JP2928647B2 - Method for producing iron-cobalt based sintered magnetic material - Google Patents

Method for producing iron-cobalt based sintered magnetic material

Info

Publication number
JP2928647B2
JP2928647B2 JP1023091A JP1023091A JP2928647B2 JP 2928647 B2 JP2928647 B2 JP 2928647B2 JP 1023091 A JP1023091 A JP 1023091A JP 1023091 A JP1023091 A JP 1023091A JP 2928647 B2 JP2928647 B2 JP 2928647B2
Authority
JP
Japan
Prior art keywords
phase
heat treatment
magnetic material
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1023091A
Other languages
Japanese (ja)
Other versions
JPH0517804A (en
Inventor
宏 木原
英樹 荒井
茂昭 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP1023091A priority Critical patent/JP2928647B2/en
Publication of JPH0517804A publication Critical patent/JPH0517804A/en
Application granted granted Critical
Publication of JP2928647B2 publication Critical patent/JP2928647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、軟磁気特性に優れた
鉄‐コバルト系焼結磁性材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an iron-cobalt sintered magnetic material having excellent soft magnetic properties.

【0002】[0002]

【従来の技術】鉄‐コバルト系焼結磁性材料は、磁性材
料中最高の飽和磁束密度を有するため、ヨーク用磁性材
料として有望である。特に、バナジウムを添加した鉄‐
コバルト系焼結磁性材料は体積固有抵抗値が大きく、鉄
損が抑えられるため極めて優れた材料である。しかしな
がら、この材料は通常の機械加工(切削加工等)が非常
に困難であり、そのため粉末冶金法を用いて製造する試
みがなされている。そして、この粉末冶金法のうち特に
金属粉末射出成形法は、通常の粉末冶金法に比べて微細
な原料粉末を用いることから、焼結密度が高く飽和磁束
密度の高い焼結体が得られ、しかも複雑形状に成形でき
るため、鉄‐コバルト系焼結磁性材料の製造方法として
より適したものであると言われている。
2. Description of the Related Art An iron-cobalt sintered magnetic material has the highest saturation magnetic flux density among magnetic materials, and is therefore promising as a magnetic material for a yoke. In particular, vanadium-added iron
A cobalt-based sintered magnetic material is a very excellent material because it has a large volume resistivity and suppresses iron loss. However, this material is very difficult to perform normal machining (cutting or the like), and attempts have been made to produce the material using powder metallurgy. In particular, among the powder metallurgy methods, the metal powder injection molding method uses a fine raw material powder as compared with the ordinary powder metallurgy method, so that a sintered body having a high sintering density and a high saturation magnetic flux density can be obtained. Moreover, since it can be formed into a complicated shape, it is said to be more suitable as a method for producing an iron-cobalt sintered magnetic material.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
金属粉末射出成形方法では焼結密度をより高めるため焼
結温度を高くするので、得られる焼結体の結晶粒が不均
質となり易く、そのため保磁力が大きくなるなど軟磁気
特性が低下するといった問題がある。このような結晶粒
の不均質化を改善するため、従来では射出成形後の鉄‐
コバルト系焼結磁性材料を、室温で安定なα相から高温
で安定なγ相へ変態する温度以下である850℃近辺で
熱処理を施していた。しかし、このような熱処理では圧
延等を行なった材料に比べ再結晶する駆動力が小さく、
得られる磁性材料は均粒となり難いため、圧延処理に比
較して軟磁性特性改善の十分な効果が上げられないとい
った不満がある。
However, in such a metal powder injection molding method, since the sintering temperature is increased in order to further increase the sintering density, the crystal grains of the obtained sintered body are likely to be non-homogeneous. There is a problem that soft magnetic characteristics are deteriorated such as an increase in coercive force. In order to improve the heterogeneity of such crystal grains, conventionally, iron-
The cobalt-based sintered magnetic material has been subjected to a heat treatment at around 850 ° C., which is lower than the temperature at which a stable α phase is transformed at room temperature into a stable γ phase at high temperature. However, in such a heat treatment, the driving force for recrystallization is smaller than that of a material subjected to rolling or the like,
Since the obtained magnetic material is hard to be uniform, there is a dissatisfaction that a sufficient effect of improving the soft magnetic properties cannot be obtained as compared with the rolling treatment.

