JP2995661B2 - Manufacturing method of porous cemented carbide - Google Patents

Manufacturing method of porous cemented carbide

Info

Publication number
JP2995661B2
JP2995661B2 JP1274653A JP27465389A JP2995661B2 JP 2995661 B2 JP2995661 B2 JP 2995661B2 JP 1274653 A JP1274653 A JP 1274653A JP 27465389 A JP27465389 A JP 27465389A JP 2995661 B2 JP2995661 B2 JP 2995661B2
Authority
JP
Japan
Prior art keywords
sintering
raw material
cemented carbide
material powder
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1274653A
Other languages
Japanese (ja)
Other versions
JPH03138304A (en
Inventor
雅志 山田
栄一 東海林
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP1274653A priority Critical patent/JP2995661B2/en
Publication of JPH03138304A publication Critical patent/JPH03138304A/en
Application granted granted Critical
Publication of JP2995661B2 publication Critical patent/JP2995661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質超硬合金の製造方法に関するもので、
その多孔性と耐摩耗性を兼ね備えた特性は多くの分野で
利用される。その一端の例として、摺動部品として含油
軸受、工具材として吸引治具の先端チップ、金型用とし
て樹脂成形等の空気やガスを吐出するなど基幹材料とし
て多くの利用対象がある。
The present invention relates to a method for producing a porous cemented carbide,
The properties having both porosity and abrasion resistance are used in many fields. Examples of the one end include oil-impregnated bearings as sliding parts, the tip of a suction jig as a tool material, and resin or the like for a mold to discharge air or gas for a mold.

〔発明の概要〕[Summary of the Invention]

本発明による多孔質超硬合金の製造方法は、その原料
粉に樹脂等の有機物を添加することなく、さらに加圧成
形することなく、原料粉を造粒し、任意なカーボン型に
振動を加えながら注入し、これを真空炉の仮焼結で形状
を整える。この仮焼結体をセラミック等の仮に載置して
本焼結を施し、結合材のCo又はNiの溶融によって固体化
する工程により通気性のある超硬合金を得るものであ
る。
In the method for producing a porous cemented carbide according to the present invention, the raw material powder is granulated without adding an organic substance such as a resin to the raw material powder, and without pressure molding, and vibration is applied to an arbitrary carbon mold. The shape is adjusted by temporary sintering in a vacuum furnace. This temporary sintered body is temporarily placed on a ceramic or the like and subjected to main sintering, and a cemented alloy having air permeability is obtained by a process of solidifying by melting Co or Ni as a binder.

〔従来の技術〕[Conventional technology]

粉末治金法による多孔質超硬合金の製造について、従
来から多くの提案がなされているが、その最近の技術と
して、例えば専門誌「粉体および粉末治金」第36巻第2
号(1989年3月、粉体粉末治金協会発行)の(31)〜
(35)頁に記載された文献「ポアを分散させた摺動用超
硬合金の製造とその諸特性」がある。同文献にも示され
るように従来からの製造方法は、WC−Coの合金粉末に樹
脂を添加混合して、これを加圧成形した後、真空焼結し
ていた。この焼結中に揮散する有機物の作用により良好
なポアの分散を得ている。
Many proposals have been made on the production of porous cemented carbide by the powder metallurgy method. Recently, for example, a technical journal “Powder and Powder Metallurgy” Vol. 36, No. 2
No. (March 1989, Issued by the Japan Powder Metallurgy Association) (31)-
(35) There is a document "Manufacturing of cemented carbide for sliding with pores dispersed therein and its various properties" described on page (35). As shown in the literature, in the conventional production method, a resin was added to and mixed with a WC-Co alloy powder, and the mixture was pressed and then vacuum-sintered. Good pore dispersion is obtained by the action of organic substances that evaporate during this sintering.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記した従来の製造方法では、樹脂等の有機物を添加
した原料粉を焼結前に加圧成形している。この方式は、
焼結時に有機物が揮散することにより、その部分にポア
ができるもので、そのために焼結炉の汚染があり、かつ
超硬材として耐脆性を確保するためには、加圧成形によ
り合金間の均一な結合を得て極部的な欠陥をなくすこと
が不可欠であった。
In the above-described conventional manufacturing method, a raw material powder to which an organic substance such as a resin is added is subjected to pressure molding before sintering. This method is
Pore is formed in that part by volatilization of organic matter during sintering.Therefore, there is contamination of the sintering furnace, and in order to secure brittleness as a super hard material, it is necessary to press It was essential to obtain a uniform bond and eliminate local defects.

