent magnetic properties were not obtained.
さらに、第2段目の加熱処理で加熱焼結を利用する場
合は、圧力30気圧未満(比較例4)では効果がない。ま
た、原料の平均粒径が25μmを超えると(比較例5)効
果が無い。Further, in the case where heat sintering is used in the second stage heat treatment, there is no effect at a pressure lower than 30 atm (Comparative Example 4). When the average particle size of the raw material exceeds 25 μm (Comparative Example 5), there is no effect.
30気圧以上で加圧焼結のもの(本発明例9〜14)の焼
結密度比はいずれも常圧焼結のもの(本発明例1〜8)
より高い結果が得られた。The sintering density ratios of those sintered under pressure at 30 atm or more (Examples 9 to 14 of the present invention) are those of normal pressure sintering (Examples 1 to 8 of the present invention).
Higher results were obtained.
<発明の効果> 本発明は、以上説明したように構成されているので、
射出成形法を利用し、極端な酸化を伴わないように有機
バインダに起因するCを除去することにより交流磁気特
性に優れたFe−Si系軟磁性焼結材料を得ることができ
る。 <Effects of the Invention> Since the present invention is configured as described above,
By using an injection molding method and removing C caused by the organic binder without causing extreme oxidation, a Fe-Si soft magnetic sintered material having excellent AC magnetic properties can be obtained.
Claims (2)
混合粉末より構成される原料粉末を調製し、次にこれを
有機バインダと混練し、射出成形処理、脱脂処理を行っ
た後、還元性雰囲気中もしくは0.1Torr以下の減圧雰囲
気中にて1050〜1250℃で第1段目の加熱処理を行い、更
に、不活性ガス雰囲気中にて第1段目の加熱処理温度よ
り50℃以上高く且つ1200〜1350℃の範囲内の温度で第2
段目の加熱処理を行うことを特徴とする、 Si:1.5〜6.5wt%、 O :0.03〜0.5wt%、 C :0.03wt%以下 を含有し、残部がFeおよび不可避的不純物からなり、焼
結密度比が95.0%以上であるFe−Si系軟磁性焼結材料の
製造方法。1. A raw material powder composed of an alloy powder or a mixed powder having an average particle diameter of 3 to 9 μm is prepared, then kneaded with an organic binder, subjected to an injection molding treatment and a degreasing treatment, and then reduced. First heat treatment at 1050 to 1250 ° C in an inert atmosphere or a reduced pressure atmosphere of 0.1 Torr or less, and more than 50 ° C higher than the first heat treatment temperature in an inert gas atmosphere And at a temperature in the range of 1200-1350 ° C
It is characterized by performing the first stage heat treatment, which contains Si: 1.5 to 6.5 wt%, O: 0.03 to 0.5 wt%, and C: 0.03 wt% or less, with the balance being Fe and unavoidable impurities. A method for producing an Fe—Si soft magnetic sintered material having a consolidated density ratio of 95.0% or more.
混合粉末より構成される原料粉末を調製し、次にこれを
有機バインダと混練し、射出成形処理、脱脂処理を行っ
た後、還元性雰囲気中もしくは0.1Torr以下の減圧雰囲
気中にて1050〜1250℃で第1段目の加熱処理を行い、更
に、30〜150気圧の不活性ガス雰囲気中にて第1段目の
加熱処理温度より50℃以上高く且つ1200〜1350℃の範囲
内の温度で第2段目の加熱処理を行うことを特徴とす
る、 Si:1.5〜6.5wt%、 O :0.03〜0.5wt%、 C :0.03wt%以下 を含有し、残部がFeおよび不可避的不純物からなり、焼
結密度比が95.0%以上であるFe−Si系軟磁性焼結材料の
製造方法。2. A raw material powder composed of an alloy powder or a mixed powder having an average particle diameter of 3 to 25 μm is prepared, then kneaded with an organic binder, subjected to an injection molding treatment and a degreasing treatment, and then reduced. First heat treatment at 1050 to 1250 ° C. in a neutral atmosphere or a reduced pressure atmosphere of 0.1 Torr or less, and further, the first heat treatment temperature in an inert gas atmosphere of 30 to 150 atm. The second stage heat treatment is performed at a temperature higher than 50 ° C. and in the range of 1200 to 1350 ° C., Si: 1.5 to 6.5 wt%, O: 0.03 to 0.5 wt%, C: 0.03 A method for producing a Fe-Si soft magnetic sintered material containing less than wt%, the balance being Fe and unavoidable impurities, and having a sintering density ratio of 95.0% or more.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63206705A JP2703939B2 (en) | 1988-08-20 | 1988-08-20 | Method for producing Fe-Si soft magnetic sintered material |
US07/393,765 US4964907A (en) | 1988-08-20 | 1989-08-14 | Sintered bodies and production process thereof |
DE8989308327T DE68906837T2 (en) | 1988-08-20 | 1989-08-16 | SINTERED WORKPIECES AND METHOD FOR THEIR PRODUCTION. |
EP89308327A EP0356131B1 (en) | 1988-08-20 | 1989-08-16 | Sintered bodies and production process thereof |
CA000608685A CA1333341C (en) | 1988-08-20 | 1989-08-18 | Sintered bodies and production process thereof |
AU40060/89A AU612057C (en) | 1988-08-20 | 1989-08-18 | Sintered bodies and production process thereof |