【0004】本発明は前記課題に鑑みてなされたもの
で、その目的とするところは、焼結体の結晶粒を均質に
して軟磁性特性を改善し得る、鉄‐コバルト系焼結磁性
材料を製造するための方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an iron-cobalt based sintered magnetic material capable of improving the soft magnetic characteristics by homogenizing the crystal grains of a sintered body. It is to provide a method for manufacturing.

【0005】[0005]

【課題を解決するための手段】本発明における請求項1
記載の鉄‐コバルト系焼結磁性材料の製造方法では、コ
バルトが40〜60重量%、バナジウムが1.0〜2.5
重量%、残部が鉄および不可避不純物からなる原料粉末
を成形し、焼結して鉄‐コバルト系焼結磁性材料を製造
するに際し、焼結後、950℃以上1200℃以下の温
度で第1の熱処理を行ない、その後750℃以上850
℃以下の温度で第2の熱処理を行なうことを前記課題の
解決手段とした。また、請求項2記載の鉄‐コバルト系
焼結磁性材料の製造方法では、前記第1の熱処理の後、
950℃未満に冷却する操作を50℃/分以下の冷却速
度で行なうことを前記課題の解決手段とした。
Means for Solving the Problems Claim 1 of the present invention
In the method for producing an iron-cobalt sintered magnetic material described above, 40 to 60% by weight of cobalt and 1.0 to 2.5% of vanadium are used.
% Of the raw material powder, the balance being iron and unavoidable impurities, is molded and sintered to produce an iron-cobalt sintered magnetic material. After sintering, the first powder is heated at a temperature of 950 ° C. or more and 1200 ° C. or less. Heat treatment, then 750 ° C or higher 850
Performing the second heat treatment at a temperature of not more than ° C is a means for solving the above-mentioned problem. Further, in the method for producing an iron-cobalt based sintered magnetic material according to claim 2, after the first heat treatment,
The means for solving the above-mentioned problem is to perform the operation of cooling to less than 950 ° C. at a cooling rate of 50 ° C./min or less.

【0006】以下、本発明を詳しく説明する。まず、コ
バルトが40〜60重量%、バナジウムが1.0〜2.5
重量%、残部が鉄および不可避不純物からなる原料粉末
を用意する。ここで、原料粉末の組成として前記範囲を
選んだ理由は、コバルト量が40重量%未満では得られ
る磁性体の透磁率が低くなり、一方60重量%を越える
と飽和磁束密度が小さくなるためであり、またバナジウ
ム量が1.0重量%未満では磁性体の体積固有抵抗値が
小さくなり、一方2.5重量%を越えると保磁力が大き
くなるためである。また、この原料粉末の粒度として
は、高い焼結密度を得るため微細なものが好ましく、具
体的には平均粒径が5〜15μm程度のものが望まし
い。
Hereinafter, the present invention will be described in detail. First, 40 to 60% by weight of cobalt and 1.0 to 2.5% of vanadium.
A raw material powder is prepared by weight%, the balance being iron and unavoidable impurities. Here, the reason why the above range was selected as the composition of the raw material powder is that when the amount of cobalt is less than 40% by weight, the magnetic permeability of the obtained magnetic material becomes low, and when it exceeds 60% by weight, the saturation magnetic flux density becomes small. If the amount of vanadium is less than 1.0% by weight, the volume resistivity of the magnetic material becomes small, while if it exceeds 2.5% by weight, the coercive force becomes large. The particle size of the raw material powder is preferably fine in order to obtain a high sintering density, and more specifically, the average particle size is desirably about 5 to 15 μm.

【0007】次に、前記原料粉末を所定形状に成形す
る。成形方法については特に限定されないが、微細な粉
末を使用することができ、よって高い焼結密度を得るこ
とができる金属粉末射出成形法が好適である。さらに、
得られた成形体を焼結して焼結体を得る。焼結条件は特
に限定されないが、焼結体の密度は磁気特性に大きく影
響することから焼結体密度を98%以上にすることが好
ましく、そのためには1300℃以上の焼結温度で焼結
するか、あるいはHIP(熱間静水圧加圧)処理を行なう
ことなどによって焼結体密度を上げるのが望ましい。
Next, the raw material powder is formed into a predetermined shape. The molding method is not particularly limited, but a metal powder injection molding method that can use a fine powder and can obtain a high sintering density is preferable. further,
The obtained molded body is sintered to obtain a sintered body. The sintering conditions are not particularly limited. However, since the density of the sintered body greatly affects the magnetic properties, it is preferable to set the sintered body density to 98% or more. For this purpose, sintering is performed at a sintering temperature of 1300 ° C. or more. It is desirable to increase the density of the sintered body by performing HIP (hot isostatic pressing) treatment or the like.

【0008】次いで、得られた焼結体をさらに熱処理す
る。この熱処理は2工程からなるもので、第1の熱処理
は850℃以上1200℃以下の温度で行ない、また第
2の熱処理は第1の熱処理の後750℃以上850℃以
下の温度で行なう処理法である。ここで、焼結後の熱処
理を2工程で行なう理由は以下に述べる通りである。
Next, the obtained sintered body is further heat-treated. This heat treatment consists of two steps. The first heat treatment is performed at a temperature of 850 to 1200 ° C., and the second heat treatment is performed at a temperature of 750 to 850 ° C. after the first heat treatment. It is. The reason for performing the heat treatment after sintering in two steps is as follows.

【0009】鉄‐コバルト系焼結体の結晶相は、約95
0℃以上ではγ相であり、焼結終了後冷却過程において
低温で安定なα相へと変態する。γ相からα相へと変態
する場合、γ相の粒界等がα相の生成の核となるが、こ
の例のごとく通常は焼結体密度を上げるため高温で焼結
していることから、γ相の結晶粒が粗大になる。したが
って、α相の生成の核が少なくなってγ相からα相への
変態が進みにくくなることから、冷却速度を遅くしても
α相の結晶粒が不均質となることが避けられないのであ
る。そして、こうして生じた不均質なα相の結晶粒は、
たとえα相域で焼鈍を行なっても消すことが非常に困難
である。すなわち、鉄‐コバルト焼結磁性材料の組成で
はα相の上限の温度が約850℃程度であり、そのよう
な温度では加工歪み等の駆動力がなければ再結晶や粒成
長が起こり難いからである。
The crystal phase of the iron-cobalt based sintered body is about 95
At 0 ° C. or higher, it is a γ phase, and is transformed into a stable α phase at a low temperature in the cooling process after sintering. When transforming from the γ phase to the α phase, the grain boundaries of the γ phase are the nuclei for the generation of the α phase, but since they are usually sintered at high temperatures to increase the density of the sintered body as in this example, , The crystal grains of the γ phase become coarse. Therefore, since the nuclei of the formation of the α phase are reduced and the transformation from the γ phase to the α phase is difficult to progress, it is inevitable that the α phase crystal grains become inhomogeneous even if the cooling rate is reduced. is there. The resulting heterogeneous α-phase crystal grains
Even if annealing is performed in the α-phase region, it is very difficult to erase. That is, in the composition of the iron-cobalt sintered magnetic material, the upper limit temperature of the α phase is about 850 ° C. At such a temperature, recrystallization and grain growth are unlikely to occur without a driving force such as processing strain. is there.

【0010】そこで、本発明における第1の熱処理工程
では、不均質なα相を消すため焼結体を一旦950℃以
上1200℃以下の温度に昇温し、不均質なα相をγ相
へと変態させるのである。ここで、熱処理温度を950
℃以上としたのはγ相単相としてα相を消すためであ
り、一方1200℃以下としたのはγ相の成長を防ぐた
めである。そして、このときに生じたγ相はα相から変
態することにより、焼結工程でのγ相に比べて細かく均
一なものとなる。そのため、この熱処理温度から再びα
相へ冷却されたとき、α相の生成の核が十分多いことか
ら均質な結晶粒が得られるのである。なお、この第1の
熱処理の時間としては、実際の熱処理温度や処理量によ
っても異なるものの、15分〜1時間程度が好適とされ
る。
Therefore, in the first heat treatment step of the present invention, the sintered body is once heated to a temperature of not less than 950 ° C. and not more than 1200 ° C. in order to eliminate the inhomogeneous α phase, and the inhomogeneous α phase is converted to γ phase. It is perverted. Here, the heat treatment temperature is 950.
The reason why the temperature was set to not less than ° C was to eliminate the α phase as a single γ phase, whereas the temperature was set to be 1200 ° C or less to prevent the growth of the γ phase. The γ phase generated at this time is transformed from the α phase, so that it becomes finer and more uniform than the γ phase in the sintering step. Therefore, from this heat treatment temperature, α
When cooled to a phase, homogenous grains are obtained because there are enough nuclei for the formation of the α phase. The time of the first heat treatment is preferably about 15 minutes to 1 hour, although it varies depending on the actual heat treatment temperature and the amount of treatment.