本発明は上記の必須要件を適用せず、新規な発想に基
づいた製造方法を提供するものである。すなわち、有機
物を添加することなく、原料粉を造粒したものをそのま
まカーボン型に入れ、加圧することなく焼結処理するこ
とにより問題を解決するものである。
The present invention provides a manufacturing method based on a novel idea without applying the above essential requirements. That is, the problem is solved by directly granulating the raw material powder without adding an organic substance into a carbon mold and performing sintering treatment without applying pressure.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題を解決するために、本発明の製造方法は、WC
を主成分とし、結合成分としてNi又はCoと、特性改善用
成分よりなる原料粉を造粒してカーボン型に振動を加え
ながら注入し、これを仮焼結する工程を施す。次にカー
ボン型から取り出した仮焼結体を前記した仮焼結よりも
高い温度で本焼結の工程を施すことにより課題を解決す
るものである。
In order to solve the above-mentioned problem, the production method of the present invention uses WC
, A raw material powder comprising Ni or Co as a binding component and a property improving component is granulated, injected into a carbon mold while applying vibration, and temporarily sintered. Next, the problem is solved by subjecting the pre-sintered body taken out of the carbon mold to a main sintering step at a higher temperature than the above-described pre-sintering.

〔作用〕[Action]

本発明による多孔質超硬合金の製造方法の特徴点は3
点あり、その作用する事象を説明する。その第1点は、
有機物を添加しなくても均一なポアを得ることで、これ
は造粒された各粒子の表面が接触し、そこにできる空隙
を最終的な焼結体においてポアの形成に導く技術であ
る。
The feature of the method for producing a porous cemented carbide according to the present invention is 3
There are points, and the events that work are explained. The first point is,
By obtaining uniform pores without adding an organic substance, this is a technique in which the surfaces of the granulated particles come into contact with each other and voids formed therein lead to the formation of pores in the final sintered body.

その第2点は、圧縮の工程を適用しないことで、これ
は、上述した各粒子が均一に分散されるとともに、その
表面同士の接触が多点で、かつ均等な接触圧となるよう
にしている。これは原料粒をカーボン型に注入すると
き、あるいは注入した後に振動等の機械的運動エネルギ
ーを加えることによって実現できる。
The second point is that the compression step is not applied. This is because the above-mentioned respective particles are uniformly dispersed, and the contact between the surfaces is multi-point and the contact pressure becomes uniform. I have. This can be realized by adding mechanical kinetic energy such as vibration when the raw material particles are injected into the carbon mold or after the injection.

次に第3点は、上述した加圧をしない注型状態で、一
時的な仮形状を形成するための仮焼結と、次にこれを本
焼結して本格的な超硬材とする2回の焼結工程を適用す
ることである。
Next, the third point is temporary sintering for forming a temporary temporary shape in the above-mentioned casting state without pressurization, and then main sintering to form a full-scale super hard material. Applying two sintering steps.

以上3点よりなる本発明のうち第1点と第2点の特徴
は、従来からの技術思想を基本的に覆す新規な発想から
なるものである。すなわち、多孔質超硬合金の製造にお
いて、超硬合金に不可欠な脆性対策は重要な課題であ
り、その割れや欠けは金属組織の中の欠陥部から誘発す
ると考えられている。従来この欠陥部をなくすために、
加圧をして全体の密度を均一化し、焼結して無欠陥組織
にしていた。
The features of the first and second aspects of the present invention composed of the above three aspects are based on a novel idea that basically reverses the conventional technical idea. That is, in the production of a porous cemented carbide, brittleness countermeasures, which are indispensable for cemented carbide, are an important issue, and it is thought that cracks and chips are induced from defects in the metal structure. Conventionally, to eliminate this defect,
Pressure was applied to make the entire density uniform and sintered to obtain a defect-free structure.

これに対し本発明は、金属組織の全体を欠陥構造にし
たもので、これにより衝撃や応力は全体に均一に加わ
り、応力集中をさけ、割れや欠けの発生を防止するとと
もに、その欠陥構造の隙間はポアとして通気性の作用を
呈するものである。
On the other hand, in the present invention, the entire metal structure is formed into a defect structure, whereby impacts and stresses are uniformly applied to the entire structure, stress concentration is prevented, cracks and chips are prevented from occurring, and the defect structure is formed. The gap serves as a pore and exhibits a breathable action.

