JPH0151521B2 - - Google Patents

Info

Publication number
JPH0151521B2
JPH0151521B2 JP56007763A JP776381A JPH0151521B2 JP H0151521 B2 JPH0151521 B2 JP H0151521B2 JP 56007763 A JP56007763 A JP 56007763A JP 776381 A JP776381 A JP 776381A JP H0151521 B2 JPH0151521 B2 JP H0151521B2
Authority
JP
Japan
Prior art keywords
binder
sintered
ductile
pores
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56007763A
Other languages
Japanese (ja)
Other versions
JPS57123902A (en
Inventor
Ii Uiichi Junia Reimondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UITETSUKU JAPAN KK
Original Assignee
UITETSUKU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UITETSUKU JAPAN KK filed Critical UITETSUKU JAPAN KK
Priority to JP776381A priority Critical patent/JPS57123902A/en
Publication of JPS57123902A publication Critical patent/JPS57123902A/en
Publication of JPH0151521B2 publication Critical patent/JPH0151521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、焼結粒子構成体の製造とその仕上圧
縮縮成形に関し、特に非弾性圧縮可能の延性粒状
物質構造体の製造とその後の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of sintered particulate structures and their final compression forming, and more particularly to the production and subsequent processing of inelastically compressible ductile particulate material structures.

従来技術による精密部品は、一般に、鍛造金属
から機械加工するか、或いは金属を鋳造した後機
械加工するか、又は粒状物質を固めた後に周知の
粉体治金技術に従つて処理して成形される。鍛造
及び鍛造によつて成形された部品は、出発物質の
性質が非圧縮性のため、実質上非圧縮性である。
従来の粉末治金による金属部品も同様に実質上非
圧縮性である。というのは、先ず、多孔性の粒状
物質から成る形成物(フオーム)に、融解した例
えば銅等の金属を注入して、フオームの延性を増
大させるが細孔が減ずる結果、部品を非圧縮性と
する。第に焼結しただけの焼成フオームでは、構
成物質はもろく延性を示さない、焼成フオームを
圧縮すると、鋳鉄を破砕する場合と同様にひび割
れが生ずる。このため、非圧縮性の従来技術によ
る物質は、更に圧縮することが不可能であり、圧
縮性と考えられる部品の場合も実際には圧縮不可
能で延性を欠くためにその形状は変化しない。上
述の理由により、従来、密閉ダイでの圧縮成形
(Crush forming)という成形技術は不可能であ
つた。というのは、ある物質は圧縮できず、延性
が零か或いは僅かしかない物質は圧縮するときに
その形状を保持できなかつたからである。このた
め、従来、金属の圧縮成形は、、高精密部品、特
に高精度が要求される部品の製作には用いられな
かつた。
Precision parts according to the prior art are generally formed by machining from forged metal, or by casting and then machining the metal, or by solidifying particulate material and then processing it according to well-known powder metallurgy techniques. Ru. Forgings and parts formed by forging are substantially incompressible due to the incompressible nature of the starting materials.
Conventional powder metallurgy metal parts are also substantially incompressible. First, a molten metal, such as copper, is injected into a porous particulate material to increase the ductility of the foam but reduce the pores, making the part incompressible. shall be. In a fired foam that has only been sintered, the constituent materials are brittle and non-ductile; compressing the fired foam results in cracking, similar to crushing cast iron. Thus, incompressible prior art materials cannot be further compressed, and parts that are considered compressible are actually incompressible and lack ductility so that their shape does not change. For the above-mentioned reasons, compression molding using a closed die has not been possible in the past. This is because some materials cannot be compressed, and materials with zero or little ductility cannot hold their shape when compressed. For this reason, metal compression molding has not conventionally been used to manufacture high-precision parts, especially parts that require high precision.

したがつて、本発明の目的は、金属の圧縮成形
によつて精密部品の製作が可能な、非弾性で圧縮
可能の延性粒状物質構成体の製造方法及びその後
の処理方法に関する。
SUMMARY OF THE INVENTION Accordingly, the object of the present invention is to provide a method for the production and subsequent processing of inelastic, compressible, ductile granular material structures, which allow the fabrication of precision parts by compression molding of metals.