【0011】さらに、第2の熱処理工程では、焼結体か
ら残留γ相を消し、変態によって生じた歪みを除去する
ため750℃以上850℃以下の温度で熱処理を行な
う。ここで、850℃以下としたのはγ相を全て変態さ
せてα単相にするためであり、一方750℃以上とした
のはこれ未満の温度ではγ相からのα相への変態が十分
行なえないからである。なお、この第2の熱処理の時間
としては、第1の熱処理と同様に実際の熱処理温度や処
理量によっても異なるものの、1〜3時間程度が好適と
される。
Further, in the second heat treatment step, heat treatment is performed at a temperature of 750 ° C. or more and 850 ° C. or less in order to eliminate the residual γ phase from the sintered body and to remove the distortion caused by the transformation. Here, the temperature is set to 850 ° C. or lower in order to transform all of the γ phase into an α single phase, while the temperature is set to 750 ° C. or higher because at a temperature lower than this temperature, the transformation from the γ phase to the α phase is sufficient. It is not possible. The time for the second heat treatment varies depending on the actual heat treatment temperature and the amount of treatment as in the case of the first heat treatment, but is preferably about 1 to 3 hours.

【0012】また、第1の熱処理の後、第2の熱処理を
行なうまで、すなわち750〜850℃にまで冷却する
操作については、焼結体に生じる歪みを小さくするため
50℃/分以下の冷却速度で行なうのが望ましい。な
お、前記第1の熱処理および第2の熱処理の雰囲気とし
ては、いずれも還元性雰囲気、不活性雰囲気、真空雰囲
気などとするのが好ましい。
The operation of cooling after the first heat treatment until the second heat treatment is performed, that is, cooling to 750 to 850 ° C., is performed at a cooling rate of 50 ° C./min or less in order to reduce distortion generated in the sintered body. Preferably at speed. Note that the atmosphere for the first heat treatment and the second heat treatment is preferably a reducing atmosphere, an inert atmosphere, a vacuum atmosphere, or the like.

【0013】[0013]

【作用】本発明における請求項1記載の鉄‐コバルト焼
結磁性材料の製造方法によれば、焼結後に950℃以上
1200℃以下の温度で行なう第1の熱処理を行ない、
さらにその後、750℃以上850℃以下の温度で第2
の工程を行なうため、第1の熱処理によって不均質なα
相がγ相へと変態し、さらに第2の熱処理によって残留
γ相が消され、変態によって生じた歪みが除去され、こ
れにより焼結体の結晶粒が均質となる。また、請求項2
記載の鉄‐コバルト焼結磁性材料の製造方法によれば、
焼結体に生じる歪みが小さくなる。
According to the method for producing an iron-cobalt sintered magnetic material according to the first aspect of the present invention, after the sintering, the first heat treatment is performed at a temperature of 950 ° C. or more and 1200 ° C. or less,
Then, at a temperature of 750 ° C or more and 850 ° C or less, the second
Is performed by the first heat treatment, the heterogeneous α
The phase transforms to the γ phase, and the second heat treatment eliminates the residual γ phase and removes the strain caused by the transformation, whereby the crystal grains of the sintered body become homogeneous. Claim 2
According to the iron-cobalt sintered magnetic material manufacturing method described,
The strain generated in the sintered body is reduced.

【0014】[0014]

【実施例】以下本発明を実施例によりさらに具体的に説
明する。原料粉末として、平均粒径8.6μmのFe‐Co‐
V水アトマイズ粉末(Co;49.2重量%、V;2.2重量
%、残部Fe)を用意し、この原料粉末にポリメタクリル
酸エステル等のバインダーを12重量部加えて混練し、
混練物を得た。次に、得られた混練物を射出温度165
℃、射出圧力1000kg/cm2の条件で成形し、リング
状の成形体を得た。さらに、この成形体を不活性雰囲気
中で脱脂し、脱脂体を得た。次いで、得られた脱脂体を
1×10-3Torr以下の真空雰囲気中で900℃まで昇温
し、さらに水素を導入して水素雰囲気とした後、最高温
度1400℃まで昇温して2時間焼結を行ない、焼結体
を得た。
EXAMPLES The present invention will be described more specifically with reference to the following examples. As a raw material powder, Fe-Co- with an average particle size of 8.6 μm
V water atomized powder (Co; 49.2% by weight, V; 2.2% by weight, balance Fe) is prepared, and 12 parts by weight of a binder such as polymethacrylic acid ester is added to this raw material powder and kneaded,
A kneaded product was obtained. Next, the obtained kneaded material was injected at an injection temperature of 165.
Molding was carried out under the conditions of ° C and an injection pressure of 1000 kg / cm 2 to obtain a ring-shaped molded body. Further, the molded body was degreased in an inert atmosphere to obtain a degreased body. Next, the temperature of the obtained degreased body was raised to 900 ° C. in a vacuum atmosphere of 1 × 10 −3 Torr or less, and hydrogen was further introduced to form a hydrogen atmosphere. Sintering was performed to obtain a sintered body.