〔実施例〕〔Example〕

本発明の一つの実施例を工程順序に沿って説明する。
まず、原料粉の主成分としてWCと結合材として約13%Co
を転動造粒により平均粒径150μmに造粒し、必要なら
ばふるい整粒する。この原料粒(以下単に粒と記す)を
任意な形状のカーボン材よりなる容器の成形型に注入す
る。この注入に際し、成形型に振動を加えながら注入す
ることが好ましいが、注入後に振動を加えてもよい。こ
の加振エネルギーの制御は交流の商用電源を利用し、そ
の強度は粒が破壊しないことが上限で、各粒が均一な密
度に分布することが下限の条件である。
One embodiment of the present invention will be described in the order of steps.
First, WC as the main component of the raw material powder and about 13% Co as the binder
Is granulated to an average particle size of 150 μm by tumbling granulation and, if necessary, sieved. The raw material particles (hereinafter simply referred to as particles) are poured into a mold for a container made of a carbon material having an arbitrary shape. At the time of this injection, it is preferable to perform injection while applying vibration to the mold, but vibration may be applied after injection. The control of the excitation energy uses an AC commercial power supply. The upper limit of the strength is that the grains do not break, and the lower limit is that the grains are distributed at a uniform density.

次に、この注形したものを真空炉で仮焼結する。その
条件は2×10-2Torr程度の真空度2時間で500℃まで温
度を上げ、続いて2時間で1160℃まで温度を上げ約30分
間の仮焼結を行い、炉冷をして取り出す。この仮焼結温
度で管理されるべき温度領域は+20℃で型のカーボン材
が粒に反応し、粒の組成中に遊離炭素化が生じたり、離
型性が悪くなる。また、−20℃と低い場合は、各粒同士
の表面の接触に結合力としての繋がりが発生せず、離型
したときに崩れやすくなる。この仮焼結上がりの構造様
態をSEM写真で第1図に示す。この図に見られる粒の表
面の粉末状の現象は本発明に係わる粒が有機バインダー
を混合していないためになめらかな面とならず、原料粉
が不規則に付着した表面となっている。しかし、この略
毬(いが)状の表面が前述の仮焼結で粒相互の結束の作
用に寄与するものである。
Next, the cast product is temporarily sintered in a vacuum furnace. The condition is that the temperature is raised to 500 ° C in 2 hours with a vacuum degree of about 2 × 10 -2 Torr, then the temperature is raised to 1160 ° C in 2 hours, pre-sintering is performed for about 30 minutes, and the furnace is cooled and removed. . The temperature range to be controlled by the pre-sintering temperature is + 20 ° C., and the carbon material of the mold reacts with the grains, so that free carbonization occurs in the composition of the grains and the releasability deteriorates. On the other hand, when the temperature is as low as −20 ° C., there is no connection as a bonding force between the surfaces of the grains, and the grains are easily broken when the mold is released. FIG. 1 shows an SEM photograph of the structure after the preliminary sintering. The powdery phenomenon on the surface of the particles shown in this figure is not a smooth surface because the particles according to the present invention do not contain an organic binder, and is a surface on which the raw material powder is irregularly attached. However, this substantially conical surface contributes to the action of binding the grains in the above-described temporary sintering.

この仮焼結の工程で、カーボン型の中の仮焼結体は、
約5%の収縮を伴い、型との間に離型状態となり、かつ
カーボン材との反応による結着もない。従って、容易に
型から取り出すことができる。しかし粒相互の結着力は
弱いので取り扱いは注意を要する。またこの仮焼結の成
形型としてカーボン材を例示したが、これは任意な形状
に対する加工性と、耐熱性及び経済性などから選択した
もので、これに限定するものではない。
In this pre-sintering process, the pre-sintered body in the carbon mold is
With shrinkage of about 5%, the mold is released from the mold, and there is no binding due to the reaction with the carbon material. Therefore, it can be easily removed from the mold. However, care must be taken when handling since the binding force between grains is weak. In addition, although the carbon material is exemplified as the mold for the temporary sintering, the material is selected from the workability for an arbitrary shape, heat resistance, economy, and the like, and is not limited thereto.