本発明を要約すると、次の様になる。粒状物質
の粒子の粒径及び/或いは粒子の真球度を制御す
ることによつて延性が制御され、粒子が小さくて
且つ球状であればある程、或いは粒子が小さいか
又は球状であればある程、物質の延性が大きくな
る。このような物質は、圧縮特性を有するために
は、制御された気孔容積対原料体積を有する気密
性の形状の気孔を有することが望ましい。粒状物
質自体は、延性となり得る特性を有する必要があ
る。焼結体の全気孔容積と焼結した物質の体積比
は、粒径、焼成工程、物質の特性、及び焼成前の
最初の配合(即ち、バインダと粒状物質の体積
比)等によつて制御し、1%から25%までの範囲
内、好ましくは4%から8%までの範囲にする。
本発明によれば、それ自体延性を呈さない物質で
あつても、延性及び/或いは圧縮可能な性質を有
する物質にすることができ、次いで所定の形状に
成形してバインダを除去し、所望の気孔率に制御
するために焼成工程を制御する(但し、必要に応
じて行われる)ことを除いては従来方法に従つて
焼成される。
The present invention can be summarized as follows. Ductility is controlled by controlling the particle size and/or the sphericity of the particles of the granular material; the smaller and spherical the particles are; The more ductile the material becomes. In order for such materials to have compressive properties, it is desirable that the pores have a gas-tight shape with a controlled pore volume to feedstock volume. The particulate material itself must have properties that allow it to be ductile. The total pore volume of the sintered body and the volume ratio of the sintered material are controlled by the particle size, the firing process, the properties of the material, and the initial formulation before firing (i.e., the volume ratio of the binder to the granular material). However, the range is from 1% to 25%, preferably from 4% to 8%.
According to the present invention, even a material that does not exhibit ductility per se can be made into a material that has ductile and/or compressible properties, and is then formed into a predetermined shape, the binder is removed, and the desired shape is formed. Fired according to conventional methods, except that the firing process is controlled (as needed) to control porosity.

上述の物質は、空隙のために粒子が圧縮可能な
ので非弾性技術によつて成形され、圧縮された物
質は圧縮された形状を保持する。上述の成形は、
周知のコイニング(coining)技術で行う。含有
物質の理論最大密度に近い密度を有する精密部品
は、このような技術を用いて製作され得る。本発
明に係る方法によれば、所望の最終形状と実質上
同寸法或いは僅かだけ大きい寸法に部品を形成し
て焼成する。次いで、この部品をダイ(金型)の
内部に置いて圧縮成形する。従来の物質(材料)
と異なり、非常に正確にダイの形状に圧縮され
る。勿論、成形機械での圧縮容積の程度は、成形
される材料内の気孔の容積と同一か或いはそれ以
下であることが必要である。このように、精霧部
部品を実質上ばりのない所定の正確な寸法に成形
することができる。
The materials mentioned above are shaped by inelastic techniques as the particles are compressible due to the voids and the compressed material retains its compressed shape. The above molding is
This is done using well-known coining technology. Precision parts having densities close to the theoretical maximum density of the contained materials can be fabricated using such techniques. According to the method of the present invention, a part is formed and fired to dimensions that are substantially the same or only slightly larger than the desired final shape. This part is then placed inside a die and compression molded. Conventional substances (materials)
It is compressed into the shape of the die very precisely. Of course, the degree of compression volume in the molding machine needs to be equal to or less than the volume of the pores in the material being molded. In this way, the atomizer part can be molded to predetermined precise dimensions substantially free of burrs.

本発明によれば、塑性圧縮が可能で永久的に変
形可能な原料が得られ、この原料は型空隙部を正
確に複製する精密部品に仕上圧縮成形され、高い
延性を呈する。圧縮及び延性の程度は制御され且
つ予め定められる。上述の原料は、粒状物質とバ
インダを用意し従来技術によつて混合して作られ
る。素材の延性及び成形体の焼成後の気孔の最終
的に対する容積率は、焼成工程での時間と温度、
粒状物体の粒子の粒径、粒子の真球度、粒子の化
学的特性及び焼成雰囲気等によつて決定される。
粒子から粒子への物質の拡散は、粒径と同程であ
る必要があり、粒径の変化範囲を最小にすること
が望ましい。これは、焼成前の最終物の所望の気
孔率及び延性を得るための簡単な実験で、材料ご
とに容易に決定され得る。得られた焼成物は、所
定の延性を示し、所定量圧縮可能なので、この焼
成物は、コイニングによつて仕上圧縮成形され得
る。
The present invention provides a plastically compressible, permanently deformable raw material that is finished compression molded into a precision part that exactly replicates the mold cavity and exhibits high ductility. The degree of compression and ductility is controlled and predetermined. The above-mentioned raw materials are prepared by preparing particulate material and a binder and mixing them according to conventional techniques. The ductility of the material and the final volume ratio of pores after firing of the molded body are determined by the time and temperature during the firing process,
It is determined by the particle diameter of the granular object, the sphericity of the particles, the chemical characteristics of the particles, the firing atmosphere, etc.
The diffusion of material from particle to particle must be comparable to the particle size, and it is desirable to minimize the range of particle size variation. This can be easily determined for each material with simple experimentation to obtain the desired porosity and ductility of the final product before firing. The obtained fired product exhibits a predetermined ductility and can be compressed by a predetermined amount, so this fired product can be subjected to final compression molding by coining.

上述の原料を用いて精密部品を製作するために
は、先ず上述の如くプリフオーム(preform:仕
上圧縮成形前の形体)を作る。このブリフオーム
は、その容積が最終物の容積より大きい点を除け
ば、最終物の形状と実質上類似している。尚、プ
リフオームと最終物の容積の差は、プリフオーム
内の気孔の容積以下である。次いで、このプリフ
オームは、圧縮成形装置(例えば、コイニング装
置)内に置かれ、コイニング装置のダイ内部で圧
縮成形される。プリフオームは、適当なはね返り
余裕を持つてダイの形状に正確に圧縮される。プ
リフオームの圧縮容積はダイの容積と正確に一致
するので、ばりは無く且つ精密部品の密度は精密
部品の材料の最大密度に極めて近くなる。
In order to manufacture precision parts using the above-mentioned raw materials, first a preform (a shape before final compression molding) is made as described above. This brifome is substantially similar in shape to the final product except that its volume is greater than that of the final product. Note that the difference in volume between the preform and the final product is less than or equal to the volume of the pores in the preform. The preform is then placed into a compression molding device (eg, a coining device) and compression molded within the die of the coining device. The preform is precisely compressed into the shape of the die with adequate bounce allowance. Because the compressed volume of the preform exactly matches the volume of the die, there are no burrs and the density of the precision part is very close to the maximum density of the material of the precision part.

気孔が全く無い部材は密閉型ダイを用いるコイ
ニングで成形し難く、無理に成形すればダイの分
割面から素材の一部が押し出されてバリとなる。
密閉型ダイを用いるコイニングに適した気孔率の
部材は公知の粉末冶金法によつても得られるが、
その部材(焼結体)の気孔の大部分が連続気孔で
コインニングによつても独立気孔にはならない。
したがつて、コイニングで得た圧縮成形体も通気
性である。ガス漏れや汚染が許されない化学装
置、電子装置、医療装置等の精密部品には非通気
性でなければならない物が多い。本発明の方法に
よつて実質的に全気孔が気密性独立気孔である焼
結体をコイニングによつて圧縮すれば、非通気性
の精密部品が低コストで得られる。焼結体の全気
孔容積と焼結した物質の体積の比が前記の如く4
%から8%までの範囲内であれば、コイニングに
よつて適切な圧縮(各方向の寸法について約1〜
3%の圧縮率)が達成できる(この事自体は通気
性気孔の焼結体についても言えることである)。
焼結体が極めて薄肉(約20μm以下)の場合には
気孔の僅かが非気密性でコイニングによる仕上げ
後も多少の通気性を示すことがあるが、肉厚が約
75μm以上であれば文字通り全気孔が気密性独立
気孔となり、ヘリウムガスによる漏洩試験でも全
く通気性を示さない部品が得られる。
A member with no pores is difficult to form by coining using a closed die, and if formed forcibly, part of the material will be pushed out from the dividing surface of the die, resulting in burrs.
A member with a porosity suitable for coining using a closed die can also be obtained by known powder metallurgy methods.
Most of the pores in the member (sintered body) are continuous pores and do not become independent pores even by coining.
Therefore, the compression molded product obtained by coining is also breathable. Many precision parts of chemical equipment, electronic equipment, medical equipment, etc. must be impervious to gas leakage and contamination. If a sintered body in which substantially all the pores are airtight closed pores is compressed by coining according to the method of the present invention, an air-impermeable precision part can be obtained at low cost. The ratio of the total pore volume of the sintered body to the volume of the sintered material is 4 as described above.
% to 8% by coining (approximately 1 to 8% for each dimension)
3% compression rate) can be achieved (this also applies to sintered bodies with air permeable pores).
If the sintered body has an extremely thin wall (approximately 20 μm or less), some of the pores may be non-airtight and may exhibit some air permeability even after finishing by coining.
If the diameter is 75 μm or more, literally all the pores become airtight independent pores, and a part that shows no air permeability even in a leak test using helium gas can be obtained.

次に、本発明の実施例について詳細に説明す
る。先ず、粒状物質とバインダを混合して、非弾
性で圧縮可能原料(即ち、圧縮変形すると、容積
の減少状態をそのまま保持する原料)を作る。粒
状物質は、粒状化が可能であつて潜在的に延性特
性を有する物質であれば何れでもよい(即ち、粒
状物質は、脆性物質から後に延性或いは可鍛物質
に変えることができる)。粒状物質の粒子間の拡
散係数は、適当な速度で焼成できるように充分大
きくなければならない。上述の「適当」という語
句は、製作される粒状物の経済性に基づくもので
ある。この要求に合致する物質は、鉄、スチー
ル、殆んど総ての延性金属、及び延性合金であ
る。
Next, embodiments of the present invention will be described in detail. First, a particulate material and a binder are mixed to form an inelastic, compressible raw material (ie, a raw material that retains a reduced volume when compressed and deformed). The particulate material can be any material that can be granulated and has potentially ductile properties (ie, the particulate material can be later converted from a brittle material to a ductile or malleable material). The interparticle diffusion coefficient of the particulate material must be large enough to allow firing at a suitable rate. The term "suitable" as mentioned above is based on the economics of the granules produced. Materials that meet this requirement are iron, steel, almost all ductile metals, and ductile alloys.

粒状物質の粒子の粒径は条件によつて異なる。
好ましい粒径は通常1〜5ミクロンであるが、他
の特別の物質では数10分の1ミクロンでも、或い
は10ミクロン以上であつてもよい。タングステン
粒子は通常数10分の1ミクロン適度である。粒径
の下限はドインダと粒状物質の混合体の流動性
(flowability)に依存し、流動性があれば粒径は
出来るだけ小さい方が好ましい。流動する粒子の
最小粒径は、バインダと粒状物質の粒子の表面間
の界面エネルギーの関数である。
The particle size of particulate matter particles varies depending on conditions.
The preferred particle size is usually 1 to 5 microns, but for other specific materials it may be several tenths of a micron or more than 10 microns. Tungsten particles are usually a few tenths of a micrometer in size. The lower limit of the particle size depends on the flowability of the mixture of doinda and particulate material, and if flowability exists, the particle size is preferably as small as possible. The minimum particle size of the flowing particles is a function of the interfacial energy between the binder and the surface of the particulate material particles.

粒状物質粒子の形状は理論上球状であることが
望ましい。即ち、粒子の単位体積に対する粒子の
全表面積を最小にする形状の粒子であることが望
ましい。このため、卵形及び他の類似の形状であ
つても差し支えないが、理想形状は球形である。
樹枝状及び突起を有する形状は、ある場合には良
結果を生ずる場合もあるが、望ましくない。
Theoretically, it is desirable that the granular material particles have a spherical shape. That is, it is desirable that the particles have a shape that minimizes the total surface area of the particles per unit volume of the particles. Therefore, the ideal shape is spherical, although oval and other similar shapes are acceptable.
Although dendritic and protruding shapes may produce good results in some cases, they are undesirable.

バインダは、粒状物質に対して化学的に不活性
で且つ焼成前に部品が所望形状に成形された後に
容易に除去できる可塑性を有し、例えばポリエチ
レン、ナイロン、ポリプロピレン、カルナウパワ
ツクス及び蜜ろう等の多くのワツクス、パラフイ
ン及び他の粘結物質である必要がある。
The binder is chemically inert to the particulate material and has a plasticity that allows it to be easily removed after the part has been formed into the desired shape prior to firing, such as polyethylene, nylon, polypropylene, Carnaupawax, and beeswax. etc. Many waxes, paraffins and other caking substances are required.

粒状物質量に対するバインダの量は、粒状物質
の粒子間の空隙を完全に埋めるに足る量である。
使用されるバインダに対する粒状物質量の最大割
合は、成形のために必要な流動条件を得ることを
考慮して決めることが望ましい。次に、最終の焼
成物の気孔容積を調整することが望ましい場合に
は、バインダ内部の最大粒状物質量以下の粒状物
質を用いることを考慮すべきである。
The amount of binder relative to the amount of granular material is sufficient to completely fill the voids between particles of the granular material.
The maximum ratio of the amount of particulate material to the binder used is desirably determined with consideration to obtaining the flow conditions necessary for molding. Next, if it is desired to adjust the pore volume of the final fired product, consideration should be given to using less than the maximum amount of particulate material inside the binder.

バインダを粒状物質を均等になるよう撹拌し、
次に均等になつた混合物を、当業者に周知の従来
技術、例えば射出成形、押出し成形、鋳造等によ
つて成形物を作る。成形した後、米国特許第
2939199号、英国特許第779242号及び第1516079号
に開示されている技術、或いは現存及び将来出現
する他の適当な技術を用いて、バインダが除去さ
れる。バインダを除去した成形物は、次に基本的
には従来技術に従つて焼成されるが、以下に説明
するように、焼成工程で時間と温度を制御及び調
節して成形物内の気孔寸法が制御されるので、焼
成物の体積に対する空隙容積率を制御できる。
Stir the binder and particulate matter evenly,
The homogeneous mixture is then formed into molded articles by conventional techniques well known to those skilled in the art, such as injection molding, extrusion, casting, etc. After molding, U.S. Patent No.
The binder is removed using the techniques disclosed in British Patent Nos. 2,939,199, GB 779,242 and GB 1,516,079, or other suitable techniques now existing and emerging in the future. The molded article, from which the binder has been removed, is then fired essentially according to conventional techniques, except that the pore size within the molded article is controlled and adjusted during the firing process, as explained below. Since the porosity is controlled, the void volume ratio with respect to the volume of the fired product can be controlled.