【0015】次いで、得られた焼結体を三つ用意し、昇
温速度10℃/分でこれらをそれぞれ950℃(実施例
1)、1000℃(実施例2)、1200℃(実施例
3)にまで昇温し、その状態で1時間保持して第1の熱
処理を行なった。さらに、2℃/分で850℃まで冷却
し、その状態で2時間保持して第2の熱処理を行なっ
た。その後、10℃/分で室温まで冷却して本発明の鉄
‐コバルト系焼結磁性材料を3種得た。また、比較例と
して、焼結後1400℃で熱処理した後、850℃で再
度熱処理したもの(比較例1)と、焼結後850℃の熱
処理だけを行なったもの(比較例2)を作製した。得ら
れた磁性材料の磁束密度と保磁力とを調べ、その結果を
第1表に示す。
Next, three obtained sintered bodies were prepared, and these were heated at a heating rate of 10 ° C./minute to 950 ° C. (Example 1), 1000 ° C. (Example 2), and 1200 ° C. (Example 3). ), And held in that state for 1 hour to perform a first heat treatment. Further, the second heat treatment was performed by cooling to 850 ° C. at a rate of 2 ° C./min and maintaining the state for 2 hours. Thereafter, the mixture was cooled to room temperature at a rate of 10 ° C./min to obtain three types of iron-cobalt sintered magnetic materials of the present invention. In addition, as comparative examples, one was heat-treated at 1400 ° C. after sintering and then heat-treated again at 850 ° C. (Comparative Example 1), and another was subjected to only heat treatment at 850 ° C. after sintering (Comparative Example 2). . The magnetic flux density and coercive force of the obtained magnetic material were examined, and the results are shown in Table 1.

【0016】 第1表に示した結果より、本発明の実施例品1,2,3
はいずれも、比較品1,2に比べ磁束密度B25、保磁力Hc
ともに優れていることが確認された。
[0016] From the results shown in Table 1, the products 1, 2, and 3 according to the present invention were obtained.
Are magnetic flux density B 25 and coercive force Hc compared to comparative products 1 and 2.
It was confirmed that both were excellent.

【0017】[0017]

【発明の効果】以上説明したように、本発明における鉄
‐コバルト系焼結材料の製造方法は、第1の熱処理によ
って不均質なα相をγ相へと変態させ、さらに第2の熱
処理によって残留γ相を消し、変態によって生じた歪み
を除去する方法であるから、焼結体の結晶粒を均質にし
て磁気特性に優れた焼結体を得ることができ、これによ
り優れた軟磁性材料を製造することができる。また、請
求項2記載の鉄‐コバルト焼結磁性材料の製造方法によ
れば、焼結体に生じる歪みを小さくすることができ、こ
れにより一層磁気特性に優れた軟磁性材料を製造するこ
とができる。
As described above, the method for producing an iron-cobalt based sintered material according to the present invention converts a heterogeneous α phase into a γ phase by a first heat treatment, and further transforms the heterogeneous α phase into a γ phase by a second heat treatment. Since this method eliminates the residual γ phase and removes the strain caused by the transformation, it is possible to obtain a sintered body having excellent magnetic properties by homogenizing the crystal grains of the sintered body, thereby providing an excellent soft magnetic material. Can be manufactured. Further, according to the method for producing an iron-cobalt sintered magnetic material according to the second aspect, it is possible to reduce the distortion generated in the sintered body, thereby producing a soft magnetic material having more excellent magnetic properties. it can.