次に、この仮焼結体をセラミック板など耐熱性のある
基台の上に載置し、真空度2×10-2Torrで本焼結する。
その焼結条件は、500℃まで1時間、さらに1250℃まで
1時間、次に37分かけて1370℃に上げ、この温度で1時
間かけて本焼結し、炉冷により終了する。
Next, the pre-sintered body is placed on a heat-resistant base such as a ceramic plate and main-sintered at a degree of vacuum of 2 × 10 −2 Torr.
The sintering conditions are as follows: 500 ° C. for 1 hour, 1250 ° C. for 1 hour, then 37 minutes to 1370 ° C., main sintering at this temperature for 1 hour, and furnace cooling to end.

この本焼結の温度により結合材としてのCoが溶融し、
WCの超硬材が得られる。この焼結例における体積収縮は
約20%であり、多孔質の通気性は約28%であった。上記
実施例の焼結体の表面の構造様態をSEM写真で示したも
のが第2図である。第1図と倍率は同じであるからその
収縮程度は明らかであり、各粒の表面は溶融したCoで融
合し、なめらかとなっている。各粒の融合とその間隙に
できたポアの状態のSEM写真を第3図に示す。同図は上
記実施例による焼結体の断面を研摩し、その面の様態を
示したもので、各粒の溶融接面に境界はなく、均一にポ
アは分布している。ここに述べた実施例の焼結条件は一
つの例であり、例えば焼結温度を高くすれば、第3図に
示される溶融接面は広くなり、それに従って抗折力など
機械的強度は向上する。しかしその反面通気性は低下す
る。これらの特性の選択や制御はこの本焼結の条件設定
により任意性があるとともに、特性を改善するために、
Cr,Ti,Ta等の成分を適宜に添加することは必要に応じて
任意である。
Due to the temperature of this sintering, Co as a binder melts,
WC super hard material is obtained. The volume shrinkage in this sintering example was about 20%, and the porous air permeability was about 28%. FIG. 2 shows an SEM photograph of the structure of the surface of the sintered body of the above-described embodiment, which is shown by SEM photograph. Since the magnification is the same as that in FIG. 1, the degree of shrinkage is clear, and the surface of each grain is fused with the molten Co and is smooth. FIG. 3 shows an SEM photograph of the fusion of the grains and the state of the pores formed in the gaps. The figure shows the state of the surface of the sintered body according to the above-mentioned embodiment, which was polished, and there was no boundary in the melt contact surface of each grain, and the pores were uniformly distributed. The sintering conditions in the embodiment described here are only examples. For example, if the sintering temperature is increased, the fusion contact surface shown in FIG. 3 is widened, and the mechanical strength such as the transverse rupture strength is improved accordingly. I do. However, on the other hand, the air permeability decreases. The selection and control of these characteristics are optional depending on the conditions set for the main sintering, and in order to improve the characteristics,
It is optional to add components such as Cr, Ti, and Ta as needed.

〔発明の効果〕〔The invention's effect〕

以上のように本発明の方法によれば、有機物を混入せ
ず、圧縮成形の行程も適用せず、簡素化した工程により
廉価で品質の安定した多孔質超硬合金の素材を得ること
ができ、特に有機バインダーの揮散に伴う焼結炉の汚染
による品質低下や作業管理がなく、生産技術的に顕著な
効果を示すものである。
As described above, according to the method of the present invention, it is possible to obtain an inexpensive and stable porous cemented carbide material by a simplified process without mixing organic substances and without applying a compression molding process. In particular, there is no quality reduction or work management due to contamination of the sintering furnace due to the volatilization of the organic binder, and a remarkable effect in production technology is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による仮焼結の粒子構造を示す顕微鏡写
真。第2図,第3図は本発明による本焼結の粒子構造を
示す顕微鏡写真である。
FIG. 1 is a micrograph showing the particle structure of the pre-sintering according to the present invention. 2 and 3 are micrographs showing the grain structure of the main sintering according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22F 5/00 C22C 1/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) B22F 5/00 C22C 1/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】WCを主成分とし、結合成分としてNi又はCo
を配合した原料粉を造粒し原料粒を形成し、容器となる
型に振動を加えながら前記原料粒を入れて仮焼結する工
程と、該仮焼結の工程を経た仮焼結体を前記仮焼結温度
より高い温度で本焼結する工程よりなることを特徴とす
る多孔質超硬合金の製造方法。
(1) WC as a main component, and Ni or Co as a binding component.
The raw material powder containing the raw material powder is granulated to form raw material particles, a step of temporarily sintering the raw material particles while applying vibration to a mold serving as a container, A method for producing a porous cemented carbide, comprising a step of main sintering at a temperature higher than the preliminary sintering temperature.
【請求項2】WCを主成分とし、結合成分としてNi又はCo
を配合した原料粉を造粒し、容器となる型に入れた後、
前記容器を振動し、仮焼結する工程と、該仮焼結の工程
を経た仮焼結体を前記仮焼結温度より高い温度で本焼結
する工程よりなることを特徴とする多孔質超硬合金の製
造方法。
2. A composition comprising WC as a main component and Ni or Co as a binding component.
After granulating the raw material powder containing
Vibrating the container, pre-sintering, and main-sintering the pre-sintered body after the pre-sintering step at a temperature higher than the pre-sintering temperature. Manufacturing method of hard alloy.
【請求項3】前記原料粉に特性改善成分としてCr、Ti、
Taの1種又は2種以上を添加する請求項1または2記載
の多孔質超硬合金の製造方法。
3. A raw material powder comprising Cr, Ti,
The method for producing a porous cemented carbide according to claim 1 or 2, wherein one or more kinds of Ta are added.
【請求項4】前記造粒が転動造粒である請求項1乃至3
いずれかに記載の多孔質超硬合金の製造方法。
4. The granulation according to claim 1, wherein said granulation is rolling granulation.
A method for producing a porous cemented carbide according to any one of the above.
JP1274653A 1989-10-20 1989-10-20 Manufacturing method of porous cemented carbide Expired - Lifetime JP2995661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274653A JP2995661B2 (en) 1989-10-20 1989-10-20 Manufacturing method of porous cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274653A JP2995661B2 (en) 1989-10-20 1989-10-20 Manufacturing method of porous cemented carbide

Publications (2)

Publication Number Publication Date
JPH03138304A JPH03138304A (en) 1991-06-12
JP2995661B2 true JP2995661B2 (en) 1999-12-27

Family

ID=17544691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274653A Expired - Lifetime JP2995661B2 (en) 1989-10-20 1989-10-20 Manufacturing method of porous cemented carbide

Country Status (1)

Country Link
JP (1) JP2995661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328343A (en) * 2014-10-23 2015-02-04 苏州莱特复合材料有限公司 Compression-resistance powder metallurgical gear material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674409B1 (en) * 2012-10-30 2016-11-09 안덕영 Backpack
CN109434101A (en) * 2018-12-18 2019-03-08 宁波申禾轴承有限公司 A kind of preparation method of corrosion resisting bearing
JP7162163B2 (en) * 2020-04-10 2022-10-28 山形県 Porous metal and its air permeability control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328343A (en) * 2014-10-23 2015-02-04 苏州莱特复合材料有限公司 Compression-resistance powder metallurgical gear material and preparation method thereof
CN104328343B (en) * 2014-10-23 2016-09-07 桂林电子科技大学 A kind of measuring body powder metallurgical gear material and preparation method thereof

Also Published As

Publication number Publication date
JPH03138304A (en) 1991-06-12

Similar Documents

Publication Publication Date Title
US4431449A (en) Infiltrated molded articles of spherical non-refractory metal powders
US4455354A (en) Dimensionally-controlled cobalt-containing precision molded metal article
US4373127A (en) EDM Electrodes
US4469654A (en) EDM Electrodes
US5902429A (en) Method of manufacturing intermetallic/ceramic/metal composites
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JPH0368708A (en) Method for reforming porous body having opened pores
US7435376B2 (en) Composites and method for manufacturing same
JPS62197264A (en) Production of wear resistant layer
US5445788A (en) Method of producing elements from powders
US5261941A (en) High strength and density tungsten-uranium alloys
JP2008214664A (en) Method for manufacturing sintered body, and sintered body
JPH08333647A (en) Cemented carbide and its production
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
AU2010284750B2 (en) A process for producing a metal-matrix composite of significant deltaCTE between the hard base-metal and the soft matrix
JP4405038B2 (en) Method for producing porous sintered compact
JPH0196353A (en) Material for electric discharge machining and its manufacture
JPS6043894B2 (en) Process for manufacturing composite metals consisting of tungsten, silver and copper
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH04285141A (en) Manufacture of ferrous sintered body
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH0151521B2 (en)
CN110614370A (en) Preparation method of Ti6Al4V alloy porous material
JPH01319910A (en) Magnetic substance and manufacture thereof