最終焼成物は、高い延性と圧縮可能の特性を有
し、材料中に均等に分布した空隙或いは気孔を有
する。焼成後の上述の物質は所望の形状に仕上圧
縮成形され、従来の方法による場合に比較して極
めて精密で且つ非常に低廉な形状物を得ることが
できる。コイニング(Coining)の場合、成形体
の焼成(焼結)物はコイニング後の製品と実質的
に同一形状である。しかしながら、焼成物は最終
物よりも僅かだけ容積が大であり、この容積の差
は焼成物内の空隙或いは気孔の容積に略々等しい
か或いはそれ以下である。コイニング工程での圧
縮の際、材料が、型空隙部からオーバフローしな
いで流動するようにしなければならないため、こ
のため、材料内部の気孔容積が焼成物と最終物の
容積差に等しいかそれ以上ならば、コイニング中
の物質の総てが型空隙部内に留まりばり発生の可
能性を減ずる。更に、最終成形物の密度は気孔を
有しない生材料の密度に実質上等しいか或いは非
常に近いので、型内のコイニングされた或いは仕
上圧縮成形された材料は0.01mm(数千分の一イン
チ)又はそれ以上の精度で型の形状に正確に一致
する。これは、焼成物をコイニング・システム、
特に型空隙部に置くことによつて達成されるが、
先ずコイニングを通常通りに開始し、上述したよ
うに、焼成物を型の形状に圧縮する。次に、成形
物は型から取り出されるが、ばりは存在せず且つ
型の形状に実質上一致した形状を有する。コイニ
ングは、焼結した物質が延性を領域の温度で行
う。
The final fired product has high ductility and compressibility properties, with voids or pores evenly distributed throughout the material. The above-mentioned material after firing is finished and compression molded into a desired shape, making it possible to obtain a very precise and very inexpensive shaped product compared to conventional methods. In the case of coining, the fired (sintered) molded product has substantially the same shape as the product after coining. However, the fired product has a slightly larger volume than the final product, and this difference in volume is approximately equal to or less than the volume of the voids or pores in the fired product. During compression in the coining process, the material must flow without overflowing from the mold cavity, so if the pore volume inside the material is equal to or greater than the volume difference between the fired product and the final product, For example, all of the material in the coining remains within the mold cavity, reducing the possibility of flash formation. Additionally, the density of the final molded product is substantially equal to or very close to that of the unporous raw material, so that the coined or finished compression molded material in the mold has a density of 0.01 mm (a few thousandths of an inch). ) or better. This is a coining system for fired products,
In particular, this is achieved by placing it in the mold cavity,
First, coining is started as usual, and the fired product is compressed into the shape of the mold, as described above. The molded article is then removed from the mold, free of flash and having a shape that substantially conforms to the shape of the mold. Coining occurs at temperatures in the region where the sintered material is ductile.

実施例 平均粒径4〜7ミクロンで比表面積が0.34m2
gの実質的に球状のニツケル粒状物質(Incoタイ
プ123ニツケル粉)315gを35.2gのカルナウバワ
ツクスと混合した。この混合物を容量0.95リツト
ル(1quart)の実験室タイプのシグマブレードミ
キサーに入れ100℃で1時間半混合した。物質、
均一で中程度の粘性を有するプラスチゾルが得ら
れた。ミキサーから取り出し、カルナウバワツク
スが固化するまで1時間放冷した。固化物質をハ
ンマーで粉砕し、粉砕物を容量0.44(1.5オン
ス)の射出成型機に入れた。数ダースのリングが
射出成形機に形成された。この内無作為に3個の
リングを取り出しBlueM実験室用オーブン内の
実験室用ろ紙上に載置し温度を周囲温度からカル
ナウバロツクスバインダの融点まで20分間で除々
に上昇させた。オーブンをこの温度で一夜約12時
間放置し、その後ろ紙上のカルナウバワツクスの
リングを観察した。次いで8時間で温度を100℃
に上昇させ、この温度でオーブンを一夜保持し
た。次の日、ろ紙上の成型ワツクスリングは非常
に増大していた。オーブンの温度を150℃に48時
間上昇させ、次いで200℃に8時間上昇させた。
オーブンを放冷し、温度が室温近くになつた時、
3個のリングを取り出した。このリングを調整さ
れた雰囲気のキルンに入れた。この雰囲気はアル
ゴン90%及び水素10%に保持され、露点は−60℃
以下であつた。更に、次の24時間の間に温度を周
囲温度から371.1℃(700〓)に上昇させ一持保持
し、更に6時間に亘つて直線的に1176.7℃(2150
〓)に昇温した。この温度に一時間保持してキル
ンを閉鎖し実質上室温まで放冷した。2個のリン
グをキルンから取り出し、重量を測定し比重びん
に入れた。各リングの密度は8.54g/c.c.であつ
た。1つの試料から金属組織を調べるための切片
を作製し、ベークライトに埋め、研磨し、エツチ
ングを行つた。これらの操作はASTMの規定に
準じて行つた。次いで切片を顕微鏡観察した。球
状気孔は実質的に均質に試料全体に分布されてく
ることが判つた。気孔は結晶径よりかなり小さく
結晶界面に沿う傾向があつた。一般的な外観は球
状気孔を有する鍛造物の外観と同じであつた。キ
ルンから取り出された第2のリングを測定したと
ころ、その径は2.26cm(0.890インチ)〜2.25cm
(0.886インチ)の外径を有しており、完全な円形
は得られなかつた。第2のリングを次に直径
2.250cm(0.885インチ)の円形ダイに置き室温で
アーバ(arbor)プレスによりダイを介して押込
んだ。リングを測定すると2.250cm(0.886イン
チ)の実質的に均一な径となつていることが判つ
た。ダイを介して押し込まれたリングの部分は外
観上光つていた。重量をチエツクした後、比重び
んで測定した密度は8.65であつた。部品の重量は
実質的で一定であつた。第2のリングについても
金属組織用切片を上述の方法で作製した。リング
の外周を圧縮したため均一な球状気孔構造は変形
し、最外層の気孔は扁円状に圧縮されその長軸は
球体の直径と同一であり短軸はリングの半径平面
に沿つて広がつていた。リングの内径に沿つて存
在する球状気孔は比較的不変であつた。
Example Average particle size 4-7 microns and specific surface area 0.34 m 2 /
315 g of substantially spherical nickel granular material (Inco Type 123 nickel powder) was mixed with 35.2 g of carnauba wax. This mixture was placed in a 1 quart laboratory type sigma blade mixer and mixed for 1.5 hours at 100°C. material,
A homogeneous, moderately viscous plastisol was obtained. It was taken out from the mixer and left to cool for 1 hour until the carnauba wax solidified. The solidified material was crushed with a hammer and the crushed material was placed in a 0.44 (1.5 oz) capacity injection molding machine. Several dozen rings were formed in an injection molding machine. Three rings were randomly removed and placed on laboratory filter paper in a BlueM laboratory oven, and the temperature was gradually increased from ambient temperature to the melting point of the carnauba rock binder over a period of 20 minutes. The oven was left at this temperature overnight for about 12 hours, after which the rings of carnauba wax on the paper were observed. Then the temperature was increased to 100℃ for 8 hours.
and kept the oven at this temperature overnight. The next day, the wax ring formed on the filter paper had increased significantly. The oven temperature was increased to 150°C for 48 hours and then to 200°C for 8 hours.
Let the oven cool and when the temperature is close to room temperature,
He took out three rings. This ring was placed in a kiln with a controlled atmosphere. The atmosphere was maintained at 90% argon and 10% hydrogen, with a dew point of -60°C.
It was below. Furthermore, during the next 24 hours the temperature was raised from ambient to 371.1°C (700°) and held there, then linearly increased to 1176.7°C (2150°) over an additional 6 hours.
〓). After holding this temperature for one hour, the kiln was closed and allowed to cool to substantially room temperature. The two rings were removed from the kiln, weighed and placed in a pycnometer. The density of each ring was 8.54 g/cc. A section for examining the metallographic structure was prepared from one sample, buried in Bakelite, polished, and etched. These operations were performed in accordance with ASTM regulations. The sections were then observed under a microscope. It was found that the spherical pores became substantially homogeneously distributed throughout the sample. The pores were much smaller than the crystal diameter and tended to lie along the crystal interface. The general appearance was the same as that of a forging with spherical pores. The second ring removed from the kiln was measured and its diameter ranged from 0.890 inches to 2.25 cm.
(0.886 inch), and a perfect circle could not be obtained. Second ring then diameter
It was placed in a 2.250 cm (0.885 inch) circular die and pressed through the die with an arbor press at room temperature. The ring was measured and found to have a substantially uniform diameter of 2.250 cm (0.886 inch). The part of the ring pressed through the die was shiny in appearance. After checking the weight, the density measured in a pycnometer was 8.65. The weight of the parts remained substantially constant. A metallographic section was also prepared for the second ring using the above method. Because the outer circumference of the ring was compressed, the uniform spherical pore structure was deformed, and the pores in the outermost layer were compressed into an oblate shape, whose long axis was the same as the diameter of the sphere, and whose short axis expanded along the radial plane of the ring. was. The spherical pores present along the inner diameter of the ring remained relatively unchanged.

実施例 同一の装置を用いて実施例を繰り返したが、
粒状物質をニツケルから平均粒径4〜6ミクロン
の実質的に球状の鉄に変えた。本実施例では、
278.19gの鉄をカルナウバワツクスと混合した。
実施例と同様のテストを行い、キルンから取り
出したリングの密度が約7.46であつたこと以外実
質的に同一の結果が得られた。アーバプレスでダ
イ中のリングを室温で圧縮した時実施例と同じ
結果が得られた。
EXAMPLE The example was repeated using the same equipment, but
The particulate material was changed from nickel to substantially spherical iron with an average particle size of 4-6 microns. In this example,
278.19g of iron was mixed with carnauba wax.
Tests similar to those in the Example were conducted with substantially the same results except that the density of the ring removed from the kiln was approximately 7.46. The same results as in the example were obtained when the ring in the die was compressed at room temperature in an arbor press.

実施例 ニツケル単独の代りにニツケルと鉄の混合物を
使用した以外実施例に記載したと同一の方法を
繰り返した。実施例に記載したのと同様にニツ
ケル50重量%と実施例に記載したのと同様に鉄
50重量%を使用し、これを35.2gのカルナウバワ
ツクスと混合した。結果は実施例に関連して述
べたものと同一であつた。キルンから取り出した
後のリングの密度は特に測定しなかつたがダイか
ら取り出した後の容積は減少していた。焼成後及
びダイから除去後の焼成体の重量は実質的に同一
であつた。金属組織学的に顕微鏡観察した製品は
ニツケルと鉄が分離しているというより真の合金
であることが判つた。
EXAMPLE The same procedure as described in the example was repeated except that a mixture of nickel and iron was used instead of nickel alone. 50% by weight of nickel as described in the example and iron as described in the example.
50% by weight was used and this was mixed with 35.2g of carnauba wax. The results were the same as described in connection with the examples. Although the density of the ring after removal from the kiln was not specifically measured, the volume after removal from the die was reduced. The weight of the fired body after firing and after removal from the die was substantially the same. Metallographic microscopic observation of the product revealed that the nickel and iron were not separated, but rather a true alloy.

実施例 粒径3〜4ミクロンの略々球形の粒子からなる
ニツケル粉末2重量%と粒径4〜5ミクロンの
略々球形の粒子からなる鉄粉末98重量%の混合物
に熱可塑性バインダを加えて練り、その混合物を
射出成形で円板形に成形した。実施例と同じ方
法で成形体からバインダを除去した後焼結した。
焼結円板は直径15mm、厚さ1mmで、見掛け密度は
7.73g/cm3で真空度(7.89g/cm3)の約98%で
(気孔率2%)であつた。焼結によつてニツケル
と鉄の相互拡散が起つて合金化していた。ヘリウ
ムガスによる試験の結果この焼結体は非通気性で
あつた。この焼結体を室温でコイニングにより圧
縮して厚さを0.99mmにした。コイニングの際、ス
プリングバツクは殆ど認められなかつた。その
後、ヘリウムガスによる試験を繰り返したとこ
ろ、やはり非通気性であつた。
Example A thermoplastic binder was added to a mixture of 2% by weight of nickel powder consisting of approximately spherical particles with a particle size of 3 to 4 microns and 98% by weight of iron powder consisting of approximately spherical particles with a particle size of 4 to 5 microns. The mixture was molded into a disk shape by injection molding. The binder was removed from the molded body in the same manner as in the examples and then sintered.
The sintered disk has a diameter of 15 mm, a thickness of 1 mm, and an apparent density of
It was 7.73 g/cm 3 and about 98% of the degree of vacuum (7.89 g/cm 3 ) (porosity 2%). Sintering caused nickel and iron to interdiffusion and form an alloy. As a result of a test using helium gas, this sintered body was found to be non-porous. This sintered body was compressed by coining at room temperature to a thickness of 0.99 mm. During coining, almost no springback was observed. After that, the test using helium gas was repeated, and it was still non-permeable.

比較例 粒径約150ミクロンの2%Ni−98%Fe合金粉末
を円板状に加圧成形し、成形体を焼結した。焼結
円板は直径15mm、厚さ1mmで、密度が6.9g/cm3
気孔率が13.5%であつた。ヘリウムガスによる試
験結果、この焼結体は著しく通気性であつた。こ
の焼結体を室温でコイニングで圧縮して厚さを
0.99mmにした。コイニングの際、多少のスプリン
グバツクが起きた。その後、ヘリウムガスによる
試験を繰り返したところ、コイニング以前と同程
度に通気性であつた。
Comparative Example A 2% Ni-98% Fe alloy powder having a particle size of about 150 microns was press-molded into a disk shape, and the compact was sintered. The sintered disk has a diameter of 15 mm, a thickness of 1 mm, and a density of 6.9 g/cm 3 .
The porosity was 13.5%. As a result of testing with helium gas, this sintered body was found to be extremely breathable. This sintered body is compressed by coining at room temperature to reduce its thickness.
It was set to 0.99mm. There was some springback when coining. After that, the test using helium gas was repeated, and it was found to be as breathable as before coining.

本発明を特定の好適な実施態様に関連して記載
したが、多くの変更及び改変を行うことができる
ことは当業者にとつて明らかであり、したがつて
本願発明は単に前記実施態様に限定されるもので
ないことは言うまでもない。
Although the invention has been described in connection with specific preferred embodiments, it will be obvious to those skilled in the art that many changes and modifications may be made and the invention is therefore limited to only those embodiments. Needless to say, this is not something that can be done.

Claims (1)

【特許請求の範囲】 1 焼結粒子構成体を製造し、該焼結粒子構成体
を圧縮して所望形状寸法に仕上げる方法であつ
て、所定量の焼結可能な球形に近い微粒子から成
る粒状物質とバインダを混合して上記粒状物質の
粒子の実質上全表面をバインダで被覆する工程(1)
と、 該工程(1)で得た混合物を所望形状の構成体に成
型する工程(2)と、 該工程(2)で得た構成体からバインダを除去する
工程(3)と、 該工程(3)でバインダ除去後の粒子構成体を時間
及び温度を制御して焼成して、実質的に全気孔が
気密性独立気孔であつて全気孔容積と焼結した物
質の体積の比が所定の値の非弾性圧縮可能な焼結
体を得る工程(4)と、 上記焼結体をコイニングによつて圧縮して、上
記全気孔容積に近いが該全気孔容積を超えない体
積減少を達成することによつて上記焼結体を精密
に所望形状寸法に仕上げる工程(5)とから構成され
る方法。 2 上記粒状物質は、延性金属、延性合金、及び
焼成後に延性となる非延性物質から選ばれる特許
請求の範囲1項記載の方法。 3 上記微粒子の粒径が10ミクロン以下である特
許請求の範囲第1項或いは第2項の何れかに記載
の方法。 4 上記バインダがワツクスである特許請求の範
囲第1項から第3項までの何れかに記載の方法。
[Scope of Claims] 1. A method for producing a sintered particle structure and compressing the sintered particle structure to obtain a desired shape and size, the method comprising: producing a granule consisting of a predetermined amount of sinterable near-spherical particles; (1) mixing a substance and a binder to coat substantially the entire surface of the particles of the granular material with the binder;
a step (2) of molding the mixture obtained in step (1) into a structure of a desired shape; a step (3) of removing the binder from the structure obtained in step (2); The particle structure after the binder has been removed in step 3) is fired by controlling time and temperature to ensure that substantially all the pores are airtight closed pores and the ratio of the total pore volume to the volume of the sintered material is a predetermined value. (4) obtaining an inelastically compressible sintered body with a value of A method comprising a step (5) of precisely finishing the sintered body into a desired shape and size. 2. The method of claim 1, wherein the particulate material is selected from ductile metals, ductile alloys, and non-ductile materials that become ductile after firing. 3. The method according to claim 1 or 2, wherein the particle size of the fine particles is 10 microns or less. 4. The method according to any one of claims 1 to 3, wherein the binder is wax.
JP776381A 1981-01-21 1981-01-21 Manufacture of bakes granular structure and crush compress formation Granted JPS57123902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP776381A JPS57123902A (en) 1981-01-21 1981-01-21 Manufacture of bakes granular structure and crush compress formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP776381A JPS57123902A (en) 1981-01-21 1981-01-21 Manufacture of bakes granular structure and crush compress formation

Publications (2)

Publication Number Publication Date
JPS57123902A JPS57123902A (en) 1982-08-02
JPH0151521B2 true JPH0151521B2 (en) 1989-11-06

Family

ID=11674722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP776381A Granted JPS57123902A (en) 1981-01-21 1981-01-21 Manufacture of bakes granular structure and crush compress formation

Country Status (1)

Country Link
JP (1) JPS57123902A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027878U (en) * 1983-07-30 1985-02-25 株式会社 佐文工業所 Inner pot of full-rotation pot
JPS6030781U (en) * 1983-08-05 1985-03-01 株式会社 佐文工業所 Outer pot of full-rotation pot
JPS63183103A (en) * 1987-01-26 1988-07-28 Chugai Ro Kogyo Kaisha Ltd Sintering method for injection molding
JPH0686608B2 (en) * 1987-12-14 1994-11-02 川崎製鉄株式会社 Method for producing iron sintered body by metal powder injection molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133210A (en) * 1972-10-27 1974-12-20
JPS5214504A (en) * 1975-07-23 1977-02-03 Borg Warner Moulding method for highhdensity powdered metal product
JPS5326207A (en) * 1976-08-23 1978-03-10 Federal Mogul Corp Process for production of casting product of powdered metal
JPS56108802A (en) * 1980-02-01 1981-08-28 Mitsubishi Heavy Ind Ltd Working method for machine constituting parts using metal powder as raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133210A (en) * 1972-10-27 1974-12-20
JPS5214504A (en) * 1975-07-23 1977-02-03 Borg Warner Moulding method for highhdensity powdered metal product
JPS5326207A (en) * 1976-08-23 1978-03-10 Federal Mogul Corp Process for production of casting product of powdered metal
JPS56108802A (en) * 1980-02-01 1981-08-28 Mitsubishi Heavy Ind Ltd Working method for machine constituting parts using metal powder as raw material

Also Published As

Publication number Publication date
JPS57123902A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US7070734B2 (en) Blended powder solid-supersolidus liquid phase sintering
US7147819B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
EP1755809B1 (en) Method of production of porous metallic materials
US2893102A (en) Article fabrication from powders
CA1182309A (en) Dimensionally-controlled cobalt-containing precision molded metal article
US4707184A (en) Porous metal parts and method for making the same
JPH0251961B2 (en)
US7041250B2 (en) Combined liquid phase and activated sintering of refractory metals
US3397968A (en) Porous materials
EP1694875B1 (en) Processes for sintering aluminum and aluminum alloy components
JPH0151521B2 (en)
WO2018088580A1 (en) Method for manufacturing precisely shaped parts, and precisely shaped parts using same
EP3178587A1 (en) Method for producing a porous shaped body
US4445936A (en) Method of making inelastically compressible ductile particulate material article and subsequent working thereof
US5746960A (en) Method of manufacturing powder injection molded part
US2894837A (en) Method for producing cemented carbide articles
JP2995661B2 (en) Manufacturing method of porous cemented carbide
EP0639417A1 (en) Process for manufacturing powder injection molded parts
JPH0346522B2 (en)
EP0032405B1 (en) Method of making inelastically compressible ductile particulate material article and subsequent working thereof
JPH11315304A (en) Manufacture of sintered body
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
RU2765971C1 (en) Method of producing material with different-level porosity based on hematite powders
JP2731857B2 (en) Alloy for forming bullet and method for producing the same