フロントページの続き (56)参考文献 特開 平2−125835(JP,A) 特開 昭62−63617(JP,A) 特開 昭52−103699(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 3/00 - 3/24 C22C 33/02,19/07 Continuation of the front page (56) References JP-A-2-125835 (JP, A) JP-A-62-263617 (JP, A) JP-A-52-103699 (JP, A) (58) Fields investigated (Int .Cl. 6 , DB name) B22F 3/00-3/24 C22C 33 / 02,19 / 07

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コバルトが40〜60重量%、バナジウ
ムが1.0〜2.5重量%、残部が鉄および不可避不純物
からなる原料粉末を成形し、焼結して鉄‐コバルト系焼
結磁性材料を製造する方法であって、焼結後、950℃
以上1200℃以下の温度で第1の熱処理を行ない、そ
の後750℃以上850℃以下の温度で第2の熱処理を
行なうことを特徴とする鉄‐コバルト系焼結磁性材料の
製造方法。
1. A raw material powder comprising 40 to 60% by weight of cobalt, 1.0 to 2.5% by weight of vanadium and the balance being iron and unavoidable impurities is molded and sintered to obtain an iron-cobalt sintered magnetic material. A method of producing a material, comprising the steps of:
A method for producing an iron-cobalt sintered magnetic material, comprising: performing a first heat treatment at a temperature of not less than 1200 ° C. and then performing a second heat treatment at a temperature of not less than 750 ° C. and not more than 850 ° C.
【請求項2】 請求項1記載の鉄‐コバルト系焼結磁性
材料の製造方法において、第1の熱処理の後、950℃
未満に冷却する操作を50℃/分以下の冷却速度で行な
うことを特徴とする鉄‐コバルト系焼結磁性材料の製造
方法。
2. The method for producing an iron-cobalt sintered magnetic material according to claim 1, wherein the first heat treatment is performed at 950 ° C.
A method for producing an iron-cobalt sintered magnetic material, wherein the operation of cooling to less than 50 ° C./min is performed at a cooling rate of 50 ° C./min or less.
JP1023091A 1991-01-30 1991-01-30 Method for producing iron-cobalt based sintered magnetic material Expired - Fee Related JP2928647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023091A JP2928647B2 (en) 1991-01-30 1991-01-30 Method for producing iron-cobalt based sintered magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023091A JP2928647B2 (en) 1991-01-30 1991-01-30 Method for producing iron-cobalt based sintered magnetic material

Publications (2)

Publication Number Publication Date
JPH0517804A JPH0517804A (en) 1993-01-26
JP2928647B2 true JP2928647B2 (en) 1999-08-03

Family

ID=11744487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023091A Expired - Fee Related JP2928647B2 (en) 1991-01-30 1991-01-30 Method for producing iron-cobalt based sintered magnetic material

Country Status (1)

Country Link
JP (1) JP2928647B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907597B2 (en) * 2008-05-13 2012-03-28 山陽特殊製鋼株式会社 Method for producing Fe-Co-V alloy material
KR101376507B1 (en) * 2012-02-22 2014-03-21 포항공과대학교 산학협력단 METHOD OF MANUFACTURING Fe-Co BASED ALLOY SHEET WITH TEXTURE STRUCTURE AND SOFT MAGNETIC STEEL SHEET MANUFACTURED BY THE SAME

Also Published As

Publication number Publication date
JPH0517804A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JPH02138443A (en) Fe-co-type sintered magnetic material and its production
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JP2928647B2 (en) Method for producing iron-cobalt based sintered magnetic material
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JP2003068514A (en) Powder magnetic core and method for manufacturing the same
JP2001107226A (en) Co SERIES TARGET AND ITS PRODUCTION METHOD
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP2007162064A (en) Method of manufacturing magnetostriction material powder, and method of manufacturing magnetostrictor
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JP3027180B2 (en) Iron-cobalt based sintered magnetic material and method for producing the same
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPS59154004A (en) Manufacture of permanent magnet
JPH06172810A (en) Production of tungsten alloy sintered compact
JP2000239702A (en) Fe-Ni ALLOY POWDER AND ITS MANUFACTURE
JP2000045025A (en) Production of rolled silicon steel
JPS5839704A (en) Production of ni-base sintered hard alloy
JPH01212706A (en) Manufacture of magnetic material
JPH01212702A (en) Manufacture of magnetic material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990420

LAPS Cancellation because of no payment of annual fees