KR1019890011827A KR920007456B1 (en) | 1988-08-20 | 1989-08-19 | Sintered bodies and production process thereof |
US07/549,491 US5067979A (en) | 1988-08-20 | 1990-07-06 | Sintered bodies and production process thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63206705A JP2703939B2 (en) | 1988-08-20 | 1988-08-20 | Method for producing Fe-Si soft magnetic sintered material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0257664A JPH0257664A (en) | 1990-02-27 |
JP2703939B2 true JP2703939B2 (en) | 1998-01-26 |
Family
ID=16527752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63206705A Expired - Fee Related JP2703939B2 (en) | 1988-08-20 | 1988-08-20 | Method for producing Fe-Si soft magnetic sintered material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2703939B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2587872B2 (en) * | 1988-12-19 | 1997-03-05 | 住友金属鉱山株式会社 | Method for producing soft magnetic sintered body of Fe-Si alloy |
JPH0692604B2 (en) * | 1989-11-30 | 1994-11-16 | 川崎製鉄株式会社 | Method for producing iron-based metal sintered body by metal powder injection molding |
WO2005103315A1 (en) | 2004-04-23 | 2005-11-03 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Iron-based sintered alloy, iron-based sintered alloy member and method for producing those |
JP2007217742A (en) * | 2006-02-15 | 2007-08-30 | Seiko Epson Corp | Sintered compact and manufacturing method therefor |
CN107914007B (en) * | 2017-11-06 | 2019-09-27 | 江苏精研科技股份有限公司 | A kind of powder injection-molded soft magnetic materials and its preparation process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60165302A (en) * | 1984-02-09 | 1985-08-28 | Sumitomo Electric Ind Ltd | Preparation of soft magnetic sintered material |
JPS61231136A (en) * | 1985-04-03 | 1986-10-15 | Hitachi Metals Ltd | Soft magnetic sintered iron-silicon material and its manufacture |
-
1988
- 1988-08-20 JP JP63206705A patent/JP2703939B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0257664A (en) | 1990-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4964907A (en) | Sintered bodies and production process thereof | |
JP2588272B2 (en) | Method for producing Fe-Co based sintered magnetic material | |
EP0324122B1 (en) | Starting material for injection molding of metal powder and method of producing sintered parts | |
EP0378702B1 (en) | Sintered alloy steel with excellent corrosion resistance and process for its production | |
JP2703939B2 (en) | Method for producing Fe-Si soft magnetic sintered material | |
US5067979A (en) | Sintered bodies and production process thereof | |
JPH0254733A (en) | Manufacture of ti sintered material | |
KR930006442B1 (en) | Sintered fe-co type magnetic materials | |
JPH0257613A (en) | Production of sintered metallic material and its raw powder | |
JPH03173702A (en) | Production of sintered body | |
JP2643002B2 (en) | Degreasing method for powder compacts | |
JP2928647B2 (en) | Method for producing iron-cobalt based sintered magnetic material | |
JPH0257605A (en) | Production of sintered alloy having excellent dimensional precision | |
JP2007162064A (en) | Method of manufacturing magnetostriction material powder, and method of manufacturing magnetostrictor | |
JPH0257612A (en) | Pressure sintering method | |
JPH01212702A (en) | Manufacture of magnetic material | |
JPH01212706A (en) | Manufacture of magnetic material | |
JPH06136404A (en) | Production of iron-base soft magnetic material sintered compact | |
JPH0717983B2 (en) | Method for producing high nitrogen stainless steel sintered body | |
JPH0257660A (en) | Manufacture of sintered alloy steel having excellent corrosion resistance | |
JPH01212705A (en) | Manufacture of magnetic material | |
JPH07188801A (en) | Production of titanium sintered compact | |
JPS61252603A (en) | Manufacture of rare earth magnet | |
JPH05105905A (en) | Raw powder for sintering material and production of the sintering material | |
JPH07224347A (en) | Production of ferrous sintered body by metal powder injection molding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |